Skip to main content
Log in

Stem-Like Cell Populations, p53-Pathway Activation and Mechanisms of Recurrence in Sonic Hedgehog Medulloblastoma

  • Mini-reviews
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

While most Sonic Hedgehog-associated medulloblastomas (SHH-MBs) respond to therapeutic intervention, radiation therapy often causes deleterious long-term neurocognitive defects, especially in infants and young children. To limit neurological comorbidities, the development of a reduction-of-therapy treatment or de-escalation approach was investigated. Although retrospective analysis of MBs indicated low-dose therapy was potentially effective, clinical de-escalation trials showed poor outcomes in infant SHH-MBs and was prematurely terminated. Recent studies suggest the existence of cancer-stem-cell (CSC)-like cell populations that are more resistant to therapies and drive tumor recurrence. This review will discuss the mechanism of these CSC-like cells in SHH-MBs in resisting to p53-pathway activation, which may contribute to the disappointing outcomes of the recent de-escalation trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahlfeld, J., Favaro, R., Pagella, P., Kretzschmar, H. A., Nicolis, S., & Schuller, U. (2013). Sox2 requirement in sonic hedgehog-associated medulloblastoma. Cancer Research, 73, 3796–3807.

    Article  CAS  Google Scholar 

  • Akgul, S., Li, Y., Zheng, S., Kool, M., Treisman, D. M., Li, C., Wang, Y., Grobner, S., Ikenoue, T., Shen, Y., et al. (2018). Opposing tumor-promoting and -suppressive functions of rictor/mTORC2 signaling in adult glioma and pediatric SHH medulloblastoma. Cell Reports, 24, 463–478.

    Article  CAS  Google Scholar 

  • Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H., Salama, S. R., Zheng, S., Chakravarty, D., Sanborn, J. Z., Berman, S. H., et al. (2013). The somatic genomic landscape of glioblastoma. Cell, 155, 462–477.

    Article  CAS  Google Scholar 

  • Cavalli, F. M. G., Remke, M., Rampasek, L., Peacock, J., Shih, D. J. H., Luu, B., Garzia, L., Torchia, J., Nor, C., Morrissy, A. S., et al. (2017). Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell, 31, 737–754.

    Article  CAS  Google Scholar 

  • Crowther, A. J., Ocasio, J. K., Fang, F., Meidinger, J., Wu, J., Deal, A. M., Chang, S. X., Yuan, H., Schmid, R., Davis, I., et al. (2016). Radiation sensitivity in a preclinical mouse model of medulloblastoma relies on the function of the intrinsic apoptotic pathway. Cancer Research, 76, 3211–3223.

    Article  CAS  Google Scholar 

  • Hambardzumyan, D., Becher, O. J., Rosenblum, M. K., Pandolfi, P. P., Manova-Todorova, K., & Holland, E. C. (2008). PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes & Development, 22, 436–448.

    Article  CAS  Google Scholar 

  • Kann, B. H., Park, H. S., Lester-Coll, N. H., Yeboa, D. N., Benitez, V., Khan, A. J., Bindra, R. S., Marks, A. M., & Roberts, K. B. (2016). Postoperative radiotherapy patterns of care and survival implications for medulloblastoma in young children. JAMA Oncology, 2, 1574–1581.

    Article  Google Scholar 

  • Kastenhuber, E. R., & Lowe, S. W. (2017). Putting p53 in context. Cell, 170, 1062–1078.

    Article  CAS  Google Scholar 

  • Kool, M., Jones, D. T., Jager, N., Northcott, P. A., Pugh, T. J., Hovestadt, V., Piro, R. M., Esparza, L. A., Markant, S. L., Remke, M., et al. (2014). Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell, 25, 393–405.

    Article  CAS  Google Scholar 

  • Kumar, V., Kumar, V., McGuire, T., Coulter, D. W., Sharp, J. G., & Mahato, R. I. (2017). Challenges and recent advances in medulloblastoma therapy. Trends in Pharmacological Sciences, 38, 1061–1084.

    Article  CAS  Google Scholar 

  • Kumar, R., Smith, K. S., Deng, M., Terhune, C., Robinson, G. W., Orr, B. A., Liu, A. P. Y., Lin, T., Billups, C. A., Chintagumpala, M., et al. (2021). Clinical outcomes and patient-matched molecular composition of relapsed medulloblastoma. Journal of Clinical Oncology, 39, 807–821.

    Article  CAS  Google Scholar 

  • Lafay-Cousin, L., Smith, A., Chi, S. N., Wells, E., Madden, J., Margol, A., Ramaswamy, V., Finlay, J., Taylor, M. D., Dhall, G., et al. (2016). Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatric Blood & Cancer, 63, 1527–1534.

    Article  CAS  Google Scholar 

  • Li, Y., Li, B., Li, W., Wang, Y., Akgul, S., Treisman, D. M., Heist, K. A., Pierce, B. R., Hoff, B., Ho, C. Y., et al. (2020). Murine models of IDH-wild-type glioblastoma exhibit spatial segregation of tumor initiation and manifestation during evolution. Nature Communications, 11, 3669.

    Article  CAS  Google Scholar 

  • Ligon, K. L., Huillard, E., Mehta, S., Kesari, S., Liu, H., Alberta, J. A., Bachoo, R. M., Kane, M., Louis, D. N., Depinho, R. A., et al. (2007). Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron, 53, 503–517.

