Vitamin D3 Supplement Attenuates Blood–Brain Barrier Disruption and Cognitive Impairments in a Rat Model of Traumatic Brain Injury

Abstract

This study was designed to study the effects of vitamin D3 supplementation on the cognitive dysfunction and neurological function of traumatic brain injury (TBI) and the possible underlying mechanisms. To this purpose, different doses of vitamin D3 were intraperitoneally injection to TBI rats for one week before TBI surgery and three consecutive weeks after TBI. Brain edema evaluation was conducted on the third day and Evans blue staining for blood–brain barrier (BBB) permeability on the seventh day after TBI. Rat behavior was assessed by evaluation of neurological scores and morris water maze. It was revealed that vitamin D levels increased in serum after the administration of vitamin D3 for one week. TBI led to neurological deficit, together with brain edema, BBB disruption and inflammation. Vitamin D3 supplement ameliorated neurological deficit and cognitive impairments induced by TBI. Vitamin D3 administration reduced brain edema and impairments of blood–brain barrier induced by TBI, as well as decreased inflammatory response in TBI rat brain. Our results showed that vitamin D3 administration alleviated neurobehavioral deficits and improved brain edema after TBI. Vitamin D3 inhibited inflammatory cytokines and decreased BBB disruption in TBI rats. Vitamin D3 may be used for the treatment of TBI as a protective intervention.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

Data could be made available upon reasonable request.

References

  1. Annweiler, C., Milea, D., Whitson, H. E., Cheng, C. Y., Wong, T. Y., Ikram, M. K., et al. (2016). Vitamin D insufficiency and cognitive impairment in Asians: a multi-ethnic population-based study and meta-analysis. Journal of Internal Medicine, 280(3), 300–311. https://doi.org/10.1111/joim.12491.

    CAS  Article  PubMed  Google Scholar 

  2. Bikle, D. D. (2010). Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol Metab, 21(6), 375–384. https://doi.org/10.1016/j.tem.2010.01.003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Budinich, C. S., Tucker, L. B., Lowe, D., Rosenberger, J. G., & McCabe, J. T. (2013). Short and long-term motor and behavioral effects of diazoxide and dimethyl sulfoxide administration in the mouse after traumatic brain injury. Pharmacol Biochem Behav, 108, 66–73. https://doi.org/10.1016/j.pbb.2013.04.001.

    CAS  Article  PubMed  Google Scholar 

  4. Chen, Y., Liu, W., Sun, T., Huang, Y., Wang, Y., Deb, D. K., et al. (2013). 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. Journal of Immunology, 190(7), 3687–3695. https://doi.org/10.4049/jimmunol.1203273.

    CAS  Article  Google Scholar 

  5. Clelland, J. D., Read, L. L., Drouet, V., Kaon, A., Kelly, A., Duff, K. E., et al. (2014). Vitamin D insufficiency and schizophrenia risk: evaluation of hyperprolinemia as a mediator of association. Schizophrenia Research, 156(1), 15–22. https://doi.org/10.1016/j.schres.2014.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Corps, K. N., Roth, T. L., & McGavern, D. B. (2015). Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol, 72(3), 355–362. https://doi.org/10.1001/jamaneurol.2014.3558.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cui, C., Cui, Y., Gao, J., Sun, L., Wang, Y., Wang, K., et al. (2014). Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury. Neurological Sciences, 35(5), 695–700. https://doi.org/10.1007/s10072-013-1585-4.

    Article  PubMed  Google Scholar 

  8. Cui, C., Song, S., Cui, J., Feng, Y., Gao, J., & Jiang, P. (2017). Vitamin D receptor activation influences NADPH oxidase (NOX2) activity and protects against neurological deficits and apoptosis in a rat model of traumatic brain injury. Oxidative Medicine and Cellular Longevity, 2017, 9245702. https://doi.org/10.1155/2017/9245702.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Dang, R., Jiang, P., Cai, H., Li, H., Guo, R., Wu, Y., et al. (2015). Vitamin D deficiency exacerbates atypical antipsychotic-induced metabolic side effects in rats: involvement of the INSIG/SREBP pathway. European Neuropsychopharmacology, 25(8), 1239–1247. https://doi.org/10.1016/j.euroneuro.2015.04.028.

