Skip to main content

The Influence of Muscular Action on Bone Strength Via Exercise

Abstract

Mechanical stimuli influence bone strength, with internal muscular forces thought to be the greatest stressors of bone. Consequently, the effects of exercise in improving and maintaining bone strength have been explored in a number of interventional studies. These studies demonstrate a positive effect of high-impact activities (i.e. where large muscle forces are produced) on bone strength, with benefits being most pronounced in interventions in early pubertal children. However, current studies have not investigated the forces acting on bones and subsequent deformation, preventing the development of optimised and targeted exercise interventions. Similarly, the effects of number and frequency of exercise repetitions and training sessions on bone accrual are unexplored. There are conflicting results as to gender effects on bone response to exercise, and the effects of age and starting age on the osteogenic effects of exercise are not well known. It also appears that exercise interventions are most effective in physically inactive people or counteracting conditions of disuse such as bed rest. Bone strength is only one component of fracture risk, and it may be that exercise resulting in improvements in, e.g., muscle force/power and/or balance is more effective than those whose effects are solely osteogenic. In summary, exercise is likely to be an effective tool in maintaining bone strength but current interventions are far from optimal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Turner CH. Skeletal adaptation to mechanical loading. Clin Rev Bone Miner Metab. 2007;5:181–94.

    CAS  Google Scholar 

  2. 2.

    Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66:397–402.

    CAS  PubMed  Google Scholar 

  3. 3.

    Rittweger J, Felsenberg D. Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone. 2009;44:214–24.

    CAS  PubMed  Google Scholar 

  4. 4.

    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.

    PubMed  Google Scholar 

  5. 5.

    Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2:73–85.

    CAS  PubMed  Google Scholar 

  6. 6.

    Keller TS, Weisberger AM, Ray JL, Hasan SS, Shiavi RG, Spengler DM. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clin Biomech (Bristol, Avon). 1996;11:253–9.

    Google Scholar 

  7. 7.

    Perttunen JO, Kyrolainen H, Komi PV, Heinonen A. Biomechanical loading in the triple jump. J Sports Sci. 2000;18:363.

    CAS  PubMed  Google Scholar 

  8. 8.

    Rittweger J. Physiological targets of artificial gravity: adaptive processes in bone and artificial gravity. In: Clement G, Bukley A, editors. Artificial gravity. Berlin: Springer; 2007. p. 191–231.

    Google Scholar 

  9. 9.

    Ireland A, Maden-Wilkinson T, McPhee J, Cooke K, Narici M, Degens H, Rittweger J. Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players. Med Sci Sports Exerc. 2013;45:1749–58.

    PubMed  Google Scholar 

  10. 10.

    Ashe MC, Liu-Ambrose TY, Cooper DM, Khan KM, McKay HA. Muscle power is related to tibial bone strength in older women. Osteoporos Int. 2008;19:1725–32.

    CAS  PubMed  Google Scholar 

  11. 11.

    Schoenau E, Neu CM, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res. 2002;17:1095–101.

    PubMed  Google Scholar 

  12. 12.

    Ferretti JL, Capozza RF, Cointry GR, Garcia SL, Plotkin H, Alvarez Filgueira ML, Zanchetta JR. Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone. 1998;22:683.

    CAS  PubMed  Google Scholar 

  13. 13.

    Bass SL, Eser P, Daly R. The effect of exercise and nutrition on the mechanostat. J Musculoskelet Neuronal Interact. 2005;5:239–54.

    CAS  PubMed  Google Scholar 

  14. 14.

    Sievanen H, Heinonen A, Kannus P. Adaptation of bone to altered loading environment: a biomechanical approach using X-ray absorptiometric data from the patella of a young woman. Bone. 1996;19:55–9.

    CAS  PubMed  Google Scholar 

  15. 15.

    Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R. The ‘muscle-bone unit’ during the pubertal growth spurt. Bone. 2004;34:771–5.

    PubMed  Google Scholar 

  16. 16.

    Zofková I. Hormonal aspects of the muscle-bone unit. Physiol Res. 2008;57(Suppl 1):S159–69.

