Skip to main content

Advertisement

Log in

Bone Turnover Markers: A Clinical Review

  • The burden of osteoporosis
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The clinical applicability of bone turnover markers (BTMs) has been a reality in recent years with the accumulated experience on their performance in patients at risk of fracture and on the early prediction of the therapeutic response to anti-resorptive and anabolic drugs in osteoporosis. In addition, BTMs are also useful for analyzing the activity and the therapeutic response in other bone diseases, such as Paget’s disease of bone. The main sources of variability have been substantially reduced with the use of fully automated assays and the appropriate management of pre-analytical variability sources, including controllable factors of biological variability and the adequate specimen collection. This review on BTMs includes the characteristics and application of most used markers in clinical practice, as well as an overview on quite unknown bone markers, which open perspectives in assessing the material properties of bone. In addition, practical aspects of the clinical use of BTMs in the initial assessment of the patient with osteoporosis and in the monitoring of response to treatment will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garnero P, Delmas PD. Clinical usefulness of markers of bone remodelling in osteoporosis. In: Meunier PJ, editor. Osteoporosis: diagnosis and management. London: Martin Dunitz; 1998. p. 79–101.

    Google Scholar 

  2. Garnero P. New biochemical markers of bone turnover. IBMS BoneKEy. 2008;5:84–102.

    Google Scholar 

  3. Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    CAS  PubMed  Google Scholar 

  4. Seibel MJ. Molecular markers of bone turnover, biochemical, technical and analytical aspects. Osteoporos Int. 2000;11(Suppl 6):S18–29.

    PubMed  Google Scholar 

  5. Lombardi G, Lanteri P, Colombini A, Banfi G. Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling. Clin Chem Lab Med. 2012;50:771–89.

    CAS  PubMed  Google Scholar 

  6. Koivula MK, Risteli L, Risteli J. Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin Biochem. 2012;45:920–7.

    CAS  PubMed  Google Scholar 

  7. Garnero P, Vergnaud P, Hoyle N. Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem. 2008;54:188–96.

    CAS  PubMed  Google Scholar 

  8. Alvarez L, Peris P, Pons F, Guañabens N, Herranz R, Monegal A, et al. Relationship between biochemical markers of bone turnover and bone scintigraphic indices in assessment of Paget’s disease activity. Arthritis Rheum. 1997;40:461–8.

    CAS  PubMed  Google Scholar 

  9. Guañabens N, Filella X, Monegal A, Gómez-Vaquero C, María Bonet M, Buquet D et al. Reference intervals for bone turnover markers in Spanish premenopausal women. Clin Chem Lab Med 2015. doi:10.1515/cclm-2015-0162.

  10. Hlaing TT, Compston E. Biochemical markers of bone turnover-uses and limitations. Ann Clin Biochem. 2014;51:189–202.

    PubMed  Google Scholar 

  11. Hallen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Vaananen HK. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res. 2000;15:1337–45.

    Google Scholar 

  12. Kwansa AL, de Vita R, Freeman JW. Mechanical recruitment of N- and C-crosslinks in collagen type I. Matrix Biol. 2014;34:161–9.

    CAS  PubMed  Google Scholar 

  13. Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003;18:859–67.

    CAS  PubMed  Google Scholar 

  14. Baxter I, Rogers A, Eastell R, Peel N. Evaluation of urinary N-telopeptide of type I collagen measurements in the management of osteoporosis in clinical practice. Osteoporos Int. 2013;24:941–7.

    CAS  PubMed  Google Scholar 

  15. Aguda AH, Panwar P, Du X, Nguyen NT, Brayer GD, Brömme D. Structural basis of collagen fiber degradation by cathepsin K. Proc Natl Acad Sci USA. 2014;111:17474–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Meier C, Meinhardt U, Greenfield JR, De Winter J, Nguyen TV, Dunstan CR, et al. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget’s disease. Clin Lab. 2006;52:1–10.

    CAS  PubMed  Google Scholar 

  17. Skoumal M, Haberhauer G, Kolarz G, Hawa G, Woloszczuk W, Klingler A. Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res Ther. 2005;7:65–70.

    Google Scholar 

  18. Ivaska KK, Käkönen SM, Gerdhem P, Obrant KJ, Pettersson K, Väänänen HK. Urinary osteocalcin as a marker of bone metabolism. Clin Chem. 2005;51:618–28.

