Skip to main content
Log in

Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis

  • Research
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes’ up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes’ expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data in this article were derived from the GEO (http://www.ncbi.nlm.nih.gov/geo/) and the Stanley Medical Research Institute (SMRI) Array Collection (http://www.stanleyresearch.org/brain-research/array-collection/), as described in the methods section and in the Supplementary information file.

References

  • Ahmed, A. O., Strauss, G. P., Buchanan, R. W., Kirkpatrick, B., & Carpenter, W. T. (2018). Schizophrenia heterogeneity revisited: Clinical, cognitive, and psychosocial correlates of statistically-derived negative symptoms subgroups. Journal of Psychiatric Research, 97, 8–15. https://doi.org/10.1016/j.jpsychires.2017.11.004

    Article  PubMed  Google Scholar 

  • Barnes, M. R., Huxley-Jones, J., Maycox, P. R., Lennon, M., Thornber, A., Kelly, F., Bates, S., Taylor, A., Reid, J., Jones, N., Schroeder, J., Scorer, C. A., Davies, C., Hagan, J. J., Kew, J. N. C., Angelinetta, C., Akbar, T., Hirsch, S., Mortimer, A. M., … de Belleroche, J. (2011). Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. Journal of Neuroscience Research, 89(8), 1218–1227. https://doi.org/10.1002/jnr.22647

  • Boerrigter, D., Weickert, T. W., Lenroot, R., O’donnell, M., Galletly, C., Liu, D., Burgess, M., Cadiz, R., Jacomb, I., Catts, V. S., Fillman, S. G., & Weickert, C. S. (2017). Using blood cytokine measures to define high inflammatory biotype of schizophrenia and schizoaffective disorder. Journal of Neuroinflammation. https://doi.org/10.1186/s12974-017-0962-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowden, N. A., Scott, R. J., & Tooney, P. A. (2008). Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genomics. https://doi.org/10.1186/1471-2164-9-199

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowen, E. F. W., Burgess, J. L., Granger, R., Kleinman, J. E., & Rhodes, C. H. (2019). DLPFC transcriptome defines two molecular subtypes of schizophrenia. Translational Psychiatry. https://doi.org/10.1038/s41398-019-0472-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai, H. Q., Catts, V. S., Webster, M. J., Galletly, C., Liu, D., O’donnell, M., Weickert, T. W., & Weickert, C. S. (2020). Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Molecular Psychiatry, 25, 761–775. https://doi.org/10.1038/s41380-018-0235-x

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Meng, Q., Xia, Y., Ding, C., Wang, L., Dai, R., Cheng, L., Gunaratne, P., Gibbs, R. A., Min, S., Coarfa, C., Reid, J. G., Zhang, C., Jiao, C., Jiang, Y., Giase, G., Thomas, A., Fitzgerald, D., Brunetti, T., … Liu, C. (2018). The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aat8178

  • Dean, B., Gray, L., & Scarr, E. (2006). Regionally specific changes in levels of cortical S100β in bipolar 1 disorder but not schizophrenia. Australian and New Zealand Journal of Psychiatry, 40, 217–224.

    PubMed  Google Scholar 

  • Dietz, A. G., Goldman, S. A., & Nedergaard, M. (2020). Glial cells in schizophrenia: a unified hypothesis. The Lancet Psychiatry, 7(3), 272–281. https://doi.org/10.1016/S2215-0366(19)30302-5

    Article  PubMed  Google Scholar 

  • Donato, R. (2001). S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. The International Journal of Biochemistry & Cell Biology, 33, 637–668.

    Article  CAS  Google Scholar 

  • Fleiss, J. L. (1993). The random effects model. Statistical Methods in Medical Research, 2, 121–145.