    PubMed  Google Scholar 

  17. 17.

    Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine. 2013. doi:10.1007/s12020-013-0026-8.

  18. 18.

    Hill A. The heat of shortening and the dynamic constants of muscle. Proc R Soc. 1938;126:136–95.

    Google Scholar 

  19. 19.

    Sousa F, Ishikawa M, Vilas-Boas JP, Komi PV. Intensity- and muscle-specific fascicle behavior during human drop jumps. J Appl Physiol. 2007;102:382–9.

    CAS  PubMed  Google Scholar 

  20. 20.

    Nikander R, Sievanen H, Heinonen A, Kannus P. Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res. 2005;20:520–8.

    PubMed  Google Scholar 

  21. 21.

    Wilks DC, Winwood K, Gilliver SF, Kwiet A, Chatfield M, Michaelis I, Sun LW, Ferretti JL, Sargeant AJ, Felsenberg D, Rittweger J. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT study. Bone. 2009;45:91–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. 22.

    Heinonen A, Sievänen H, Kannus P, Oja P, Vuori I. Site-specific skeletal response to long-term weight training seems to be attributable to principal loading modality: a pQCT study of female weightlifters. Calcif Tissue Int. 2002;70:469–74.

    CAS  PubMed  Google Scholar 

  23. 23.

    Haapasalo H, Kontulainen S, Sievänen H, Kannus P, Järvinen M, Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone. 2000;27:351–7.

    CAS  PubMed  Google Scholar 

  24. 24.

    van der Sluis IM, de Ridder MA, Boot AM, Krenning EP, de Muinck Keizer-Schrama SM. Reference data for bone density and body composition measured with dual energy X ray absorptiometry in white children and young adults. Arch Dis Child. 2002;87:341–7 discussion 341-7.

    PubMed Central  PubMed  Google Scholar 

  25. 25.

    Capozza RF, Feldman S, Mortarino P, Reina PS, Schiessl H, Rittweger J, Ferretti JL, Cointry GR. Structural analysis of the human tibia by tomographic (pQCT) serial scans. J Anat. 2010;216:470–81.

    PubMed Central  PubMed  Google Scholar 

  26. 26.

    Viljakainen HT, Korhonen T, Hytinantti T, Laitinen EK, Andersson S, Mäkitie O, Lamberg-Allardt C. Maternal vitamin D status affects bone growth in early childhood—a prospective cohort study. Osteoporos Int. 2011;22:883–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. 27.

    Maynard LM, Guo SS, Chumlea WC, Roche AF, Wisemandle WA, Zeller CM, Towne B, Siervogel RM. Total-body and regional bone mineral content and areal bone mineral density in children aged 8–18 y: the Fels Longitudinal Study. Am J Clin Nutr. 1998;68:1111–7.

    CAS  PubMed  Google Scholar 

  28. 28.

    Rauch F. The dynamics of bone structure development during pubertal growth. J Musculoskelet Neuronal Interact. 2012;12:1–6.

    CAS  PubMed  Google Scholar 

  29. 29.

    Landin LA. Fracture patterns in children. Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand Suppl. 1983;202:1–109.

    CAS  PubMed  Google Scholar 

  30. 30.

    Khan K, McKay HA, Haapasalo H, Bennell KL, Forwood MR, Kannus P, Wark JD. Does childhood and adolescence provide a unique opportunity for exercise to strengthen the skeleton? J Sci Med Sport. 2000;3:150–64.

    CAS  PubMed  Google Scholar 

  31. 31.

    Bass SL. The prepubertal years: a uniquely opportune stage of growth when the skeleton is most responsive to exercise? Sports Med. 2000;30:73–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Frost H. The Utah paradigm of skeletal physiology, vol. II. Athens: ISMNI; 2004.

    Google Scholar 

  33. 33.

    Rittweger J. Ten years muscle-bone hypothesis: what have we learned so far?–Almost a festschrift–. J Musculoskelet Neuronal Interact. 2008;8:174–8.

    CAS  PubMed  Google Scholar 

  34. 34.

    Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40:14–27.