    CAS  PubMed  Google Scholar 

  19. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res. 2004;19:386–93.

    CAS  PubMed  Google Scholar 

  20. Ivaska KK, Gerdhem P, Väänänen HK, Akesson K, Obrant KJ. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res. 2010;25:393–403.

    CAS  PubMed  Google Scholar 

  21. Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest. 1993;91:1769–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Vergnaud P, Garnero P, Meunier PJ, Bréart G, Kamilhagi K, Delmas PD. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS study. J Clin Endocrinol Metab. 1997;82:719–24.

    CAS  PubMed  Google Scholar 

  23. Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia. 2011;54:1291–7.

    CAS  PubMed  Google Scholar 

  24. Booth SL, Centi A, Smith SR, Gundberg C. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat Rev Endocrinol. 2013;9:43–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Gower BA, Pollock NK, Casazza K, Clemens TL, Goree LL, Granger WM. Associations of total and undercarboxylated osteocalcin with peripheral and hepatic insulin sensitivity and β-cell function in overweight adults. J Clin Endocrinol Metab. 2013;98:1173–80.

    Google Scholar 

  26. Garnero P, Cloos P, Sornay-Rendu E, Quist P, Delmas PD. Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res. 2002;17:826–33.

    CAS  PubMed  Google Scholar 

  27. Peris P, Alvarez A, Monegal A, Guañabens N, Durán M, Echevarría M, et al. Effect of surgical menopause and Paget’s disease of bone on the isomerization of type I collagen carboxyterminal telopeptide: evolution after antiresorptive therapy. Bone Miner Metab. 2002;20:117–21.

    Google Scholar 

  28. Garnero P, Fledelius C, Gineyts E, Serre CM, Vignot E, Delmas PD. Decreased beta-isomerization of the C-terminal telopeptide of type I collagen alpha 1 chain in Paget’s disease of bone. J Bone Miner Res. 1997;12:1407–15.

    CAS  PubMed  Google Scholar 

  29. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:1013–9.

    CAS  PubMed  Google Scholar 

  30. Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, et al. High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int. 2014;25:1527–33.

    CAS  PubMed  Google Scholar 

  31. Uchiyama S, Ikegami S, Kamimura M, Mukaiyama K, Nakamura Y, Nonaka K, et al. The skeletal muscle cross sectional area in long-term bisphosphonate users is smaller than that of bone mineral density-matched controls with increased serum pentosidine concentrations. Bone. 2015;. doi:10.1016/j.bone.2015.02.018.

    PubMed  Google Scholar 

  32. Barzilay JI, Bůžková P, Zieman SJ, Kizer JR, Djoussé L, Ix JH, et al. Circulating levels of carboxy-methyl-lysine (CML) are associated with hip fracture risk: the Cardiovascular Health Study. J Bone Miner Res. 2014;29:1061–6.

    CAS  PubMed  Google Scholar 

  33. Merle B, Garnero P. The multiple facets of periostin in bone metabolism. Osteoporos Int. 2012;23:1199–212.

    CAS  PubMed  Google Scholar 

  34. Merle B, Bouet G, Rousseau JC, Bertholon C, Garnero P. Periostin and transforming growth factor β-induced protein (TGFβIp) are both expressed by osteoblasts and osteoclasts. Cell Biol Int. 2014;38:398–404.

    CAS  PubMed  Google Scholar 

  35. Rousseau JC, Sornay-Rendu E, Bertholon C, Chapurlat R, Garnero P. Serum periostin is associated with fracture risk in postmenopausal women: a 7-year prospective analysis of the OFELY study. J Clin Endocrinol Metab. 2014;99:2533–9.

    CAS  PubMed  Google Scholar 

  36. Naylor K, Eastell R. Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol. 2012;8:379–89.

    CAS  PubMed  Google Scholar 

  37. Garnero P, Darte C, Delmas PD. A model to monitor the efficacy of alendronate treatment in women with osteoporosis using a biochemical marker of bone turnover. Bone. 1999;24:603–9.

    CAS  PubMed  Google Scholar 

  38. Braga de Castro Machado. A, Hannon R, Eastell R. Monitoring alendronate therapy for osteoporosis. J Bone Miner Res. 1999;14:602–8.

