Testosterone and Male Osteoporosis

  • Dong-Eun Shin
  • Tae-Keun Ahn
  • Jee-Woong Kim
  • Chi-Hoon Oh
  • SeongJu Choi
Review Paper

Abstract

Male osteoporosis is not a rare public health issue. The prevalence of hypogonadism increases with aging, and the gradual onset of moderate hypogonadism is the most common cause of male osteoporosis. Decreased testosterone levels with aging can directly or indirectly increase the risk of male osteoporosis and fractures. However, testosterone deficiency is not a universal feature of elderly men, and the association of testosterone with osteoporosis is not as strong as that of estrogen with osteoporosis in females; the effect of testosterone on male osteoporosis and treatment of osteoporosis is still controversial. Although many data and results have been released, the mechanism by which testosterone affects bone formation and resorption is not fully understood yet. Therefore, this review aims to present current knowledge about testosterone and male osteoporosis.

Keywords

Testosterone Androgen Androgen receptor Osteoporosis 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

References

  1. 1.
    Bouillon R, Burckhardt P, Christiansen C, Fleisch HA, Fujita T, Gennari C, et al. Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med. 1991;90:107–10.CrossRefGoogle Scholar
  2. 2.
    Cooper C, Campion G, Melton L 3rd. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Van Der Klift M, De Laet CE, Mccloskey EV, Hofman A, Pols HA. The incidence of vertebral fractures in men and women: the Rotterdam study. J Bone Miner Res. 2002;17(6):1051–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Melton LJ, Atkinson EJ, O’connor MK, O’fallon WM, Riggs BL. Bone density and fracture risk in men. J Bone Miner Res. 1998;13(12):1915–23.CrossRefPubMedGoogle Scholar
  5. 5.
    Melton JL. Perspectives: how many women have osteoporosis now? J Bone Miner Res. 1995;10:175–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Kanis JA, Johnell O, Oden A, Sernbo I, Redlund-Johnell I, Dawson A, et al. Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int. 2000;11(8):669–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Misiorowski W. Osteoporosis in men. Przeglad Menopauzalny Menopause Rev. 2017;16:70.CrossRefGoogle Scholar
  8. 8.
    Khosla S, Amin S, Orwoll E. Osteoporosis in men. Endocr Rev. 2008;29(4):441–64.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chin K-Y, Ima-Nirwana S. Sex steroids and bone health status in men. Int J Endocrinol [Internet]. 2012 [cited 2017 Aug 14];2012. Available from: https://www.hindawi.com/journals/ije/2012/208719/abs/
  10. 10.
    Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, et al. Sex steroid actions in male bone. Endocr Rev. 2014;35(6):906–60.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mulligan T, Iranmanesh A, Veldhuis JD. Pulsatile iv infusion of recombinant human LH in leuprolide-suppressed men unmasks impoverished Leydig-cell secretory responsiveness to midphysiological LH drive in the aging male. J Clin Endocrinol Metab. 2001;86(11):5547–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Mulligan T, Iranmanesh A, Kerzner R, Demers LW, Veldhuis JD. Two-week pulsatile gonadotropin releasing hormone infusion unmasks dual (hypothalamic and Leydig cell) defects in the healthy aging male gonadotropic axis. Eur J Endocrinol. 1999;141(3):257–66.CrossRefPubMedGoogle Scholar
  13. 13.
    Mahmoud AM, Goemaere S, El-Garem Y, Van Pottelbergh I, Comhaire FH, Kaufman JM. Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J Clin Endocrinol Metab. 2003;88(1):179–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279–302.CrossRefPubMedGoogle Scholar
  15. 15.
    Mohr BA, Guay AT, O’donnell AB, McKinlay JB. Normal, bound and nonbound testosterone levels in normally ageing men: results from the Massachusetts male ageing study. Clin Endocrinol. 2005;62(1):64–73.CrossRefGoogle Scholar
  16. 16.
    Muller M, den Tonkelaar I, Thijssen JH, Grobbee DE, van der Schouw YT. Endogenous sex hormones in men aged 40-80 years. Eur J Endocrinol. 2003;149(6):583–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Morley JE, Kaiser FE, Perry HM, Patrick P, Morley PM, Stauber PM, et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 1997;46(4):410–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.CrossRefPubMedGoogle Scholar
