Skip to main content

Advertisement

Log in

The β-Adrenergic System and Bone Mineral Remodeling

  • Hypertension and bone
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Known bone functions include maintaining the homeostasis of the calcium–phosphate metabolism, repairing damage produced by daily exercise and maintaining the bone architecture according to mechanical requirements, meaning that bone remodeling is a true homeostatic function. Bone is a dynamic tissue that is constantly changing through bone remodeling, which requires a lot of energy. The sympathetic nervous system contributes to bone remodeling and is one form of interaction between the skeleton and the brain, through leptin, an adipocyte-derived hormone, which uses this route to induce expression of the gene for the receptor activator of nuclear factor kappa-β ligand, an osteoclast differentiation factor. This review summarizes basic research findings on the role of the sympathetic nervous system in bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 2006;4:341–8.

    Article  CAS  PubMed  Google Scholar 

  2. Rappaport R. Reciprocal regulation of bone and energy metabolism. GGH. 2009;25:24–5.

    Google Scholar 

  3. Karsenty G, Oury F. The central regulation of bone mass, the first link between bone remodeling and energy metabolism. J Clin Endocrinol Metab. 2010;95:4795–801.

    Article  CAS  PubMed  Google Scholar 

  4. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289:1508–14.

    Article  CAS  PubMed  Google Scholar 

  5. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638–49.

    Article  CAS  PubMed  Google Scholar 

  6. Harada SI, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423:349–55.

    Article  CAS  PubMed  Google Scholar 

  7. La Gros M. Disposition des nerfs des os. Bull Soc Anat Paris. 1846;21:369–72.

    Google Scholar 

  8. Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone. 1999;25:623–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bjurholm A, Kreicbergs A, Terenius L, Goldstein M, Schultzberg M. Neuropeptide Y, tyrosine hydroxylase- and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst. 1988;25:119–25.

    Article  CAS  PubMed  Google Scholar 

  10. Bjurholmb A, Kreicbergs A, Brodin E, Schultzberg M. Substance P and CGRP-immunoreactive nerves in bone. Peptides. 1988;9:165–71.

    Article  Google Scholar 

  11. Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of rats. Cell Tissue Res. 1991;264:469–80.

    Article  CAS  PubMed  Google Scholar 

  12. Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207.

    Article  PubMed Central  PubMed  Google Scholar 

  13. García-Castellano JM, Díaz-Herrera P, Morcuende JA. Is bone a target-tissue for the nervous system? New advances on the understanding of their interactions. Iowa Orthop J. 2000;20:49–58.

    PubMed Central  PubMed  Google Scholar 

  14. Denes A, Boldogkoi Z, Uhereczky G, Hornyak A, Rusvai M, Palkovits M, Kovacs KJ. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience. 2005;134:947–63.

    Article  CAS  PubMed  Google Scholar 

  15. Francis GS. Modulation of peripheral sympathetic nerve transmission. J Am Coll Cardiol. 1988;12:250–4.

    Article  CAS  PubMed  Google Scholar 

  16. Maassen AP. The influence of adrenalectomy on the growth of rats. Arch Int Pharmacodyn Ther. 1952;88:473–81.

    CAS  PubMed  Google Scholar 

  17. Lipski S. Effects of beta-adrenergic stimulation on bone marrow function in normal and sublethally irradiated mice. The effect of isoprotenerol on cAMP content in bone marrow cells in vivo and in vitro. Int J Radiat Biol Relat Phys Chem Med. 1976;29:359–66.

    Article  CAS  Google Scholar 

  18. Moore RE, Smith CK 2nd, Bailey CS, Voelkel EF, Tashjian AH Jr. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 1993;23:301–15.

    Article  CAS  PubMed  Google Scholar 

  19. Kellenberger S, Muller K, Richener H, Bilbe G. Formoterol and isoproterenol induce c- fos gene expression in osteoblast- like cells by activating beta2-adrenergic receptors. Bone. 1998;22:471–8.

    Article  CAS  PubMed  Google Scholar 

  20. Togari A, Arai M, Mizutani S, Mizutani S, Koshihara Y, Nagatsu T. Expression of mRNAs for neuropeptide receptors and beta-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett. 1997;233:125–8.