    CAS  PubMed  Google Scholar 

  39. Delmas PD, Munoz F, Black DM, Cosman F, Boonen S, Watts NB, et al. Effects of yearly zoledronic acid 5 mg on bone turnover markers and relation of PINP with fracture reduction in postmenopausal women with osteoporosis. J Bone Miner Res. 2009;24:1544–51.

    CAS  PubMed  Google Scholar 

  40. Eastell R, Christiansen C, Grauer A, Kutilek S, Libanati C, McClung MR, et al. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res. 2011;26:530–7.

    CAS  PubMed  Google Scholar 

  41. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43:222–9.

    CAS  PubMed  Google Scholar 

  42. Leder BZ, Tsai JN, Uihlein AV, Burnett-Bowie SA, Zhu Y, Foley K, et al. Two years of denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J Clin Endocrinol Metab. 2014;99:1694–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Glover SJ, Eastell R, McCloskey EV, Rogers A, Garnero P, Lowery J, et al. Rapid and robust response of biochemical markers of bone formation to teriparatide therapy. Bone. 2009;45:1053–8.

    CAS  PubMed  Google Scholar 

  44. Blumsohn A, Marin F, Nickelsen T, Brixen K, Sigurdsson G, González de la Vera J, et al. Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide. Osteoporos Int. 2011;22:1935–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Eastell R, Krege JH, Chen P, Glass EV, Reginster JY. Development of an algorithm for using PINP to monitor treatment of patients with teriparatide. Curr Med Res Opin. 2006;22:61–6.

    CAS  PubMed  Google Scholar 

  46. Langdahl B, Binkley N, Bone H, Gilchrist N, Resch H, Rodriguez Portales J, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res. 2012;27:2251–8.

    CAS  PubMed  Google Scholar 

  47. Ferrari S. Future directions for new medical entities in osteoporosis. Best Pract Res Clin Endocrinol Metab. 2014;28:859–70.

    PubMed  Google Scholar 

  48. Zhuo Y, Gauthier JY, Black WC, Percival MD, Duong LT. Inhibition of bone resorption by the cathepsin K inhibitor odanacatib is fully reversible. Bone. 2014;67:269–80.

    CAS  PubMed  Google Scholar 

  49. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;30(370):412–20.

    Google Scholar 

  50. Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res. 2015;30:216–24.

    CAS  PubMed  Google Scholar 

  51. Schafer AL, Vittinghoff E, Ramachandran R, Mahmoudi N, Bauer DC. Laboratory reproducibility of biochemical markers of bone turnover in clinical practice. Osteoporos Int. 2010;21:439–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Eastell R, Garnero P, Audebert C, Cahall DL. Reference intervals of bone turnover markers in healthy premenopausal women: results from a cross-sectional European study. Bone. 2012;50:1141–7.

    PubMed  Google Scholar 

  53. Chubb SAP, Mandelt CD, Vasikaran SD. Comparison of results from commercial assays for plasma CTX: the need for harmonization. Clin Biochem. 2015;48:519–24.

    CAS  PubMed  Google Scholar 

  54. Ivaska KK, Gerdhem P, Akesson K, Garnero P, Obrant KJ. Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res. 2007;22:1155–64.

    CAS  PubMed  Google Scholar 

  55. Guañabens N, Pares A, Alvarez L, Martinez de Osaba MJ, Monegal A, Peris P, et al. Collagen-related markers of bone turnover reflect the severity of liver fibrosis in patients with primary biliary cirrosis. J Bone Miner Res. 1998;13:731–8.

    PubMed  Google Scholar 

  56. Walsh JS, Henriksen DB. Feeding and bone. Arch Biochem Biophys. 2010;503:11–9.

    CAS  PubMed  Google Scholar 

  57. Glover SJ, Garnero P, Naylor K, Rogers A, Eastell R. Establishing a reference range for bone turnover markers in young healthy women. Bone. 2008;42:623–30.

    CAS  PubMed  Google Scholar 

  58. Glover SJ, Gall M, Schoenborn-Kellenberger O, Wagener M, Garnero P, Boonen SR. Establishing a reference interval for bone turnover markers in 637 healthy, young, premenopausal women from the United Kingdom, France, Belgium, and the United States. J Bone Miner Res. 2009;24:389–97.

    PubMed  Google Scholar 

  59. Michelsen J, Wallaschofski H, Friedrich N, Spielhagen C, Rettig R, Ittermann T, et al. Reference intervals for serum concentrations of three bone turnover markers for men and women. Bone. 2013;57:399–404.