  19. 19.
    Torjesen PA, Sandnes L. Serum testosterone in women as measured by an automated immunoassay and a RIA. Clin Chem. 2004;50(3):678–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Phillip M, Maor G, Assa S, Silbergeld A, Segev Y. Testosterone stimulates growth of tibial epiphyseal growth plate and insulin-like growth factor-1 receptor abundance in hypophysectomized and castrated rats. Endocrine. 2001;16(1):1–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Anderson FH, Francis RM, Selby PL, Cooper C. Sex hormones and osteoporosis in men. Calcif Tissue Int. 1998;62(3):185–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Finkelstein JS, Neer RM, Biller BM, Crawford JD, Klibanski A. Osteopenia in men with a history of delayed puberty. N Engl J Med. 1992;326(9):600–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Gennari L, Nuti R, Bilezikian JP. Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab. 2004;89(12):5898–907.CrossRefPubMedGoogle Scholar
  24. 24.
    Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med. 1997;337(2):91–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res. 2006;21(4):576–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J. Androgen insensitivity syndrome. Lancet. 2012;380(9851):1419–28.CrossRefPubMedGoogle Scholar
  27. 27.
    Mizuno Y, Hosoi T, Inoue S, Ikegami A, Kaneki M, Akedo Y, et al. Immunocytochemical identification of androgen receptor in mouse osteoclast-like multinucleated cells. Calcif Tissue Int. 1994;54(4):325–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Noble B, Routledge J, Stevens H, Hughes I, Jacobson W. Androgen receptors in bone-forming tissue. Horm Res Paediatr. 1999;51(1):31–6.CrossRefGoogle Scholar
  29. 29.
    Colvard DS, Eriksen EF, Keeting PE, Wilson EM, Lubahn DB, French FS, et al. Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci. 1989;86(3):854–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet. 2008;9(1):183–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kasperk C, Helmboldt A, Börcsök I, Heuthe S, Cloos O, Niethard F, et al. Skeletal site-dependent expression of the androgen receptor in human osteoblastic cell populations. Calcif Tissue Int. 1997;61(6):464–73.CrossRefPubMedGoogle Scholar
  33. 33.
    Nakano Y, Morimoto I, Ishida O, Fujihira T, Mizokami A, Tanimoto A, et al. The receptor, metabolism and effects of androgen in osteoblastic MC3T3-E1 cells. Bone Miner. 1994;26(3):245–59.CrossRefPubMedGoogle Scholar
  34. 34.
    Damien E, Price JS, Lanyon LE. Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res. 2000;15(11):2169–77.CrossRefPubMedGoogle Scholar
  35. 35.
    Huber DM, Bendixen AC, Pathrose P, Srivastava S, Dienger KM, Shevde NK, et al. Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology. 2001;142(9):3800–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Hofbauer LC, Hicok KC, Chen D, Khosla S. Regulation of osteoprotegerin production by androgens and anti-androgens in human osteoblastic lineage cells. Eur J Endocrinol. 2002;147(2):269–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092(1):385–96.CrossRefPubMedGoogle Scholar
  38. 38.
    Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA. Local communication on and within bone controls bone remodeling. Bone. 2009;44(6):1026–33.CrossRefPubMedGoogle Scholar
  39. 39.
    Wiren KM, Evans AC, Zhang XW. Osteoblast differentiation influences androgen and estrogen receptor-alpha and-beta expression. J Endocrinol. 2002;175(3):683–94.CrossRefPubMedGoogle Scholar
  40. 40.
    Frenkel B, Hong A, Baniwal SK, Coetzee GA, Ohlsson C, Khalid O, et al. Regulation of adult bone turnover by sex steroids. J Cell Physiol. 2010;224(2):305–10.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hofbauer LC, Hicok KC, Khosla S. Effects of gonadal and adrenal androgens in a novel androgen-responsive human osteoblastic cell line. J Cell Biochem. 1998;71(1):96–108.CrossRefPubMedGoogle Scholar
  42. 42.
    Kasperk CH, Wakley GK, Hierl T, Ziegler R. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res. 1997;12(3):464–71.CrossRefPubMedGoogle Scholar
  43. 43.