    Article  CAS  PubMed  Google Scholar 

  • Fromer, M., Roussos, P., & Sieberts, S. K. (2016). Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience. https://doi.org/10.1038/nn.4399

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandal, M. J., Haney, J. R., Parikshak, N. N., Leppa, V., Ramaswami, G., Hartl, C., Schork, A. J., Appadurai, V., Buil, A., Werge, T. M., Liu, C., White, K. P., Horvath, S., & Geschwind, D. H. (2018). Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 359, 693–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner, E. J., Cairns, M. J., Liu, B., Beveridge, N. J., Carr, V., Kelly, B., Scott, R. J., & Tooney, P. A. (2013). Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. Journal of Psychiatric Research, 47(4), 425–437. https://doi.org/10.1016/j.jpsychires.2012.11.007

    Article  PubMed  Google Scholar 

  • Gerke, V., & Moss, S. E. (2002). Annexins: From structure to function. Physiological Reviews. https://doi.org/10.1152/physrev.00030.2001.-Annexins

    Article  PubMed  Google Scholar 

  • Gogtay, N., Vyas, N. S., Testa, R., Wood, S. J., & Pantelis, C. (2011). Age of onset of schizophrenia: Perspectives from structural neuroimaging studies. Schizophrenia Bulletin. https://doi.org/10.1093/schbul/sbr030

    Article  PubMed  PubMed Central  Google Scholar 

  • Golubinskaya, V., Puttonen, H., Fyhr, I. M., Rydbeck, H., Hellström, A., Jacobsson, B., Nilsson, H., Mallard, C., & Sävman, K. (2020). Expression of S100A alarmins in cord blood monocytes is highly associated with chorioamnionitis and fetal inflammation in preterm infants. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2020.01194

  • Guo, B., Jiang, T., Wu, F., Ni, H., Ye, J., Wu, X., Ni, C., Jiang, M., Ye, L., Li, Z., Zheng, X., Li, S., Yang, Q., Wang, Z., Huang, X., & Zhao, C. (2022). LncRNA RP5-998N21.4 promotes immune defense through upregulation of IFIT2 and IFIT3 in schizophrenia. Schizophrenia. https://doi.org/10.1038/s41537-021-00195-8

  • Hedges, L. (1981). Distribution theory for glass’s estimator of effect size and related estimators. Source: Journal of Educational Statistics, 6(2).

  • Hertzberg, L., Maggio, N., Muler, I., Yitzhaky, A., Majer, M., Haroutunian, V., Zuk, O., Katsel, P., Domany, E., & Weiser, M. (2021a). Comprehensive gene expression analysis detects global reduction of proteasome subunits in schizophrenia. Schizophrenia Bulletin, 47(3), 785–795. https://doi.org/10.1093/schbul/sbaa160

    Article  PubMed  Google Scholar 

  • Hertzberg, L., Zohar, A. H., & Yitzhaky, A. (2021b). Gene expression meta-analysis of cerebellum samples supports the fkbp5 gene-environment interaction model for schizophrenia. Life. https://doi.org/10.3390/LIFE11030190

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman, G. E., Bendl, J., Voloudakis, G., Montgomery, K. S., Sloofman, L., Wang, Y.-C., Shah, H. R., Hauberg, M. E., Johnson, J. S., Girdhar, K., Song, L., Fullard, J. F., Kramer, R., Hahn, C.-G., Gur, R., Marenco, S., Lipska, B. K., Lewis, D. A., Haroutunian, V., … Roussos, P. (2019). CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder. Scientific Data. https://doi.org/10.1038/s41597-019-0183-6

  • Iavarone, F., Melis, M., Platania, G., Cabras, T., Manconi, B., Petruzzelli, R., Cordaro, M., Siracusano, A., Faa, G., Messana, I., Zanasi, M., & Castagnola, M. (2014). Characterization of salivary proteins of schizophrenic and bipolar disorder patients by top-down proteomics. Journal of Proteomics, 103, 15–22. https://doi.org/10.1016/j.jprot.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto, K., Kakiuchi, C., Bundo, M., Ikeda, K., & Kato, T. (2004). Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Molecular Psychiatry, 9, 406–416. https://doi.org/10.1038/sj.mp.4001437

    Article  CAS  PubMed  Google Scholar 

  • Joaquim, H. P. G., Costa, A. C., Serpa, M. H., Talib, L. L., & Gattaz, W. F. (2020). Reduced Annexin A3 in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 270, 489–494. https://doi.org/10.1007/s00406-019-01048-3