    Article  CAS  Google Scholar 

  • Mehta, S., Huillard, E., Kesari, S., Maire, C. L., Golebiowski, D., Harrington, E. P., Alberta, J. A., Kane, M. F., Theisen, M., Ligon, K. L., et al. (2011). The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell, 19, 359–371.

    Article  CAS  Google Scholar 

  • Moxon-Emre, I., Bouffet, E., Taylor, M. D., Laperriere, N., Scantlebury, N., Law, N., Spiegler, B. J., Malkin, D., Janzen, L., & Mabbott, D. (2014). Impact of craniospinal dose, boost volume, and neurologic complications on intellectual outcome in patients with medulloblastoma. Journal of Clinical Oncology, 32, 1760–1768.

    Article  Google Scholar 

  • Northcott, P. A., Robinson, G. W., Kratz, C. P., Mabbott, D. J., Pomeroy, S. L., Clifford, S. C., Rutkowski, S., Ellison, D. W., Malkin, D., Taylor, M. D., et al. (2019). Medulloblastoma. Nature Reviews Disease Primers, 5, 11.

    Article  Google Scholar 

  • Ramaswamy, V., Nor, C., & Taylor, M. D. (2016a). p53 and Meduloblastoma. Cold Spring Harbor Perspectives in Medicine, 6, a026278.

    Article  Google Scholar 

  • Ramaswamy, V., Remke, M., Bouffet, E., Bailey, S., Clifford, S. C., Doz, F., Kool, M., Dufour, C., Vassal, G., Milde, T., et al. (2016b). Risk stratification of childhood medulloblastoma in the molecular era: The current consensus. Acta Neuropathologica, 131, 821–831.

    Article  CAS  Google Scholar 

  • Robinson, G. W., Rudneva, V. A., Buchhalter, I., Billups, C. A., Waszak, S. M., Smith, K. S., Bowers, D. C., Bendel, A., Fisher, P. G., Partap, S., et al. (2018). Risk-adapted therapy for young children with medulloblastoma (SJYC07): Therapeutic and molecular outcomes from a multicentre, phase 2 trial. The Lancet Oncology, 19, 768–784.

    Article  CAS  Google Scholar 

  • Schwalbe, E. C., Lindsey, J. C., Nakjang, S., Crosier, S., Smith, A. J., Hicks, D., Rafiee, G., Hill, R. M., Iliasova, A., Stone, T., et al. (2017). Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: A cohort study. The Lancet Oncology, 18, 958–971.

    Article  CAS  Google Scholar 

  • Selvadurai, H. J., Luis, E., Desai, K., Lan, X., Vladoiu, M. C., Whitley, O., Galvin, C., Vanner, R. J., Lee, L., Whetstone, H., et al. (2020). Medulloblastoma arises from the persistence of a rare and transient Sox2(+) granule neuron precursor. Cell Reports, 31, 107511.

    Article  CAS  Google Scholar 

  • Shih, D. J., Northcott, P. A., Remke, M., Korshunov, A., Ramaswamy, V., Kool, M., Luu, B., Yao, Y., Wang, X., Dubuc, A. M., et al. (2014). Cytogenetic prognostication within medulloblastoma subgroups. Journal of Clinical Oncology, 32, 886–896.

    Article  Google Scholar 

  • Treisman, D. M., Li, Y., Pierce, B. R., Li, C., Chervenak, A. P., Tomasek, G. J., Lozano, G., Zheng, X., Kool, M., & Zhu, Y. (2019). Sox2(+) cells in Sonic Hedgehog-subtype medulloblastoma resist p53-mediated cell-cycle arrest response and drive therapy-induced recurrence. Neurooncology Advances, 1, 027.

    Google Scholar 

  • Vanner, R. J., Remke, M., Gallo, M., Selvadurai, H. J., Coutinho, F., Lee, L., Kushida, M., Head, R., Morrissy, S., Zhu, X., et al. (2014). Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell, 26, 33–47.

    Article  CAS  Google Scholar 

  • Zhang, L., He, X., Liu, X., Zhang, F., Huang, L. F., Potter, A. S., Xu, L., Zhou, W., Zheng, T., Luo, Z., et al. (2019). Single-cell transcriptomics in medulloblastoma reveals tumor-initiating progenitors and oncogenic cascades during tumorigenesis and relapse. Cancer Cell, 36, 302–318.

    Article  CAS  Google Scholar 

  • Zhukova, N., Ramaswamy, V., Remke, M., Pfaff, E., Shih, D. J., Martin, D. C., Castelo-Branco, P., Baskin, B., Ray, P. N., Bouffet, E., et al. (2013). Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Journal of Clinical Oncology, 31, 2927–2935.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health (2P01 CA085878-10A1) and National Institute of Neurological Disorders and Stroke (R01 NS053900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treisman, D., Li, Y. & Zhu, Y. Stem-Like Cell Populations, p53-Pathway Activation and Mechanisms of Recurrence in Sonic Hedgehog Medulloblastoma. Neuromol Med 24, 13–17 (2022). https://doi.org/10.1007/s12017-021-08673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-021-08673-z

Keywords

Navigation