    Article  CAS  PubMed  Google Scholar 

  21. Togari A. Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc Res Tech. 2002;58:77–84.

    Article  CAS  PubMed  Google Scholar 

  22. Huang HH, Brennan TC, Muir MM, Mason RS. Functional alpha1-and beta2- adrenergic receptors in human osteoblasts. Cell Physiol. 2009;220:267–75.

    Article  CAS  Google Scholar 

  23. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.

    Article  CAS  PubMed  Google Scholar 

  24. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434:514–20.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ligget SB. Update on current concepts of the molecular basis of B2-adrenergic-receptor signaling. J Allergy Clin Immunol. 2002;110:S223–7.

    Article  Google Scholar 

  27. Benovic JL. Novel beta2-adrenergic receptor signaling pathways. J Allergy Clin Immunol. 2002;110(6 Suppl):S229–35.

    Article  CAS  PubMed  Google Scholar 

  28. Lin FT, Daaka Y, Lefkowitz RJ. Beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulinlike growth factor I receptor. J Biol Chem. 1998;273:31640–3.

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry Syndrome. Cell. 2004;117:387–98.

    Article  CAS  PubMed  Google Scholar 

  30. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997;390:88–91.

    Article  CAS  PubMed  Google Scholar 

  31. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  CAS  PubMed  Google Scholar 

  32. Takeuchi T, Tsuboi T, Arai M, Togari A. Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol. 2001;61:579–86.

    Article  CAS  PubMed  Google Scholar 

  33. Pierroz D, Bouxsein M, Rizzoli R, Ferrari S. Combined treatment with a b-blocker and intermittent PTH improves bone mass and microarchitecture in ovariectomized mice. Bone. 2006;39:260–7.

    Article  CAS  PubMed  Google Scholar 

  34. Frediani U, Becherini L, Lasagni L, Tanini A, Brandi ML. Catecholamines modulate growth and differentiation of human preosteoclastic cells. Osteoporos Int. 1996;6:14–21.

    Article  CAS  PubMed  Google Scholar 

  35. Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res. 1999;14:700–9.

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Fong C, Chen Y, Cai G, Yang M. Beta2- and beta3-, but not beta1-adrenergic receptors are involved in osteogenesis of mouse mesenchymal stem cells via cAMP/PKA signaling. Arch Biochem Biophys. 2010;496:77–83.

    Article  CAS  PubMed  Google Scholar 

  37. Owen TA, Bortell R, Yocum SA, Smock SL, Zhang M, Abate C, Shalhoub V, Aronin N, Wright KL, van Wijnen AJ. Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription. Proc Natl Acad Sci USA. 1990;87:9990–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetología. 2011;54:1291–7.

    Article  CAS  PubMed  Google Scholar 

  39. Riggs BL, Melton LJ 3rd. Involutional osteoporosis. N Engl J Med. 1986;314:1676–86.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao LJ, Liu YJ, Yuan Liu P, Hamilton J, Recker RR, Den HW. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab. 2007;92:1640–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ricci TA, Heymsfield SB, Pierson RN Jr, Stahl T, Chowdhury HA, Shapses SA. Moderate energy restriction increases bone resorption in obese postmenopausal women. Am J Clin Nutr. 2001;73:347–52.

    CAS  PubMed  Google Scholar 

  42. Grinspoon S, Thomas E, Pitts S, Gross E, Mickley D, Miller K, Herzog D, Klibanski A. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med. 2000;133:790–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Tremollieres FA, Pouilles JM, Ribot C. Vertebral postmenopausal bone loss is reduced in overweight women: a longitudinal study in 155 early postmenopausal women. J Clin Endocrinol Metab. 1993;77:683–6.

    CAS  PubMed  Google Scholar 

  44. Zhang F, Cehn Y, Heiman M, Dimarchi R. Leptin: structure, function and biology. Vitam Horm. 2005;71:345–72.

    Article  CAS  PubMed  Google Scholar 

  45. Auwerx J, Staels B. Leptin. Lancet. 1998;351:737–42.

    Article  CAS  PubMed  Google Scholar 

  46. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.

