Advertisement

Effects of Sympathetic Activity on Human Skeletal Homeostasis: Clinical Evidence from Pheochromocytoma

  • Beom-Jun KimEmail author
  • Seung Hun Lee
  • Jung-Min Koh
Review Paper
  • 34 Downloads

Abstract

Bone is a highly dynamic tissue that is continuously being renewed in a lifelong remodeling process that is guided by mechanical and biochemical signals. Imbalances between the underlying processes result in metabolic bone diseases, such as osteoporosis and osteopetrosis; therefore, all phases of bone remodeling are tightly controlled by systemic or local factors to maintain bone homeostasis. The sympathetic nervous system (SNS), one of the two main divisions of the autonomic nervous system, operates through a series of interconnected neurons and finalizes the actions by binding catecholamines, released from postganglionic neurons and from adrenal medulla to adrenergic receptors on peripheral target tissues. Because bone is a metabolically active organ with a significant neural innervation, it is reasonable to assume that neuronal control may constitute a key mechanism in bone remodeling. Pheochromocytoma is a neuroendocrine tumor arising from the chromaffin cells of the adrenal medulla and is characterized by an excessive production of catecholamines. Considering that catecholamines are the main neurotransmitters of SNS, pheochromocytoma might be an ideal human model to determine the role of sympathetic outflow on the pathogenesis of a variety of diseases. This review highlights the importance of SNS activity in human skeletal homeostasis based on insights gained from pheochromocytoma, combined with evidence from a variety of experimental studies.

Keywords

Sympathetic nervous system Bone remodeling Adrenergic receptors Bone resorption Pheochromocytoma 

Notes

Funding Information

This study was supported by a grant (project # 2016M3A9E8941329) from the Bio & Medical Technology Development Program of the National Research Foundation, funded by the Korean government, MSIP.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed Consent

This is not needed as no studies on human subjects were performed.