    Article  PubMed  Google Scholar 

  • Junker, H., Suofu, Y., Venz, S., Sascau, M., Herndon, J. G., Kessler, C., Walther, R., & Popa-Wagner, A. (2007). Proteomic identification of an upregulated isoform of Annexin A3 in the rat brain following reversible cerebral ischemia. Glia. https://doi.org/10.1002/glia.20581

    Article  PubMed  Google Scholar 

  • Jurga, A. M., Paleczna, M., Kadluczka, J., & Kuter, K. Z. (2021). Beyond the GFAP-astrocyte protein markers in the brain. Biomolecules. https://doi.org/10.3390/biom11091361

    Article  PubMed  PubMed Central  Google Scholar 

  • Katsel, P., Byne, W., Roussos, P., Tan, W., Siever, L., & Haroutunian, V. (2011). Astrocyte and glutamate markers in the superficial, deep, and white matter layers of the anterior cingulate gyrus in schizophrenia. Neuropsychopharmacology, 36, 1171–1177. https://doi.org/10.1038/npp.2010.252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontkanen, O., Törö, P., Lakso, M., Wong, G., & Castrén, E. (2002). Antipsychotic drug treatment induces differential gene expression in the rat cortex. Journal of Neurochemistry, 83, 1043–1053.

    Article  CAS  PubMed  Google Scholar 

  • Kulohoma, B. W., Marriage, F., Vasieva, O., Mankhambo, L., Nguyen, K., Molyneux, M. E., Molyneux, E. M., Day, P. J. R., & Carrol, E. D. (2017). Peripheral blood RNA gene expression in children with pneumococcal meningitis: A prospective case-control study. BMJ Paediatrics Open. https://doi.org/10.1136/BMJPO-2017-000092

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurian, S. M., Le-Niculescu, H., Patel, S. D., Bertram, D., Davis, J., Dike, C., Yehyawi, N., Lysaker, P., Dustin, J., Caligiuri, M., Lohr, J., Lahiri, D. K., Nurnberger, J. I., Faraone, S., Geyer, M. A., Tsuang, M. T., Schork, N. J., Salomon, D. R., & Niculescu, A. B. (2011). Identification of blood biomarkers for psychosis using convergent functional genomics. Molecular Psychiatry, 16(1), 37–58. https://doi.org/10.1038/mp.2009.117

    Article  CAS  PubMed  Google Scholar 

  • Lanz, T. A., Reinhart, V., Sheehan, M. J., Rizzo, S. J. S., Bove, S. E., James, L. C., Volfson, D., Lewis, D. A., & Kleiman, R. J. (2019a). Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: A comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Translational Psychiatry. https://doi.org/10.1038/s41398-019-0492-8

    Article  PubMed  PubMed Central  Google Scholar 

  • le Cabec, V., & Maridonneau-Parini, I. (1994). Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells. Biochemical Journal, 303(2), 481–487. https://doi.org/10.1042/BJ3030481

    Article  PubMed  PubMed Central  Google Scholar 

  • Leza, J. C., Bueno, B., Bioque, M., Arango, C., Parellada, M., Do, K., O’Donnell, P., & Bernardo, M. (2015). Inflammation in schizophrenia: A question of balance. Neuroscience & Biobehavioral Reviews, 55, 612–626. https://doi.org/10.1016/J.NEUBIOREV.2015.05.014

    Article  Google Scholar 

  • Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). Guidelines and guidance The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine. https://doi.org/10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  • Maycox, P. R., Kelly, F., Taylor, A., Bates, S., Reid, J., Logendra, R., Barnes, M. R., Larminie, C., Jones, N., Lennon, M., Davies, C., Hagan, J. J., Angelinetta, C., Akbar, T., Hirsch, S., Mortimer, A. M., Barnes, T., & de Belleroche, J. (2009). Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Molecular Psychiatry, 14, 1083–1094. https://doi.org/10.1038/mp.2009.18