    Article  CAS  PubMed  Google Scholar 

  47. Björnholm M, Münzberg H, Leshan RL, Villanueva EC, Bates SH, Louis GW, Jones JC, Ishida-Takahashi R, Bjørbaek C, Myers MG Jr. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest. 2007;117:1354–60.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Yadav VK, Karsenty G. Leptin dependent co-regulation of bone and energy metabolism. Aging (Albany NY). 2009;1:954–6.

    CAS  Google Scholar 

  49. Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998;393:72–6.

    Article  CAS  PubMed  Google Scholar 

  50. Ahn JD, Dubern B, Lubrano-Berthelier C, Clement K, Karsenty G. Cart overexpression is the only identificable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology. 2006;147:3196–202.

    Article  CAS  PubMed  Google Scholar 

  51. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin regulated bone formation. Cell. 2005;122:803–15.

    Article  CAS  PubMed  Google Scholar 

  52. Rosen CJ. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab. 2008;7:7–10.

    Article  CAS  PubMed  Google Scholar 

  53. Sato S, Hanada R, Kimura A, Abe T, Matsumoto T, Iwasaki M, Inose H, Ida T, Mieda M, Takeuchi Y, Fukumoto S, Fujita T, Kato S, Kangawa K, Kojima M, Shinomiya K, Takeda S. Central control of bone remodeling by neuromedin U. Nat Med. 2007;13:1234–40.

    Article  CAS  PubMed  Google Scholar 

  54. Cirmanová V, Bayer M, Starka L, Zajickova K. The effect of leptin on bone: an evolving concept of action. Physiol Res. 2008;57:S143–51.

    PubMed  Google Scholar 

  55. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104:531–43.

    Article  CAS  PubMed  Google Scholar 

  56. Allison SJ, Baldock P, Sainsbury A, Enriquez R, Lee NJ, Lin EJ, Klugmann M, During M, Eisman JA, Li M, Pan LC, Herzog H, Gardiner EM. Conditional deletion of hypothalamic Y2 receptors reverts gonadectomy induced bone loss in adult mice. J Biol Chem. 2006;281:23436–44.

    Article  CAS  PubMed  Google Scholar 

  57. Sato N, Ogawa Y, Katsuura G, Numata Y, Tsuji T, Hayase M, Ebihara K, Masuzaki H, Hosoda K, Yoshimasa Y, Nakao K. Sympathetic activation of leptin via the ventromedial hypothalamus: leptin-induced increase in catecholamine secretion. Diabetes. 1999;48:1787–93.

    Article  Google Scholar 

  58. Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency introduces contrasting phenotypes in bones of the limb and spine. Bone. 2004;34:376–83.

    Article  CAS  PubMed  Google Scholar 

  59. Reid IR. Leptin deficiency-lessons in regional differences in the regulation of bone mass. Bone. 2004;34:369–71.

    Article  CAS  PubMed  Google Scholar 

  60. Young JB, Landsberg L. Catecholamines and the adrenal medulla. In: Wilson JD, Foster DW, Kroenberg HM, Larsen PR, editors. Williams textbook of endocrinology. 9th ed. Philadelphia: W.B. Saunders; 1998. p. 665–728.

    Google Scholar 

  61. Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, Guo XE, Karsenty G. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med. 2011;208:841–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Bonnet N, Benhamou CL, Malaval L, Goncalves C, Vico L, Eder V, Pichon C, Courteix D. Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions. J Cell Physiol. 2008;217:819–27.

    Article  CAS  PubMed  Google Scholar 

  63. Pierroz DD, Bouxsein ML, Muzzin P, Rizzoli R, Ferrari SL. Bone loss following ovariectomy is maintained in absence of adrenergic receptor beta1 and beta2 signaling. J Bone Miner Res. 2005;20(Suppl. 1):S277.

    Google Scholar 

  64. Bouxsein ML, Devlin MJ, Glatt V, Dhillon H, Pierroz DD, Ferrari SL. Mice lacking beta-adrenergic receptors have increased bone mass but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology. 2009;150:144–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF. Type 5 adenylylcyclase disruption increases longevity and protects against stress. Cell. 2007;130:247–58.