References

  1. 1.
    Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13(7):791–801.  https://doi.org/10.1038/nm1593.Google Scholar
  2. 2.
    Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473(2):201–9.  https://doi.org/10.1016/j.abb.2008.03.027.Google Scholar
  3. 3.
    Goltzman D. Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov. 2002;1(10):784–96.  https://doi.org/10.1038/nrd916.Google Scholar
  4. 4.
    Ray BS. Observation on structure and function of the sympathetic nervous system. Med Bull (Ann Arbor). 1955;21(1):1–12.Google Scholar
  5. 5.
    Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56(3):331–49.  https://doi.org/10.1124/pr.56.3.1. Google Scholar
  6. 6.
    Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–66.Google Scholar
  7. 7.
    Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev. 2008;88(2):729–67.  https://doi.org/10.1152/physrev.00028.2007.Google Scholar
  8. 8.
    Denes A, Boldogkoi Z, Uhereczky G, Hornyak A, Rusvai M, Palkovits M, et al. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience. 2005;134(3):947–63.  https://doi.org/10.1016/j.neuroscience.2005.03.060.Google Scholar
  9. 9.
    Elefteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int. 2014;94(1):140–51.  https://doi.org/10.1007/s00223-013-9752-4.Google Scholar
  10. 10.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17.Google Scholar
  11. 11.
    Moore RE, Smith CK 2nd, Bailey CS, Voelkel EF, Tashjian AH Jr. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 1993;23(3):301–15.Google Scholar
  12. 12.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.Google Scholar
  13. 13.
    Shi Y, Yadav VK, Suda N, Liu XS, Guo XE, Myers MG Jr, et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008;105(51):20529–33.  https://doi.org/10.1073/pnas.0808701106.Google Scholar
  14. 14.
    Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Invest. 2011;121(6):2087–93.  https://doi.org/10.1172/jci45888.Google Scholar
  15. 15.
    Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.  https://doi.org/10.1038/nature03398.Google Scholar
  16. 16.
    Kondo H, Nifuji A, Takeda S, Ezura Y, Rittling SR, Denhardt DT, et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem. 2005;280(34):30192–200.  https://doi.org/10.1074/jbc.M504179200.Google Scholar
  17. 17.
    Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J, et al. Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A. 2006;103(45):16876–81.  https://doi.org/10.1073/pnas.0604234103.Google Scholar
  18. 18.
    Kondo H, Togari A. Continuous treatment with a low-dose beta-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int. 2011;88(1):23–32.  https://doi.org/10.1007/s00223-010-9421-9.Google Scholar
  19. 19.
    Bonnet N, Benhamou CL, Brunet-Imbault B, Arlettaz A, Horcajada MN, Richard O, et al. Severe bone alterations under beta2 agonist treatments: bone mass, microarchitecture and strength analyses in female rats. Bone. 2005;37(5):622–33.  https://doi.org/10.1016/j.bone.2005.07.012.Google Scholar
  20. 20.
    Bonnet N, Benhamou CL, Beaupied H, Laroche N, Vico L, Dolleans E, et al. Doping dose of salbutamol and exercise: deleterious effect on cancellous and cortical bones in adult rats. J Appl Physiol (1985). 2007;102(4):1502–9.  https://doi.org/10.1152/japplphysiol.00815.2006. Google Scholar
  21. 21.
    Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H, Chen W, et al. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell. 2007;130(2):247–58.  https://doi.org/10.1016/j.cell.2007.05.038.Google Scholar
  22. 22.
    Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med. 2011;208(4):841–51.  https://doi.org/10.1084/jem.20102608.Google Scholar
  23. 23.
    Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122(5):803–15.  https://doi.org/10.1016/j.cell.2005.06.028.Google Scholar
  24. 24.
    Arai M, Nagasawa T, Koshihara Y, Yamamoto S, Togari A. Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta. 2003;1640(2–3):137–42.Google Scholar
  25. 25.
    Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for coffin-Lowry syndrome. Cell. 2004;117(3):387–98.Google Scholar
  26. 26.
    Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach J, Joyner MJ. Sex and ageing differences in resting arterial pressure regulation: the role of the beta-adrenergic receptors. J Physiol. 2011;589(Pt 21):5285–97.  https://doi.org/10.1113/jphysiol.2011.212753.Google Scholar
  27. 27.
    Sundlof G, Wallin BG. The variability of muscle nerve sympathetic activity in resting recumbent man. J Physiol. 1977;272(2):383–97.Google Scholar
  28. 28.
    de Vries F, Souverein PC, Cooper C, Leufkens HG, van Staa TP. Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and the Netherlands. Calcif Tissue Int. 2007;80(2):69–75.  https://doi.org/10.1007/s00223-006-0213-1.Google Scholar