    Article  CAS  PubMed  Google Scholar 

  • Mcgrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: A concise overview of incidence, prevalence, and mortality. Iranian Journal of Psychiatry and Behavioral Sciences. https://doi.org/10.1093/epirev/mxn001

    Article  Google Scholar 

  • Merikangas, A. K., Shelly, M., Knighton, A., Kotler, N., Tanenbaum, N., & Almasy, L. (2022). What genes are differentially expressed in individuals with schizophrenia? A systematic review. Molecular Psychiatry, 27(3), 1373–1383. https://doi.org/10.1038/S41380-021-01420-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirnics, K., Levitt, P., & Lewis, D. A. (2006). Critical appraisal of DNA microarrays in psychiatric genomics. Biological Psychiatry, 60(2), 163–176. https://doi.org/10.1016/j.biopsych.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  • Murai, N. (2020). Functional analysis of CX3CR1 in human induced pluripotent stem (iPS) cell-derived microglia-like cells. Maisam Mitalipova 1 | Rudolf Jaenisch, 52, 3. https://doi.org/10.1111/ejn.14879

  • Nishiyama, H., Knöpfel, T., & Endo, S. (2002). Glial Protein S100B Modulates Long-Term Neuronal Synaptic Plasticity on JSTOR. National Academy of Sciences. https://www.jstor.org/stable/3058247?seq=1#metadata_info_tab_contents

  • Ohtsuki, S., Sato, S., Yamaguchi, H., Kamoi, M., Asashima, T., & Terasaki, T. (2007). Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. Journal of Cellular Physiology, 210, 81–86. https://doi.org/10.1002/jcp.20823

    Article  CAS  PubMed  Google Scholar 

  • Oved, K., Morag, A., Pasmanik-Chor, M., Rehavi, M., Shomron, N., & Gurwitz, D. (2013). Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants. Translational Psychiatry. https://doi.org/10.1038/tp.2013.86

    Article  PubMed  PubMed Central  Google Scholar 

  • Paz, R. D., Andreasen, N. C., & Daoud, S. Z. (2006). Increased expression of activity dependent genes in cerebellar glutamatergic neurons of patients with schizophrenia. American Journal of Psychiatry, 163, 1829–1831.

    Article  PubMed  Google Scholar 

  • Pérez-Santiago, J., Diez-Alarcia, R., Callado, L. F., Zhang, J. X., Chana, G., White, C. H., Glatt, S. J., Tsuang, M. T., Everall, I. P., Meana, J. J., & Woelk, C. H. (2012). A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia. Journal of Psychiatric Research, 46(11), 1464–1474. https://doi.org/10.1016/j.jpsychires.2012.08.005

    Article  PubMed  Google Scholar 

  • Pietersen, C. Y., Mauney, S. A., Kim, S. S., Lim, M. P., Rooney, R. J., Goldstein, J. M., Petryshen, T. L., Seidman, L. J., Shenton, M. E., McCarley, R. W., Sonntag, K.-C., & Woo, T.-U.W. (2014a). Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. Journal of Neurogenetics, 28, 1–2. https://doi.org/10.3109/01677063.2014.882918

    Article  CAS  Google Scholar 

  • Pietersen, C. Y., Mauney, S. A., Kim, S. S., Passeri, E., Lim, M. P., Rooney, R. J., Goldstein, J. M., Petreyshen, T. L., Seidman, L. J., Shenton, M. E., Mccarley, R. W., Sonntag, K.-C., & Woo, T.-U.W. (2014b). Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. Journal of Neurogenetics, 28, 70–85. https://doi.org/10.3109/01677063.2013.878339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pong, S., Lizano, P., & Karmacharya, R. (2020). Derivation, expansion, cryopreservation and characterization of brain microvascular endothelial cells from human induced pluripotent stem cells corresponding author date published. Journal of Visualized Experiments, 165, 61629. https://doi.org/10.3791/61629

    Article  CAS  Google Scholar 

  • Pope, P. T., & Webster, J. T. (1972). The use of an F-statistic in stepwise regression procedures. Technometrics, 14(2), 327.