    Kasperk CH, Wergedal JE, Farley JR, Linkhart TA, Turner RT, Baylink DJ. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology. 1989;124(3):1576–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Szulc P, Claustrat B, Marchand F, Delmas PD. Increased risk of falls and increased bone resorption in elderly men with partial androgen deficiency: the MINOS study. J Clin Endocrinol Metab. 2003;88(11):5240–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Kuchuk NO, Van Schoor NM, Pluijm SM, Smit JH, De Ronde W, Lips P. The association of sex hormone levels with quantitative ultrasound, bone mineral density, bone turnover and osteoporotic fractures in older men and women. Clin Endocrinol. 2007;67(2):295–303.CrossRefGoogle Scholar
  46. 46.
    Boonen S, Pye SR, O’Neill TW, Szulc P, Gielen E, Borghs H, et al. Influence of bone remodelling rate on quantitative ultrasound parameters at the calcaneus and DXA BMDa of the hip and spine in middle-aged and elderly European men: the European male ageing study (EMAS). Eur J Endocrinol. 2011;165(6):977–86.CrossRefPubMedGoogle Scholar
  47. 47.
    Legrand E, Hedde C, Gallois Y, Degasne I, De Casson FB, Mathieu E, et al. Osteoporosis in men: a potential role for the sex hormone binding globulin. Bone. 2001;29(1):90–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab. 2001;86(2):724–31.CrossRefPubMedGoogle Scholar
  49. 49.
    Mellström D, Johnell O, Ljunggren Ö, Eriksson A-L, Lorentzon M, Mallmin H, et al. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res. 2006;21(4):529–35.CrossRefPubMedGoogle Scholar
  50. 50.
    Meier C, Nguyen TV, Handelsman DJ, Schindler C, Kushnir MM, Rockwood AL, et al. Endogenous sex hormones and incident fracture risk in older men: the Dubbo osteoporosis epidemiology study. Arch Intern Med. 2008;168(1):47–54.CrossRefPubMedGoogle Scholar
  51. 51.
    Kacker R, Conners W, Zade J, Morgentaler A. Bone mineral density and response to treatment in men younger than 50 years with testosterone deficiency and sexual dysfunction or infertility. J Urol. 2014;191(4):1072–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Nguyen HT, von Schoultz B, Nguyen TV, Thang TX, Chau TT, Duc PT, et al. Sex hormone levels as determinants of bone mineral density and osteoporosis in Vietnamese women and men. J Bone Miner Metab. 2015;33(6):658–65.CrossRefPubMedGoogle Scholar
  53. 53.
    Snyder PJ, Kopperdahl DL, Stephens-Shields AJ, Ellenberg SS, Cauley JA, Ensrud KE, et al. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA Intern Med. 2017;177(4):471–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Vandenput L, Mellström D, Laughlin GA, Cawthon PM, Cauley JA, Hoffman AR, et al. Low testosterone, but not estradiol, is associated with incident falls in older men: the international MrOS study. J Bone Miner Res. 2017;32(6):1174–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Smith MR, Boyce SP, Moyneur E, Duh MS, Raut MK, Brandman J. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol. 2006;175:136–139.Google Scholar
  56. 56.
    Wang A, Obertová Z, Brown C, Karunasinghe N, Bishop K, Ferguson L, et al. Risk of fracture in men with prostate cancer on androgen deprivation therapy: a population-based cohort study in New Zealand. BMC Cancer. 2015;15(1):837.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hsu B, Seibel MJ, Cumming RG, Blyth FM, Naganathan V, Bleicher K, et al. Progressive temporal change in serum SHBG, but not in serum testosterone or estradiol, is associated with bone loss and incident fractures in older men: the concord health and ageing in men project. J Bone Miner Res. 2016;31(12):2115–22.CrossRefPubMedGoogle Scholar
  58. 58.
    LeBlanc ES, Nielson CM, Marshall LM, Lapidus JA, Barrett-Connor E, Ensrud KE, et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab. 2009;94(9):3337–46.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Khosla S, Melton LJ, Riggs BL. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res. 2011;26(3):441–51.CrossRefPubMedGoogle Scholar
  60. 60.
