Skip to main content

The Role of Sclerostin in the Pathophysiology of Sclerosing Bone Dysplasias

Abstract

In the last decade, osteocyte-produced sclerostin has emerged as a key regulator of bone remodeling. Sclerostin inhibits bone formation and may also stimulate bone resorption. Impaired sclerostin synthesis leads to generalized hyperostosis, particularly of the skull bones, in patients with sclerosteosis and van Buchem disease due to unrestrained bone formation. The synthesis of sclerostin is controlled by systemic and local factors, and aberrant sclerostin synthesis has been reported in several disorders of bone and mineral metabolism. The restricted expression of sclerostin in bone, the excellent quality of bone of patients with sclerosteosis and van Buchem disease and the lack of abnormalities in organs other than the skeleton in these patients have made sclerostin a promising target for new bone-building therapies for osteoporosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    PubMed  Article  CAS  Google Scholar 

  2. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41.

    PubMed  Article  CAS  Google Scholar 

  3. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4.

    PubMed  Article  CAS  Google Scholar 

  4. van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199(6):805–14.

    PubMed  Article  Google Scholar 

  5. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.

    PubMed  Article  CAS  Google Scholar 

  6. Balemans W, Ebeling M, Patel N, Van HE, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.

    PubMed  Article  CAS  Google Scholar 

  7. Brunkow ME, Gardner JC, Van NJ, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.

    PubMed  Article  CAS  Google Scholar 

  8. Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12–q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet. 2002;110(2):144–52.

    PubMed  Article  Google Scholar 

  9. Balemans W, Patel N, Ebeling M, Van HE, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.

    PubMed  Article  CAS  Google Scholar 

  10. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19(13):1842–4.

    PubMed  CAS  Google Scholar 

  11. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76.

    PubMed  Article  CAS  Google Scholar 

  12. Chang M, Kramer I, Kneissel M. Sclerostin deficiency does not induce bone gain in mice lacking osteocyte beta-catenin. JBMR. 2011;26:S13.

    Google Scholar 

  13. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6(10):e25900.

    PubMed  Article  CAS  Google Scholar 

  14. van Bezooijen RL, Bronckers AL, Gortzak RA, Hogendoorn PC, Wee-Pals L, Balemans W, et al. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res. 2009;88(6):569–74.

    PubMed  Article  Google Scholar 

  15. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9.

    PubMed  Article  Google Scholar 

  16. Moester MJ, Papapoulos SE, Lowik CW, van Bezooijen RL. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010;87(2):99–107.

    PubMed  Article  CAS  Google Scholar 

  17. Hamersma H, Gardner J, Beighton P. The natural history of sclerosteosis. Clin Genet. 2003;63(3):192–7.

    PubMed  Article  CAS  Google Scholar 

  18. Van Buchem FS. Hyperostosis corticalis generalisata. Eight new cases. Acta Med Scand. 1971;189(4):257–67.

    PubMed  Google Scholar 

  19. Van Buchem FS, Hadders HN, Hansen JF, Woldring MG. Hyperostosis corticalis generalisata. Report of seven cases. Am J Med. 1962;33:387–97.

    Article  Google Scholar 

  20. van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res. 2007;22(1):19–28.

    PubMed  Article  Google Scholar 

  21. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7.

    PubMed  Article  CAS  Google Scholar 

  22. Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005;280(29):26770–5.

    PubMed  Article  CAS  Google Scholar 

  23. Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab. 2009;27(3):265–71.

    PubMed  Article  CAS  Google Scholar 

  24. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 2002;417(6889):664–7.

    PubMed  Article  CAS  Google Scholar 

  25. Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489–500.

    PubMed  Article  CAS  Google Scholar 

  26. de Vernejoul MC. Sclerosing bone disorders. Best Pract Res Clin Rheumatol. 2008;22(1):71–83.

    PubMed  Article  Google Scholar 

  27. Truswell AS. Osteopetrosis with syndactyly; a morphological variant of Albers-Schonberg’s disease. J Bone Joint Surg Br. 1958;40-B(2):209–18.

    PubMed  CAS  Google Scholar 

  28. Balemans W, Cleiren E, Siebers U, Horst J, Van HW. A generalized skeletal hyperostosis in two siblings caused by a novel mutation in the SOST gene. Bone. 2005;36(6):943–7.