    Google Scholar 

  • Ramaker, R. C., Bowling, K. M., Lasseigne, B. N., Hagenauer, M. H., Hardigan, A. A., Davis, N. S., Gertz, J., Cartagena, P. M., Walsh, D. M., Vawter, M. P., Schatzberg, A. F., Barchas, J. D., Watson, S. J., Bunney, B. G., Akil, H., Bunney, W. E., Li, J. Z., Cooper, S. J., & Myers, R. M. (2017). Post-mortem molecular profiling of three psychiatric disorders. Genome Medicine. https://doi.org/10.1186/s13073-017-0458-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Réus, G. Z., Fries, G. R., Stertz, L., Badawy, M., Passos, I. C., Barichello, T., Kapczinski, F., & Quevedo, J. (2015). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience, 300, 141–154. https://doi.org/10.1016/J.NEUROSCIENCE.2015.05.018

    Article  PubMed  Google Scholar 

  • Roder, J. K., Roder, J. C., & Gerlai, R. (1996). Conspecific exploration in the T-maze: Abnormalities in S100β transgenic mice. Physiology and Behavior, 60(1), 31–36. https://doi.org/10.1016/0031-9384(95)02247-3

    Article  CAS  PubMed  Google Scholar 

  • Roussos, P., Mitchell, A. C., Voloudakis, G., Fullard, J. F., Pothula, V. M., Tsang, J., Stahl, E. A., Georgakopoulos, A., Ruderfer, D. M., Charney, A., Okada, Y., Siminovitch, K. A., Worthington, J., Padyukov, L., Klareskog, L., Gregersen, P. K., Plenge, R. M., Raychaudhuri, S., Fromer, M., … Sklar, P. (2014). A Role for Noncoding Variation in Schizophrenia. Cell Reports, 9(4), 1417–1429. https://doi.org/10.1016/j.celrep.2014.10.015

  • Sárvári, A. K., Veréb, Z., Uray, I. P., Fésüs, L., & Balajthy, Z. (2014). Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro. Biochemical and Biophysical Research Communications, 450(4), 1383–1389. https://doi.org/10.1016/J.BBRC.2014.07.005

    Article  PubMed  Google Scholar 

  • Schümberg, K., Polyakova, M., Steiner, J., & Schroeter, M. L. (2016). Serum s100b is related to illness duration and clinical symptoms in schizophrenia—A meta-regression analysis. Frontiers in Cellular Neuroscience. https://doi.org/10.3389/fncel.2016.00046

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarzer, G. (2007). meta: An R package for meta-analysis. Psychometrics in R Journal of Statistical Software, 20(1).

  • Smoller, J. W., Andreassen, O. A., Edenberg, H. J., Faraone, S. V., Glatt, J., & Kendler, K. S. (2019). Psychiatric genetics and the structure of psychopathology. Molecular Psychiatry, 24, 409–420. https://doi.org/10.1038/s41380-017-0010-4

    Article  PubMed  Google Scholar 

  • Steiner, J., Bernstein, H.-G., Bielau, H., Farkas, N., Winter, J., Dobrowolny, H., Brisch, R., Gos, T., Mawrin, C., Myint, A. M., & Bogerts, B. (2008). S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: A morphometric study. Journal of Psychiatric Research. https://doi.org/10.1016/j.jpsychires.2007.10.001

    Article  PubMed  Google Scholar 

  • Steiner, J., Bielau, H., & Bernstein, H.-G. (2006). Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. Journal of Neurology, Neurosurgery and Psychiatry, 77, 1284–1287. https://doi.org/10.1136/jnnp.2006.093427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner, J., Schmitt, A., Schroeter, M. L., Bogerts, B., Falkai, P., & Turck, C. W. (2014). S100B is downregulated in the nuclear proteome of schizophrenia corpus callosum. European Archives of Psychiatry and Clinical Neuroscience. https://doi.org/10.1007/s00406-014-0490-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Toker, L., Mancarci, B. O., Tripathy, S., & Pavlidis, P. (2018). Transcriptomic evidence for alterations in astrocytes and parvalbumin interneurons in subjects with bipolar disorder and schizophrenia. Biological Psychiatry, 84(11), 787–796. https://doi.org/10.1016/j.biopsych.2018.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trépanier, M. O., Hopperton, K. E., Mizrahi, R., Mechawar, N., & Bazinet, R. P. (2016). Postmortem evidence of cerebral inflammation in schizophrenia: A systematic review. Molecular Psychiatry, 21, 1009–1026. https://doi.org/10.1038/mp.2016.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., Bryois, J., Chen, C.-Y., Dennison, C. A., Hall, L. S., Lam, M., Watanabe, K., Frei, O., Ge, T., Harwood, J. C., Koopmans, F., Magnusson, S., Richards, A. L., Sidorenko, J., … van Os, J. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 604(7906), 502–508. https://doi.org/10.1038/S41586-022-04434-5