    CAS  PubMed  Google Scholar 

  35. 35.

    Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12:1453–62.

    CAS  PubMed  Google Scholar 

  36. 36.

    Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16:148–56.

    CAS  PubMed  Google Scholar 

  37. 37.

    McKay HA, MacLean L, Petit M, MacKelvie-O’Brien K, Janssen P, Beck T, Khan KM. “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med. 2005;39:521–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. 38.

    Blimkie CJ, Rice S, Webber CE, Martin J, Levy D, Gordon CL. Effects of resistance training on bone mineral content and density in adolescent females. Can J Physiol Pharmacol. 1996;74:1025–33.

    CAS  PubMed  Google Scholar 

  39. 39.

    Johannsen N, Binkley T, Englert V, Neiderauer G, Specker B. Bone response to jumping is site-specific in children: a randomized trial. Bone. 2003;33:533–9.

    PubMed  Google Scholar 

  40. 40.

    Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18:885.

    CAS  PubMed  Google Scholar 

  41. 41.

    Heinonen A, Sievanen H, Kannus P, Oja P, Pasanen M, Vuori I. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int. 2000;11:1010.

    CAS  PubMed  Google Scholar 

  42. 42.

    Anliker E, Dick C, Rawer R, Toigo M. Effects of jumping exercise on maximum ground reaction force and bone in 8- to 12-year-old boys and girls: a 9-month randomized controlled trial. J Musculoskelet Neuronal Interact. 2012;12:56–67.

    CAS  PubMed  Google Scholar 

  43. 43.

    Laing EM, Wilson AR, Modlesky CM, O’Connor PJ, Hall DB, Lewis RD. Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females. J Bone Miner Res. 2005;20:509–19.

    PubMed  Google Scholar 

  44. 44.

    Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995;123:27.

    CAS  PubMed  Google Scholar 

  45. 45.

    Bass S, Saxon L, Daly R, Turner C, Robling A, Seeman E, Stuckey S. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17:2274–80.

    CAS  PubMed  Google Scholar 

  46. 46.

    Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93:799–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. 47.

    Lorentzon M, Mellström D, Ohlsson C. Age of attainment of peak bone mass is site specific in Swedish men—The GOOD study. J Bone Miner Res. 2005;20:1223–7.

    PubMed  Google Scholar 

  48. 48.

    Wilks DC, Winwood K, Gilliver SF, Kwiet A, Sun LW, Gutwasser C, Ferretti JL, Sargeant AJ, Felsenberg D, Rittweger J. Age-dependency in bone mass and geometry: a pQCT study on male and female master sprinters, middle and long distance runners, race-walkers and sedentary people. J Musculoskelet Neuronal Interact. 2009;9:236–46.

    CAS  PubMed  Google Scholar 

  49. 49.

    Riggs BL, Melton Iii LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19:1945–54.

    PubMed  Google Scholar 

  50. 50.

    Winters-Stone KM, Snow CM. Site-specific response of bone to exercise in premenopausal women. Bone. 2006;39:1203–9.

    PubMed  Google Scholar 

  51. 51.

    Van Langendonck L, Claessens AL, Vlietinck R, Derom C, Beunen G. Influence of weight-bearing exercises on bone acquisition in prepubertal monozygotic female twins: a randomized controlled prospective study. Calcif Tissue Int. 2003;72:666–74.

    PubMed  Google Scholar 

  52. 52.

    Kontulainen S, Kannus P, Haapasalo H, Sievänen H, Pasanen M, Heinonen A, Oja P, Vuori I. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J Bone Miner Res. 2001;16:195–201.

    CAS  PubMed  Google Scholar 

  53. 53.

    Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:500.

    CAS  PubMed  Google Scholar 

  54. 54.

    Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int. 1995;57:325–8.

    PubMed  Google Scholar 

  55. 55.

    Khan KM, Green RM, Saul A, Bennell KL, Crichton KJ, Hopper JL, Wark JD. Retired elite female ballet dancers and nonathletic controls have similar bone mineral density at weightbearing sites. J Bone Miner Res. 1996;11:1566.