    PubMed  Article  CAS  Google Scholar 

  29. Piters E, Culha C, Moester M, Van BR, Adriaensen D, Mueller T, et al. First missense mutation in the SOST gene causing sclerosteosis by loss of sclerostin function. Hum Mutat. 2010;31(7):E1526–43.

    PubMed  Article  CAS  Google Scholar 

  30. Beighton P, Davidson J, Durr L, Hamersma H. Sclerosteosis—an autosomal recessive disorder. Clin Genet. 1977;11(1):1–7.

    PubMed  Article  CAS  Google Scholar 

  31. Van Buchem FS, Hadders HN, Ubbens R. An uncommon familial systemic disease of the skeleton: hyperostosis corticalis generalisata familiaris. Acta Radiol. 1955;44(2):109–20.

    Article  Google Scholar 

  32. Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 2005;15(7):928–35.

    PubMed  Article  CAS  Google Scholar 

  33. Wengenroth M, Vasvari G, Federspil PA, Mair J, Schneider P, Stippich C. Case 150: Van Buchem disease (hyperostosis corticalis generalisata). Radiology. 2009;253(1):272–6.

    PubMed  Article  Google Scholar 

  34. Beighton P, Durr L, Hamersma H. The clinical features of sclerosteosis. A review of the manifestations in twenty-five affected individuals. Ann Intern Med. 1976;84(4):393–7.

    PubMed  CAS  Google Scholar 

  35. van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N, et al. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res. 2011;26(12):2804–11.

    PubMed  Article  Google Scholar 

  36. Epstein S, Hamersma H, Beighton P. Endocrine function in sclerosteosis. S Afr Med J. 1979;55(27):1105–10.

    PubMed  CAS  Google Scholar 

  37. Stein SA, Witkop C, Hill S, Fallon MD, Viernstein L, Gucer G, et al. Sclerosteosis: neurogenetic and pathophysiologic analysis of an American kinship. Neurology. 1983;33(3):267–77.

    PubMed  CAS  Google Scholar 

  38. Barnard AH, Hamersma H, Kretzmar JH, Beighton P. Sclerosteosis in old age. S Afr Med J. 1980;58(10):401–3.

    PubMed  CAS  Google Scholar 

  39. Beighton P, Barnard A, Hamersma H, van der Wouden A. The syndromic status of sclerosteosis and van Buchem disease. Clin Genet. 1984;25(2):175–81.

    PubMed  Article  CAS  Google Scholar 

  40. Van HW, Balemans W, Van HE, Dikkers FG, Obee H, Stokroos RJ, et al. Van Buchem disease (hyperostosis corticalis generalisata) maps to chromosome 17q12–q21. Am J Hum Genet. 1998;62(2):391–9.

    Article  Google Scholar 

  41. Vanhoenacker FM, Balemans W, Tan GJ, Dikkers FG, De Schepper AM, Mathysen DG, et al. Van Buchem disease: lifetime evolution of radioclinical features. Skeletal Radiol. 2003;32(12):708–18.

    PubMed  Article  Google Scholar 

  42. van Lierop AH, Hamdy NA, Papapoulos SE. Glucocorticoids are not always deleterious for bone. J Bone Miner Res. 2010;25(12):2796–800.

    PubMed  Article  Google Scholar 

  43. Wergedal JE, Veskovic K, Hellan M, Nyght C, Balemans W, Libanati C, et al. Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal. J Clin Endocrinol Metab. 2003;88(12):5778–83.

    PubMed  Article  CAS  Google Scholar 

  44. Beighton P, Cremin BJ, Hamersma H. The radiology of sclerosteosis. Br J Radiol. 1976;49(587):934–9.

    PubMed  Article  CAS  Google Scholar 

  45. Hill SC, Stein SA, Dwyer A, Altman J, Dorwart R, Doppman J. Cranial CT findings in sclerosteosis. AJNR Am J Neuroradiol. 1986;7(3):505–11.

    PubMed  CAS  Google Scholar 

  46. du Plessis JJ. Sclerosteosis: neurosurgical experience with 14 cases. J Neurosurg. 1993;78(3):388–92.

    PubMed  Article  CAS  Google Scholar 

  47. Modder UI, Clowes JA, Hoey K, Peterson JM, McCready L, Oursler MJ, et al. Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res. 2011;26(1):27–34.

    PubMed  Article  CAS  Google Scholar 

  48. Modder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res. 2011;26(2):373–9.

    PubMed  Article  CAS  Google Scholar 

  49. Kirmani S, Amin S, McCready LK, Atkinson EJ, Melton LJ, III, Muller R, et al. Sclerostin levels during growth in children. Osteoporos Int. (2011) (epub).