    Article  CAS  PubMed  Google Scholar 

  66. Kondo H, Nifuji A, Takeda S, Ezura Y, Rittling SR, Denhardt DT, Nakashima K, Karsenty G, Noda M. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem. 2005;280:30192–200.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang W, Kanehara M, Zhang Y, Wang X, Ishida T. Blocker and other analogous treatments that affect bone mass and sympathetic nerve activity inovariectomized rats. Am J Chin Med. 2007;35:89–101.

    Article  PubMed  Google Scholar 

  68. Levasseur R, Sabatier JP, Potrel-Burgot C, Lecoq B, Creveuil C, Marcelli C. Sympathetic nervous system as transmitter of mechanical loading in bone. Joint Bone Spine. 2003;70:515–9.

    Article  Google Scholar 

  69. Rodrigues WF, Madeira MF, da Silva TA, Clemente-Napimoga JT, Miguel CB, Dias-da-Silva VJ, Barbosa-Neto O, Lopes AH, Napimoga MH. Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation. Br J Pharmacol. 2012;165:2140–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Minkowitz B, Boskey AL, Lane JM, Pearlman HS, Vigorita VJ. Effects of propranolol on bone metabolism in the rat. J Orthop Res. 1991;9:869–75.

    Article  CAS  PubMed  Google Scholar 

  71. Baek K, Hwang HR, Park HJ, Kwon A, Qadir AS, Baek JH. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice. BMB Rep. 2014;47:506–11.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Elefteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int. 2014;94:140–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Pataki A, Muller K, Bilbe G, Green JR, Glatt M. Anabolic effects of beta2-agonists, formoterol and salbutamol on cancellous bone ovariectomized (ovx) rat. Bone. 1996;9:A116.

    Google Scholar 

  74. Arai M, Sato T, Takeuchi S, Goto S, Togari A. Dose effects of butoxamine, a selective β2-adrenoceptor antagonist, on bone metabolism in spontaneously hypertensive rat. Eur J Pharmacol. 2013;701:7–13.

    Article  CAS  PubMed  Google Scholar 

  75. Bonnet N, Brunet-Imbault B, Arlettaz A, Horcajada MN, Collomp K, Benhamou CL, Courteix D. Alteration of trabecular bone under chronic beta2 agonists treatment. Med Sci Sports Exerc. 2005;37:1493–501.

    Article  CAS  PubMed  Google Scholar 

  76. de Souza RL, Pitsillides AA, Lanyon LE, Skerry TM, Chenu C. Sympathetic nervous system does not mediate the load-induced cortical new bone formation. J Bone Miner Res. 2005;20:2159–68.

    Article  PubMed  Google Scholar 

  77. Marenzana M, De Souza RL, Chenu C. Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice. Bone. 2007;41:206–15.

    Article  CAS  PubMed  Google Scholar 

  78. Fonseca TL, Jorgetti V, Costa CC, Capelo LP, Covarrubias AE, Moulatlet AC, Teixeira MB, Hesse E, Morethson P, Beber EH, Freitas FR, Wang CC, Nonaka KO, Oliveira R, Casarini DE, Zorn TM, Brum PC, Gouveia CH. Double disruption of alpha2A- and alpha2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res. 2011;26:591–603.

    Article  CAS  PubMed  Google Scholar 

  79. Choi YK, Lee JY, Lee SJ, Chung CP, Park YJ. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation. Biochem Biophys Res Commun. 2011;16(416):232–8.

    Article  Google Scholar 

Download references

Disclosures

Conflict of interest

The authors (Marta Gonzalez-Rozas, Antonio Dueñas-Laita and José-Luis Pérez-Castrillón) do not have a potential conflict of interest directly or indirectly related to the research.

Animal/Human Studies

This article does not include any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Luis Perez-Castrillon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Rozas, M., Dueñas-Laita, A. & Perez-Castrillon, J.L. The β-Adrenergic System and Bone Mineral Remodeling. Clinic Rev Bone Miner Metab 13, 114–124 (2015). https://doi.org/10.1007/s12018-015-9183-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-015-9183-z

Keywords

Navigation