    CAS  PubMed  Google Scholar 

  60. Adami S, Bianchi G, Brandi ML, Giannini S, Ortolani S, DiMunno O, et al. Determinants of bone turnover markers in healthy premenopausal women. Calcif Tissue Int. 2008;82:341–7.

    CAS  PubMed  Google Scholar 

  61. Szulc P, Delmas PD. Biochemical markers of bone turnover: potential use in the investigation and Management of postmenopausal osteoporosis. Osteoporos Int. 2008;19:1683–704.

    CAS  PubMed  Google Scholar 

  62. Garnero P, Sornay-Rendu E, Duboeuf F, et al. Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY Study. J Bone Miner Res. 1999;14:1614–21.

    CAS  PubMed  Google Scholar 

  63. Bauer DC, Sklarin PM, Stone KL, Black DM, Nevitt MC, Ensrud KE, et al. Biochemical markers for bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res. 1999;14:1404–10.

    CAS  PubMed  Google Scholar 

  64. Dresner-Pollak R, Parker R, Poku M, Thompson J, Seibel M, Greenspan S. Biochemical markers of bone turnover reflect femoral bone loss in elderly women. Calcif Tissue Int. 1996;59:328–33.

    CAS  PubMed  Google Scholar 

  65. Chapurlat RD, Garnero P, Breart G, Meunier P, Delmas PD. Serum type 1 collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS Study. Bone. 2000;27:283–6.

    CAS  PubMed  Google Scholar 

  66. Johnell O, Oden A, De Laet C, Garnero P, Delmas PD, Kanis JA. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int. 2002;13(7):523–6.

    CAS  PubMed  Google Scholar 

  67. Watts NB. The fracture risk assessment tool (FRAX®): applications in clinical practice. J Womens Health. 2011;20:525–31.

    Google Scholar 

  68. Melton JL III, Atkinson EJ, Achenbach SJ, Kanis JA, Therneau TM, Johansson H, et al. Potential extensions of the US FRAX algorithm. J Osteoporos. 2012;2012:528790.

    PubMed Central  PubMed  Google Scholar 

  69. Bjarnason N, Christiansen C. Early response in biochemical markers predicts long-term response in bone mass during hormone replacement therapy in early postmenopausal women. Bone. 2000;26:561–9.

    CAS  PubMed  Google Scholar 

  70. Chesnut C III, Bell N, Clark G, Drinkwater B, English S, Johnson C, et al. Hormone replacement therapy in postmenopausal women: urinary N-telopeptide of type I collagen monitors therapeutic effect and predicts response of bone mineral density. Am J Med. 1997;102:29–37.

    CAS  PubMed  Google Scholar 

  71. Greenspan SL, Parker RA, Ferguson L, Rosen HN, Maitland-Ramsey L, Karpf DB. Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: a randomized clinical trial. J Bone Miner Res. 1998;13:1431–8.

    CAS  PubMed  Google Scholar 

  72. Ravn P, Clemmesen B, Christiansen C. Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Bone. 1999;24:237–44.

    CAS  PubMed  Google Scholar 

  73. Ravn P, Hosking D, Thompson D, et al. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab. 1999;84:2363–8.

    CAS  PubMed  Google Scholar 

  74. Bjarnason NH, Sarkar S, Duong T, Mitlak B, Delmas PD, Christiansen C. Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos Int. 2001;12:922–30.

    CAS  PubMed  Google Scholar 

  75. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res. 2003;18:1051–6.

    CAS  PubMed  Google Scholar 

  76. Eastell R, Hannon RA, Garnero P, Campbell MJ, Delmas PD. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate: review of statistical analysis. J Bone Miner Res. 2007;22:1656–60.

    PubMed  Google Scholar 

  77. Clowes JA, Peel NF, Eastell R. The impact of monitoring on adherence and persistence with antiresorptive treatment for postmenopausal osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab. 2004;89:1117–23.

    CAS  PubMed  Google Scholar 

  78. Body JJ, Gaich GA, Schelle WH, et al. A randomized double- blind trial to compare the efficacy of teriparatide (recombinant human parathyroid hormone (1-34)) with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002;87:4528–35.