  • Tsuang, M. T., Nossova, N., Yager, T., Tsuang, M. M., Guo, S. C., Kou, G. S., Glatt, S. J., & Liew, C. C. (2005). Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: A preliminary report. American Journal of Medical Genetics - Neuropsychiatric Genetics, 133B(1), 1–5. https://doi.org/10.1002/ajmg.b.30161

    Article  Google Scholar 

  • Wu, T., Liang, X., Jiang, Y., Chen, Q., Zhang, H., Zhang, S., Zhang, C., Lv, Y., Xin, J., Jiang, J., Shi, D., Chen, X., Li, J., & Xu, Y. (2020). Comprehensive transcriptome profiling of peripheral blood mononuclear cells from patients with sepsis. International Journal of Medical Sciences, 17(14), 2077. https://doi.org/10.7150/IJMS.46910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, Y., Schröder, J., & Karlsson, H. (2008). Verification of proposed peripheral biomarkers in mononuclear cells of individuals with schizophrenia. Journal of Psychiatric Research, 42(8), 639–643. https://doi.org/10.1016/j.jpsychires.2007.07.011

    Article  PubMed  Google Scholar 

  • Zeidán-Chuliá, F., Neves De Oliveira, B.-H., Casanova, M. F., Casanova, E. L., Noda, M., Salmina, A. B., & Verkhratsky, A. (2016). Up-regulation of oligodendrocyte lineage markers in the cerebellum of autistic patients: Evidence from network analysis of gene expression. Molecular Neurobiology. https://doi.org/10.1007/s12035-015-9351-7

    Article  PubMed  Google Scholar 

  • Zeng, J., Xue, A., Jiang, L., Lloyd-Jones, L. R., Wu, Y., Wang, H., Zheng, Z., Yengo, L., Kemper, K. E., Goddard, M. E., Wray, N. R., Visscher, P. M., & Yang, J. (2021). Widespread signatures of natural selection across human complex traits and functional genomic categories. Nature Communications. https://doi.org/10.1038/s41467-021-21446-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Eytan Domany for his help with the infrastructure that enabled the performance of this project.

Funding

The meta-analysis was partially funded by Marguerite Stolz Research Fellowship Fund for Junior Faculty in Medicine and Health Professions in Tel-Aviv University. The funders did not have any role in the performance of this meta-analysis.

Author information

Authors and Affiliations

Authors

Contributions

LH and AS designed and planned the project. AY performed the computational analysis. AS, AS, VH, PK, and LH interpreted the biological significance of the results. AS wrote the manuscript and LH and AS edited it.

Corresponding author

Correspondence to Libi Hertzberg.

Ethics declarations

Competing Interests

All Authors declare that there is no conflict of interest.

Ethical Approval

No Institutional Review Board approvals were required for this study, as all findings were derived from published datasets, as stated below under “Availability of data and materials.”

Consent to Participate

No informed consent to participate statements were required for this study, as all findings were derived from datasets, as stated below under “Availability of data and materials.”

Consent for Publication

No informed consent for publication statements were required for this study, as all findings were derived from datasets, as stated below under “Availability of data and materials.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1308 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamir, A., Yitzhaky, A., Segev, A. et al. Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis. Neuromol Med 25, 388–401 (2023). https://doi.org/10.1007/s12017-023-08743-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-023-08743-4

Keywords

Navigation