  29. 29.
    Gage BF, Birman-Deych E, Radford MJ, Nilasena DS, Binder EF. Risk of osteoporotic fracture in elderly patients taking warfarin: results from the National Registry of atrial fibrillation 2. Arch Intern Med. 2006;166(2):241–6.  https://doi.org/10.1001/archinte.166.2.241.Google Scholar
  30. 30.
    Meisinger C, Heier M, Lang O, Doring A. Beta-blocker use and risk of fractures in men and women from the general population: the MONICA/KORA Augsburg cohort study. Osteoporos Int. 2007;18(9):1189–95.  https://doi.org/10.1007/s00198-007-0354-8. Google Scholar
  31. 31.
    Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA. 2004;292(11):1326–32.  https://doi.org/10.1001/jama.292.11.1326.Google Scholar
  32. 32.
    Toulis KA, Hemming K, Stergianos S, Nirantharakumar K, Bilezikian JP. Beta-adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int. 2014;25(1):121–9.  https://doi.org/10.1007/s00198-013-2498-z.Google Scholar
  33. 33.
    Sosa M, Saavedra P, Gomez de Tejada MJ, Mosquera J, Perez-Cano R, Olmos JM, et al. Beta-blocker use is associated with fragility fractures in postmenopausal women with coronary heart disease. Aging Clin Exp Res. 2011;23(2):112–7.  https://doi.org/10.3275/7041. Google Scholar
  34. 34.
    Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, et al. Beta-blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res. 2005;20(4):613–8.  https://doi.org/10.1359/jbmr.041202. Google Scholar
  35. 35.
    Levasseur R, Dargent-Molina P, Sabatier JP, Marcelli C, Breart G. Beta-blocker use, bone mineral density, and fracture risk in older women: results from the Epidemiologie de l'Osteoporose prospective study. J Am Geriatr Soc. 2005;53(3):550–2.  https://doi.org/10.1111/j.1532-5415.2005.53178_7.x.Google Scholar
  36. 36.
    Veldhuis-Vlug AG, Oei L, Souverein PC, Tanck MW, Rivadeneira F, Zillikens MC, et al. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. Osteoporos Int. 2015;26(7):2019–27.  https://doi.org/10.1007/s00198-015-3087-0.Google Scholar
  37. 37.
    Veldhuis-Vlug AG, Tanck MW, Limonard EJ, Endert E, Heijboer AC, Lips P, et al. The effects of beta-2 adrenergic agonist and antagonist on human bone metabolism: a randomized controlled trial. Bone. 2015;71:196–200.  https://doi.org/10.1016/j.bone.2014.10.024.Google Scholar
  38. 38.
    Reid IR, Lucas J, Wattie D, Horne A, Bolland M, Gamble GD, et al. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab. 2005;90(9):5212–6.  https://doi.org/10.1210/jc.2005-0573.Google Scholar
  39. 39.
    Choi HJ, Park C, Lee YK, Ha YC, Jang S, Shin CS. Risk of fractures in subjects with antihypertensive medications: a nationwide claim study. Int J Cardiol. 2015;184:62–7.  https://doi.org/10.1016/j.ijcard.2015.01.072.Google Scholar
  40. 40.
    Rejnmark L, Vestergaard P, Kassem M, Christoffersen BR, Kolthoff N, Brixen K, et al. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int. 2004;75(5):365–72.  https://doi.org/10.1007/s00223-004-0222-x.Google Scholar
  41. 41.
    de Vries F, Pouwels S, Bracke M, Leufkens HG, Cooper C, Lammers JW, et al. Use of beta-2 agonists and risk of hip/femur fracture: a population-based case-control study. Pharmacoepidemiol Drug Saf. 2007;16(6):612–9.  https://doi.org/10.1002/pds.1318.Google Scholar
  42. 42.
    Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk in patients with chronic lung diseases treated with bronchodilator drugs and inhaled and oral corticosteroids. Chest. 2007;132(5):1599–607.  https://doi.org/10.1378/chest.07-1092.Google Scholar
  43. 43.
    Gonnelli S, Caffarelli C, Maggi S, Guglielmi G, Siviero P, Rossi S, et al. Effect of inhaled glucocorticoids and beta(2) agonists on vertebral fracture risk in COPD patients: the EOLO study. Calcif Tissue Int. 2010;87(2):137–43.  https://doi.org/10.1007/s00223-010-9392-x.Google Scholar
  44. 44.
    Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet. 2005;366(9486):665–75.  https://doi.org/10.1016/s0140-6736(05)67139-5.Google Scholar
  45. 45.
    Wachtel H, Cerullo I, Bartlett EK, Roses RE, Cohen DL, Kelz RR, et al. Clinicopathologic characteristics of incidentally identified pheochromocytoma. Ann Surg Oncol. 2015;22(1):132–8.  https://doi.org/10.1245/s10434-014-3933-x.Google Scholar
  46. 46.
    Veldhuis-Vlug AG, El Mahdiui M, Endert E, Heijboer AC, Fliers E, Bisschop PH. Bone resorption is increased in pheochromocytoma patients and normalizes following adrenalectomy. J Clin Endocrinol Metab. 2012;97(11):E2093–7.  https://doi.org/10.1210/jc.2012-2823.Google Scholar
  47. 47.
    Kim BJ, Kwak MK, Ahn SH, Kim H, Lee SH, Song KH, et al. Lower bone mass and higher bone resorption in Pheochromocytoma: importance of sympathetic activity on human bone. J Clin Endocrinol Metab. 2017;102(8):2711–8.  https://doi.org/10.1210/jc.2017-00169.Google Scholar