    CAS  PubMed  Google Scholar 

  56. 56.

    Kato T, Terashima T, Yamashita T, Hatanaka Y, Honda A, Umemura Y. Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol. 2006;100:839–43.

    PubMed  Google Scholar 

  57. 57.

    Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63:829–34.

    PubMed  Google Scholar 

  58. 58.

    Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000;5:191–208.

    PubMed  Google Scholar 

  59. 59.

    Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34:1091–6.

    CAS  PubMed  Google Scholar 

  60. 60.

    Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol. 2003;95:2229–34.

    CAS  PubMed  Google Scholar 

  61. 61.

    Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol. 2005;99:1050–5.

    PubMed  Google Scholar 

  62. 62.

    Degens H. Age-related skeletal muscle dysfunction: causes and mechanisms. J Musculoskelet Neuronal Interact. 2007;7:246–52.

    CAS  PubMed  Google Scholar 

  63. 63.

    Reeves ND. Adaptation of the tendon to mechanical usage. J Musculoskelet Neuronal Interact. 2006;6:174–80.

    CAS  PubMed  Google Scholar 

  64. 64.

    Kohrt WM. Aging and the osteogenic response to mechanical loading. Int J Sport Nutr Exerc Metab. 2001;11(Suppl):S137–42.

    PubMed  Google Scholar 

  65. 65.

    Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int. 1992;50:306–13.

    CAS  PubMed  Google Scholar 

  66. 66.

    Klein-Nulend J, Sterck JG, Semeins CM, Lips P, Joldersma M, Baart JA, Burger EH. Donor age and mechanosensitivity of human bone cells. Osteoporos Int. 2002;13:137–46.

    CAS  PubMed  Google Scholar 

  67. 67.

    Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.

    CAS  PubMed  Google Scholar 

  68. 68.

    Runge M, Rittweger J, Russo CR, Schiessl H, Felsenberg D. Is muscle power output a key factor in the age-related decline in physical performance? A comparison of muscle cross section, chair-rising test and jumping power. Clin Physiol Funct Imaging. 2004;24:335–40.

    PubMed  Google Scholar 

  69. 69.

    Hamilton CJ, Swan VJ, Jamal SA. The effects of exercise and physical activity participation on bone mass and geometry in postmenopausal women: a systematic review of pQCT studies. Osteoporos Int. 2010;21:11–23.

    CAS  PubMed  Google Scholar 

  70. 70.

    Stolzenberg N, Belavý DL, Beller G, Armbrecht G, Semler J, Felsenberg D. Bone strength and density via pQCT in post-menopausal osteopenic women after 9 months resistive exercise with whole body vibration or proprioceptive exercise. J Musculoskelet Neuronal Interact. 2013;13:66–76.

    CAS  PubMed  Google Scholar 

  71. 71.

    Uusi-Rasi K, Kannus P, Cheng S, Sievänen H, Pasanen M, Heinonen A, Nenonen A, Halleen J, Fuerst T, Genant H, Vuori I. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone. 2003;33:132–43.

    CAS  PubMed  Google Scholar 

  72. 72.

    Karinkanta S, Heinonen A, Sievänen H, Uusi-Rasi K, Fogelholm M, Kannus P. Maintenance of exercise-induced benefits in physical functioning and bone among elderly women. Osteoporos Int. 2009;20:665–74.

    CAS  PubMed  Google Scholar 

  73. 73.

    Chan K, Qin L, Lau M, Woo J, Au S, Choy W, Lee K, Lee S. A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch Phys Med Rehabil. 2004;85:717–22.

    PubMed  Google Scholar 

  74. 74.

    Slatkovska L, Alibhai SM, Beyene J, Hu H, Demaras A, Cheung AM. Effect of 12 months of whole-body vibration therapy on bone density and structure in postmenopausal women: a randomized trial. Ann Intern Med. 2011;155:668–79 W205.

    PubMed  Google Scholar 

  75. 75.

    Caspersen CJ, Pereira MA, Curran KM. Changes in physical activity patterns in the United States, by sex and cross-sectional age. Med Sci Sports Exerc. 2000;32:1601–9.