  50. Weidauer SE, Schmieder P, Beerbaum M, Schmitz W, Oschkinat H, Mueller TD. NMR structure of the Wnt modulator protein Sclerostin. Biochem Biophys Res Commun. 2009;380(1):160–5.

    PubMed  Article  CAS  Google Scholar 

  51. Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem. 2009;284(16):10890–900.

    PubMed  Article  CAS  Google Scholar 

  52. McNulty M, Singh RJ, Li X, Bergstralh EJ, Kumar R. Determination of serum and plasma sclerostin concentrations by enzyme-linked immunoassays. J Clin Endocrinol Metab. 2011;96(7):E1159–62.

    PubMed  Article  Google Scholar 

  53. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.

    PubMed  Article  CAS  Google Scholar 

  54. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24(10):1651–61.

    PubMed  Article  CAS  Google Scholar 

  55. Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab. 2010;95(5):2248–53.

    PubMed  Article  CAS  Google Scholar 

  56. Morse LR, Sudhakar S, Danilack V, Tun C, Lazzari A, Gagnon DR, et al. Association between sclerostin and bone density in chronic SCI. J Bone Miner Res. (2011) (epub).

  57. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146(11):4577–83.

    PubMed  Article  CAS  Google Scholar 

  58. Silvestrini G, Ballanti P, Leopizzi M, Sebastiani M, Berni S, Di VM, et al. Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J Mol Histol. 2007;38(4):261–9.

    PubMed  Article  CAS  Google Scholar 

  59. van Lierop AH, Witteveen JE, Hamdy NA, Papapoulos SE. Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur J Endocrinol. 2010;163(5):833–7.

    PubMed  Article  Google Scholar 

  60. Drake MT, Srinivasan B, Modder UI, Peterson JM, McCready LK, Riggs BL, et al. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab. 2010;95(11):5056–62.

    PubMed  Article  CAS  Google Scholar 

  61. Vincent C, Findlay DM, Welldon KJ, Wijenayaka AR, Zheng TS, Haynes DR, et al. Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. J Bone Miner Res. 2009;24(8):1434–49.

    PubMed  Article  CAS  Google Scholar 

  62. Appel H, Ruiz-Heiland G, Listing J, Zwerina J, Herrmann M, Mueller R, et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthr Rheum. 2009;60(11):3257–62.

    Article  Google Scholar 

  63. Mabilleau G, Mieczkowska A, Edmonds ME. Thiazolidinediones induce osteocyte apoptosis and increase sclerostin expression. Diabet Med. 2010;27(8):925–32.

    PubMed  Article  CAS  Google Scholar 

  64. Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthr Rheum. 2008;58(6):1674–86.

    Article  CAS  Google Scholar 

  65. Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H, et al. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab. 2005;90(12):6392–5.

    PubMed  Article  CAS  Google Scholar 

  66. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24(4):578–88.

    PubMed  Article  CAS  Google Scholar 

  67. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25(5):948–59.

    PubMed  Article  CAS  Google Scholar 

  68. Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19–26.

    PubMed  Article  CAS  Google Scholar 

  69. Marenzana M, Greenslade K, Eddleston A, Okoye R, Marshall D, Moore A, et al. Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthr Rheum. 2011;63(8):2385–95.

    Article  CAS  Google Scholar 

  70. Eddleston A, Marenzana M, Moore AR, Stephens P, Muzylak M, Marshall D, et al. A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis. J Bone Miner Res. 2009;24(10):1662–71.

    PubMed  Article  CAS  Google Scholar 

  71. Ominsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, et al. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res. 2011;26(5):1012–21.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

Studies on sclerostin, sclerosteosis and van Buchem disease by the authors were carried out within the FP7 program TALOS, financied by the European Union (HEALTH-F2-2008-20199, TALOS).

Conflict of interest

All authors have no conflict of interest. All authors met the ICMJE criteria for authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Papapoulos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Lierop, A.H., Hamdy, N.A.T., van Bezooijen, R.L. et al. The Role of Sclerostin in the Pathophysiology of Sclerosing Bone Dysplasias. Clinic Rev Bone Miner Metab 10, 108–116 (2012). https://doi.org/10.1007/s12018-011-9123-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-011-9123-5

Keywords

  • Sclerostin
  • Sclerosteosis
  • van Buchem disease