  48. 48.
    Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature. 1965;206(983):489–90.Google Scholar
  49. 49.
    Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26(1):1–8.  https://doi.org/10.1007/s00774-007-0793-5.Google Scholar
  50. 50.
    Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90(5):2787–93.  https://doi.org/10.1210/jc.2004-1568.Google Scholar
  51. 51.
    Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–30.  https://doi.org/10.1002/jbmr.2176.Google Scholar
  52. 52.
    Bousson V, Bergot C, Sutter B, Levitz P, Cortet B. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489–501.  https://doi.org/10.1007/s00198-011-1824-6.Google Scholar
  53. 53.
    Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int. 2013;24(1):77–85.  https://doi.org/10.1007/s00198-012-2188-2.Google Scholar
  54. 54.
    Iki M, Tamaki J, Kadowaki E, Sato Y, Dongmei N, Winzenrieth R, et al. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese population-based osteoporosis (JPOS) cohort study. J Bone Miner Res. 2014;29(2):399–407.  https://doi.org/10.1002/jbmr.2048.Google Scholar
  55. 55.
    Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-bmd dxa measures: the 2015 iscd official positions part 2: trabecular bone score. J Clin Densitom. 2015;18(3):309–30.  https://doi.org/10.1016/j.jocd.2015.06.008.Google Scholar
  56. 56.
    Harvey NC, Gluer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24.  https://doi.org/10.1016/j.bone.2015.05.016.Google Scholar
  57. 57.
    Kim BJ, Kwak MK, Kim JS, Lee SH, Koh JM. Higher sympathetic activity as a risk factor for skeletal deterioration in pheochromocytoma. Bone. 2018;116:1–7.  https://doi.org/10.1016/j.bone.2018.06.023. Google Scholar
  58. 58.
    Farr JN, Charkoudian N, Barnes JN, Monroe DG, McCready LK, Atkinson EJ, et al. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab. 2012;97(11):4219–27.  https://doi.org/10.1210/jc.2012-2381.Google Scholar
  59. 59.
    Motyl KJ, Rosen CJ. The skeleton and the sympathetic nervous system: it’s about time! J Clin Endocrinol Metab. 2012;97(11):3908–11.  https://doi.org/10.1210/jc.2012-3205.Google Scholar
  60. 60.
    Kellenberger S, Muller K, Richener H, Bilbe G. Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone. 1998;22(5):471–8.Google Scholar
  61. 61.
    Nuntapornsak A, Wongdee K, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Changes in the mRNA expression of osteoblast-related genes in response to beta(3)-adrenergic agonist in UMR106 cells. Cell Biochem Funct. 2010;28(1):45–51.  https://doi.org/10.1002/cbf.1617.Google Scholar
  62. 62.
    Hirai T, Tanaka K, Togari A. alpha1B-adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts. Biol Open. 2015;4(11):1400–9.  https://doi.org/10.1242/bio.012617.Google Scholar
  63. 63.
    Kondo H, Takeuchi S, Togari A. Beta-adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab. 2013;304(5):E507–15.  https://doi.org/10.1152/ajpendo.00191.2012.Google Scholar
  64. 64.
    Motyl KJ, Barbe MF. Peripheral neuronal control of bone remodeling. In: Bilezikian JP, Bouillon R, Clemens T, Compston J, Bauer DC, Ebeling PR, et al., editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. 9th ed. Hoboken: Wiley; 2018. p. 1028–36.Google Scholar
  65. 65.
    Khosla S, Drake MT, Volkman TL, Thicke BS, Achenbach SJ, Atkinson EJ, et al. Sympathetic beta1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest. 2018;128(11):4832–42.  https://doi.org/10.1172/jci122151.Google Scholar
  66. 66.
    Piascik MT, Perez DM. Alpha1-adrenergic receptors: new insights and directions. J Pharmacol Exp Ther. 2001;298(2):403–10.Google Scholar
  67. 67.
    Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.Google Scholar
  68. 68.
    Johnell O, Oden A, De Laet C, Garnero P, Delmas PD, Kanis JA. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int. 2002;13(7):523–6.  https://doi.org/10.1007/s001980200068.Google Scholar
  69. 69.
    Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. J Bone Miner Res. 1996;11(10):1531–8.  https://doi.org/10.1002/jbmr.5650111021. Google Scholar
  70. 70.
    Wallin BG, Charkoudian N. Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve. 2007;36(5):595–614.  https://doi.org/10.1002/mus.20831.Google Scholar
  71. 71.
    Bab IA, Yirmiya R. Depression and bone mass. Ann N Y Acad Sci. 2010;1192(1):170–5.  https://doi.org/10.1111/j.1749-6632.2009.05218.x.Google Scholar
  72. 72.
    Baek K, Bloomfield SA. Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J Bone Miner Res. 2009;24(5):792–9.  https://doi.org/10.1359/jbmr.081241. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea

Personalised recommendations