    Cawthon PM, Shahnazari M, Orwoll ES, Lane NE. Osteoporosis in men: findings from the osteoporotic fractures in men study (MrOS). Ther Adv Musculoskelet Dis. 2016;8(1):15–27.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zha X-Y, Hu Y, Pang X-N, Zhu J-H, Chang G-L, Li L. Sex hormone-binding globulin (SHBG) as an independent determinant of bone mineral density (BMD) among Chinese middle-aged and elderly men. Endocrine. 2014;47(2):590–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Vandenput L, Mellström D, Kindmark A, Johansson H, Lorentzon M, Leung J, et al. High serum SHBG predicts incident vertebral fractures in elderly men. J Bone Miner Res. 2016;31(3):683–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mellström D, Vandenput L, Mallmin H, Holmberg AH, Lorentzon M, Odén A, et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res. 2008;23(10):1552–60.CrossRefPubMedGoogle Scholar
  64. 64.
    Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES, et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(6):1802–22.CrossRefPubMedGoogle Scholar
  65. 65.
    Golds G, Houdek D, Arnason T. Male hypogonadism and osteoporosis: the effects, clinical consequences, and treatment of testosterone deficiency in bone health. Int J Endocrinol [Internet]. 2017 [cited 2017 Aug 15];2017. Available from: https://www.hindawi.com/journals/ije/2017/4602129/abs/
  66. 66.
    Brandi ML. Microarchitecture, the key to bone quality. Rheumatology. 2009;48:iv3–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang Y-J, Zhan J-K, Huang W, Wang Y, Liu Y, Wang S, et al. Effects of low-dose testosterone undecanoate treatment on bone mineral density and bone turnover markers in elderly male osteoporosis with low serum testosterone. Int J Endocrinol [Internet]. 2013 [cited 2017 Aug 15];2013. Available from: https://www.hindawi.com/journals/ije/2013/570413/abs/
  68. 68.
    Bouloux PM, Legros J-J, Elbers JM, Geurts TP, Kaspers MJ, Meehan AG, et al. Effects of oral testosterone undecanoate therapy on bone mineral density and body composition in 322 aging men with symptomatic testosterone deficiency: a 1-year, randomized, placebo-controlled, dose-ranging study. Aging Male. 2013;16(2):38–47.CrossRefPubMedGoogle Scholar
  69. 69.
    Rodriguez-Tolrà J, Torremadé J, Di Gregorio S, Del Rio L, Franco E. Effects of testosterone treatment on bone mineral density in men with testosterone deficiency syndrome. Andrology. 2013;1(4):570–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Boonen S, Reginster J-Y, Kaufman J-M, Lippuner K, Zanchetta J, Langdahl B, et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012;367(18):1714–23.CrossRefPubMedGoogle Scholar
  71. 71.
    Lang JM, Wallace M, Becker JT, Eickhoff JC, Buehring B, Binkley N, et al. A randomized phase II trial evaluating different schedules of zoledronic acid on bone mineral density in patients with prostate cancer beginning androgen deprivation therapy. Clin Genitourin Cancer. 2013;11(4):407–15.CrossRefPubMedGoogle Scholar
  72. 72.
    Smith MR, Eastham J, Gleason DM, Shasha D, Tchekmedyian S, Zinner N. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol. 2003;169(6):2008–12.CrossRefPubMedGoogle Scholar
  73. 73.
    Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, et al. Alendronate for the treatment of osteoporosis in men. N Engl J Med. 2000;343(9):604–10.CrossRefPubMedGoogle Scholar
  74. 74.
    Nakamura T, Matsumoto T, Sugimoto T, Hosoi T, Miki T, Gorai I, et al. Clinical trials express: fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis: denosumab fracture intervention randomized placebo controlled trial (DIRECT). J Clin Endocrinol Metab. 2014;99(7):2599–607.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Langdahl BL, Teglbj A erg CS, ho P-R, Chapurlat R, Czerwinski E, Kendler DL, et al. A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab 2015;100(4):1335–1342.Google Scholar
  76. 76.
    Smith MR, Egerdie B, Toriz NH, Feldman R, Tammela TL, Saad F, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18(1):9–17.CrossRefPubMedGoogle Scholar
  78. 78.
    Niimi R, Kono T, Nishihara A, Hasegawa M, Matsumine A, Sudo A. Analysis of daily teriparatide treatment for osteoporosis in men. Osteoporos Int. 2015;26(4):1303–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Kaufman J-M, Orwoll E, Goemaere S, San Martin J, Hossain A, Dalsky GP, et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int. 2005;16(5):510–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, Spine Surgery, CHA Bundang Medical CenterCHA UniversitySeongnam-siRepublic of Korea

Personalised recommendations