    CAS  PubMed  Google Scholar 

  79. Krege JH, Lane NE, Harris JM, Miller PD. PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos Int. 2014;25:2159–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Washington: National Osteoporosis Foundation; 2014.

    Google Scholar 

  81. Bolland MJ, Cundy T. Paget’s disease of bone: clinical review and update. J Clin Pathol. 2013;66:924–7.

    PubMed  Google Scholar 

  82. Pons F, Alvarez L, Peris P, Guañabens N, Vidal-Sicart S, Monegal A, et al. Quantitative evaluation of bone scintigraphy in the assessment of Paget’s disease activity. Nucl Med Commun. 1999;20:525–8.

    CAS  PubMed  Google Scholar 

  83. Alvarez L, Guañabens N, Peris P, Monegal A, Bedini JL, Deulofeu R, et al. Discriminative value of biochemical markers of bone turnover in assessing the activity of Paget’s disease. J Bone Miner Res. 1995;10:458–65.

    CAS  PubMed  Google Scholar 

  84. Singer FR, Bone HG 3rd, Hosking DJ, Lyles KW, Murad MH, Reid IR, Siris ES. Paget’s disease of bone: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:4408–22.

    CAS  PubMed  Google Scholar 

  85. Selby PL. Guidelines for the diagnosis and management of Paget’s disease: a UK perspective. J Bone Miner Res. 2006;21(Suppl 2):P92–3.

    PubMed  Google Scholar 

  86. Alexandersen P, Peris P, Guañabens N, Byrjalsen I, Alvarez L, Solberg H, Cloos PA. Non-isomerized C-telopeptide fragments are highly sensitive markers for monitoring disease activity and treatment efficacy in Paget’s disease of bone. J Bone Miner Res. 2005;20:588–95.

    CAS  PubMed  Google Scholar 

  87. Alvarez L, Ricós C, Peris P, Guañabens N, Monegal A, Pons F, Ballesta AM. Components of biological variation of biochemical markers of bone turnover in Paget’s disease of bone. Bone. 2000;26:571–6.

    CAS  PubMed  Google Scholar 

  88. Alvarez L, Guañabens N, Peris P, Vidal S, Ros I, Monegal A, et al. Usefulness of biochemical markers of bone turnover in assessing response to treatment of Paget’s disease. Bone. 2001;29:447–52.

    CAS  PubMed  Google Scholar 

  89. Alvarez L, Peris P, Guañabens N, Vidal S, Quintó L, Monegal A, et al. Long-term biochemical response after bisphosphonate therapy in Paget’s disease of bone. Proposed intervals for monitoring treatment. Rheumatology. 2004;43:869–74.

    CAS  PubMed  Google Scholar 

  90. Peris P, Alvarez L, Vidal S, Martínez MA, Monegal A, Guañabens N. Treatment with tiludronate has a similar effect to risedronate on Paget’s disease activity assessed by bone markers and bone scintigraphy. Clin Exp Rheumatol. 2007;25:206–10.

    CAS  PubMed  Google Scholar 

  91. Hosking D, Lyles K, Brown JP, Fraser WD, Miller P, Curiel MD, et al. Long-term control of bone turnover in Paget’s disease with zoledronic acid and risedronate. J Bone Miner Res. 2007;22:142–8.

    CAS  PubMed  Google Scholar 

  92. Reid IR, Lyles K, Su G, Brown JP, Walsh JP, del Pino-Montes J, et al. A single infusion of zoledronic acid produces sustained remissions in Paget disease: data to 6.5 years. J Bone Miner Res. 2011;26:2261–70.

    CAS  PubMed  Google Scholar 

  93. Maeno Y, Inaba M, Okuno S, Yamakawa T, Ishimura E, Nishizawa Y. Serum concentration of cross-linked N-telopeptides of type I collagen: new marker of bone resorption in hemodialysis patients. Clin Chem. 2005;51:2312–7.

    CAS  PubMed  Google Scholar 

  94. Ureña P, Vernejoul MC. Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int. 1999;55:2141–56.

    PubMed  Google Scholar 

  95. Ureña P, Hruby M, Ferreira A, Ang K, Vernejoul MC. Plama total versus bone alkaline phosphatise as markers of bone turnover in hemodialysis patients. J Am Soc Nephrol. 1996;7:506–12.

    PubMed  Google Scholar 

  96. Cavalier E, Delanaye P, Collette J, Krzesinski JM, Chapelle JP. Evaluation of different bone markers in hemodialyzed patients. Clin Chim Acta. 2006;371:107–11.