    CAS  PubMed  Google Scholar 

  76. 76.

    Allison SJ, Folland JP, Rennie WJ, Summers GD, Brooke-Wavell K. High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone. 2013;53:321–8.

    PubMed  Google Scholar 

  77. 77.

    Bailey CA, Brooke-Wavell K. Optimum frequency of exercise for bone health: randomised controlled trial of a high-impact unilateral intervention. Bone. 2010;46:1043–9.

    PubMed  Google Scholar 

  78. 78.

    Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998;13:1805–13.

    CAS  PubMed  Google Scholar 

  79. 79.

    Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Mäkitie O, Andersson S, Laitinen K, Lamberg-Allardt C. Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab. 2010;95:1749–57.

    CAS  PubMed  Google Scholar 

  80. 80.

    Schiessl H, Frost HM, Jee WS. Estrogen and bone-muscle strength and mass relationships. Bone. 1998;22:1–6.

    CAS  PubMed  Google Scholar 

  81. 81.

    Järvinen TL. Novel paradigm on the effect of estrogen on bone. J Musculoskelet Neuronal Interact. 2003;3:374–80 discussion 381.

    PubMed  Google Scholar 

  82. 82.

    Ensom MH, Liu PY, Stephenson MD. Effect of pregnancy on bone mineral density in healthy women. Obstet Gynecol Surv. 2002;57:99–111.

    PubMed  Google Scholar 

  83. 83.

    Kiel DP, Rosen CJ, Dempster D. Age-related bone loss. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Washington, DC: American Society for Bone and Mineral Research; 2008. p. 98–102.

    Google Scholar 

  84. 84.

    MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34:755.

    PubMed  Google Scholar 

  85. 85.

    MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003;112:e447.

    PubMed  Google Scholar 

  86. 86.

    Kriemler S, Zahner L, Puder JJ, Braun-Fahrländer C, Schindler C, Farpour-Lambert NJ, Kränzlin M, Rizzoli R. Weight-bearing bones are more sensitive to physical exercise in boys than in girls during pre- and early puberty: a cross-sectional study. Osteoporos Int. 2008;19:1749–58.

    CAS  PubMed  Google Scholar 

  87. 87.

    Ashizawa N, Nonaka K, Michikami S, Mizuki T, Amagai H, Tokuyama K, Suzuki M. Tomographical description of tennis-loaded radius: reciprocal relation between bone size and volumetric BMD. J Appl Physiol. 1999;86:1347–51.

    CAS  PubMed  Google Scholar 

  88. 88.

    Sievänen H. Hormonal influences on the muscle-bone feedback system: a perspective. J Musculoskelet Neuronal Interact. 2005;5:255–61.

    PubMed  Google Scholar 

  89. 89.

    Davis R, Sanborn C, Nichols D, Bazett-Jones DM, Dugan EL. The effects of whole body vibration on bone mineral density for a person with a spinal cord injury: a case study. Adapt Phys Activ Q. 2010;27:60–72.

    PubMed  Google Scholar 

  90. 90.

    Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B, Gast U, Dimeo F, Schubert H, de Haan A, Stegeman DF, Schiessl H, Felsenberg D. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone. 2010;46:137–47.

    PubMed  Google Scholar 

  91. 91.

    Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12:1480–5.

    CAS  PubMed  Google Scholar 

  92. 92.

    Cullen DM, Smith RT, Akhter MP. Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol. 2001;91:1971–6.

    CAS  PubMed  Google Scholar 

  93. 93.

    Bass SL, Naughton G, Saxon L, Iuliano-Burns S, Daly R, Briganti EM, Hume C, Nowson C. Exercise and calcium combined results in a greater osteogenic effect than either factor alone: a blinded randomized placebo-controlled trial in boys. J Bone Miner Res. 2007;22:458–64.

    CAS  PubMed  Google Scholar 

  94. 94.

    Iuliano-Burns S, Saxon L, Naughton G, Gibbons K, Bass SL. Regional specificity of exercise and calcium during skeletal growth in girls: a randomized controlled trial. J Bone Miner Res. 2003;18:156–62.