    CAS  PubMed  Google Scholar 

  97. Chu P, Chao TY, Ling YF, Janckila AJ, Yamm LT. Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Diseases. 2003;41:1052–9.

    CAS  Google Scholar 

  98. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDOGO clinical guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease—mineral and bone disorders. Kidney Int Suppl. 2009; S1–S130.

  99. Engler H, Oettli RE, Riesen WF. Biochemical markers of bone turnover in patients with thyroid dysfunctions and euthyroid controls: a cross sectional study. Clin Chem Acta. 1999;289:159–72.

    CAS  Google Scholar 

  100. Compston J. Management of glucocorticoid induced osteoporosis. J Nat Rev. 2010;6:82–8.

    CAS  Google Scholar 

  101. Weinstein RS. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365:62–9.

    CAS  PubMed  Google Scholar 

  102. Eastell R, Chen P, Saag KG, Bursell AL, Wong M. Bone formation markers in patients with glucocorticoid-induced osteoporosis treated with teriparatide or alendronate. Bone. 2010;46:929–34.

    CAS  PubMed  Google Scholar 

  103. Lane NE, Sanchez S, Genanat HK, Jenkins DK, Arnaud CD. Short-term increased in bone turnover markers predict parathyroid hormone-induced spinal bone mineral density gains in postmenopausal women with glucocorticoid-induced osteoporosis. Osteoporos Int. 2000;11:434–42.

    CAS  PubMed  Google Scholar 

  104. Farahmand P, Marin F, Hawkins F, Möricke R, Ringer JD, Glüer CC, et al. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int. 2013;24:2971–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Burshell A, Möricke R, Correa-Rotter R, Chen P, Warner M, Dalsky G, et al. Correlation between biochemical markers of bone turnover and bone density responses in patients with glucocorticoids-induced osteoporosis treatment with teriparatide or alendronate. Bone. 2010;46:935–9.

    CAS  PubMed  Google Scholar 

  106. Devogelaer J, Sambrook P, Reid D, Goemaere S, Ish-Shalom S, Collette J, et al. Effect on bone turnover markers of once-yearly intravenous infusion of zoledronic acid versus daily oral risedronate in patients treated with glucocorticoids. Rheumatology. 2013;52:1058–69.

    CAS  PubMed  Google Scholar 

  107. Seibel MJ. Clinical use of markers of bone turnover in metastatic bone disease. Nat Clin Pract Oncol. 2005;2:504–17.

    CAS  PubMed  Google Scholar 

  108. de la Piedra C, Alcaraz A, Bellmunt J, Meseguer C, Gómez-Caamano A, Ribal MJ, et al. Usefulness of bone turnover markers as predictors of mortality risk, disease progression and skeletal-related events appearance in patients with prostate cancer with bone metastases following treatment with zoledronic acid: TUGAMO study. Br J Cancer. 2013;108:2565–72.

    PubMed Central  PubMed  Google Scholar 

  109. Aktas B, Kasimir-Bauer S, Lehmann N, Kimmig R, Tewes M. Validity of bone marker measurements for monitoring response to bisphosphonate therapy with zoledronic acid in metastatic breast cancer. Oncol Rep. 2013;30:441–7.

    CAS  PubMed  Google Scholar 

  110. Barnadas A, Manso L, de la Piedra C, Meseguer C, Crespo C, Gómez P, et al. Bone turnover markers as predictive indicators of outcome in patients with breast cancer and bone metastases treated with bisphosphonates: results from a 2-year multicentre observational study (ZOMAR study). Bone. 2014;68:32–40.

    CAS  PubMed  Google Scholar 

  111. Van Poznak CH, Temin S, Yee GC, Janjan NA, Barlow WE, Biermann JS, et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol. 2011;29:1221–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Guañabens.

Ethics declarations

Conflict of interest

Núria Guañabens, Pilar Peris and Ana Monegal declare that they have no conflict of interest.

Animal/Human studies

This article does not contain any studies on human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guañabens, N., Peris, P. & Monegal, A. Bone Turnover Markers: A Clinical Review. Clinic Rev Bone Miner Metab 13, 83–97 (2015). https://doi.org/10.1007/s12018-015-9185-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-015-9185-x

Keywords

Navigation