    PubMed  Google Scholar 

  95. 95.

    Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, Bouxsein ML, Misra M. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96:3123–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. 96.

    Berry SD, Miller RR. Falls: epidemiology, pathophysiology, and relationship to fracture. Curr Osteoporos Rep. 2008;6:149–54.

    PubMed Central  PubMed  Google Scholar 

  97. 97.

    Mion LC, Gregor S, Buettner M, Chwirchak D, Lee O, Paras W. Falls in the rehabilitation setting: incidence and characteristics. Rehabil Nurs. 1989;14:17–22.

    CAS  PubMed  Google Scholar 

  98. 98.

    Gillespie LD, Robertson MC, Gillespie WJ, Lamb SE, Gates S, Cumming RG, Rowe BH. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2009;2:CD007146.

    PubMed  Google Scholar 

  99. 99.

    Komi PV, Fukashiro S, Jarvinen M. Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med. 1992;11:521.

    CAS  PubMed  Google Scholar 

  100. 100.

    Giddings VL, Beaupre GS, Whalen RT, Carter DR. Calcaneal loading during walking and running. Med Sci Sports Exerc. 2000;32:627.

    CAS  PubMed  Google Scholar 

  101. 101.

    Finni T, Komi PV, Lepola V. In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur J Appl Physiol. 2000;83:416.

    CAS  PubMed  Google Scholar 

  102. 102.

    Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil. 2000;81:1090.

    CAS  PubMed  Google Scholar 

  103. 103.

    Ensrud KE, Ewing SK, Taylor BC, Fink HA, Stone KL, Cauley JA, Tracy JK, Hochberg MC, Rodondi N, Cawthon PM, Group SoOFR. Frailty and risk of falls, fracture, and mortality in older women: the study of osteoporotic fractures. J Gerontol A Biol Sci Med Sci. 2007;62:744–51.

    PubMed  Google Scholar 

  104. 104.

    Turner CH. Exercise as a therapy for osteoporosis: the drunk and the street lamp, revisited. Bone. 1998;23:83–5.

    CAS  PubMed  Google Scholar 

  105. 105.

    Chaganti RK, Parimi N, Lang T, Orwoll E, Stefanick ML, Nevitt M, Lane NE, Group OFiMMS. Bone mineral density and prevalent osteoarthritis of the hip in older men for the Osteoporotic Fractures in Men (MrOS) Study Group. Osteoporos Int. 2010;21:1307–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. 106.

    Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman B, Aliabadi P, Levy D. Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum. 1997;40:728–33.

    CAS  PubMed  Google Scholar 

  107. 107.

    Radin EL, Paul IL, Rose RM. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1:519–22.

    CAS  PubMed  Google Scholar 

  108. 108.

    Kontulainen S, Sievänen H, Kannus P, Pasanen M, Vuori I. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res. 2002;17:2281–9.

    PubMed  Google Scholar 

  109. 109.

    Kelley GA, Kelley KS. Dropouts and compliance in exercise interventions targeting bone mineral density in adults: a meta-analysis of randomized controlled trials. J Osteoporos. 2013;2013:250423.

    PubMed Central  PubMed  Google Scholar 

  110. 110.

    Kothawala P, Badamgarav E, Ryu S, Miller RM, Halbert RJ. Systematic review and meta-analysis of real-world adherence to drug therapy for osteoporosis. Mayo Clin Proc. 2007;82:1493–501.

    PubMed  Google Scholar 

Download references

Disclosures

Conflict of interest

Alex Ireland, Jörn Rittweger and Hans Degens declare that they have no conflict of interest.

Animal/Human studies

This review does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alex Ireland.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ireland, A., Rittweger, J. & Degens, H. The Influence of Muscular Action on Bone Strength Via Exercise. Clinic Rev Bone Miner Metab 12, 93–102 (2014). https://doi.org/10.1007/s12018-013-9151-4

Download citation

Keywords

  • Bone
  • BMD
  • Muscle
  • Exercise
  • Osteoporosis