    CAS  Article  PubMed  Google Scholar 

  10. Eyles, D. W., Burne, T. H., & McGrath, J. J. (2013). Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology, 34(1), 47–64. https://doi.org/10.1016/j.yfrne.2012.07.001.

    CAS  Article  PubMed  Google Scholar 

  11. Feng, Y., Gao, J., Cui, Y., Li, M., Li, R., Cui, C., et al. (2017). Neuroprotective effects of resatorvid against traumatic brain injury in rat: Involvement of neuronal autophagy and TLR4 signaling pathway. Cellualr and Molecular Neurobiology, 37(1), 155–168. https://doi.org/10.1007/s10571-016-0356-1.

    CAS  Article  Google Scholar 

  12. Finnie, J. W. (2014). Pathology of traumatic brain injury. Veterinary Research Communications, 38(4), 297–305. https://doi.org/10.1007/s11259-014-9616-z.

    Article  PubMed  Google Scholar 

  13. Holick, M. F. (2004). Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. American Journal of Clinical Nutrition, 80(6 Suppl), 1678S-1688S. https://doi.org/10.1093/ajcn/80.6.1678S.

    CAS  Article  Google Scholar 

  14. Hollis, B. W. (1996). Assessment of vitamin D nutritional and hormonal status: What to measure and how to do it. Calcified Tissue International, 58(1), 4–5. https://doi.org/10.1007/BF02509538.

    CAS  Article  PubMed  Google Scholar 

  15. Hua, F., Reiss, J. I., Tang, H., Wang, J., Fowler, X., Sayeed, I., et al. (2012). Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Hormones and Behavior, 61(4), 642–651. https://doi.org/10.1016/j.yhbeh.2012.02.017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Imazeki, I., Matsuzaki, J., Tsuji, K., & Nishimura, T. (2006). Immunomodulating effect of vitamin D3 derivatives on type-1 cellular immunity. Biomedical Research (Tokyo, Japan), 27(1), 1–9. https://doi.org/10.2220/biomedres.27.1.

    CAS  Article  Google Scholar 

  17. Jha, R. M., Kochanek, P. M., & Simard, J. M. (2019). Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology, 145(Pt B), 230–246. https://doi.org/10.1016/j.neuropharm.2018.08.004.

    CAS  Article  PubMed  Google Scholar 

  18. Jorde, R., Mathiesen, E. B., Rogne, S., Wilsgaard, T., Kjaergaard, M., Grimnes, G., et al. (2015). Vitamin D and cognitive function: The Tromso Study. Journal of the Neurological Sciences, 355(1–2), 155–161. https://doi.org/10.1016/j.jns.2015.06.009.

    CAS  Article  PubMed  Google Scholar 

  19. Latimer, C. S., Brewer, L. D., Searcy, J. L., Chen, K. C., Popovic, J., Kraner, S. D., et al. (2014). Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proceedings of the National Academy of Sciences of the United States of America, 111(41), E4359-4366. https://doi.org/10.1073/pnas.1404477111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Lee, J. M., Jeong, S. W., Kim, M. Y., Park, J. B., & Kim, M. S. (2019). The effect of Vitamin D supplementation in patients with acute traumatic brain injury. World Neurosurgery, 126, e1421–e1426. https://doi.org/10.1016/j.wneu.2019.02.244.

    Article  PubMed  Google Scholar 

  21. Mahon, B. D., Wittke, A., Weaver, V., & Cantorna, M. T. (2003). The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. Journal of Cellular Biochemistry, 89(5), 922–932. https://doi.org/10.1002/jcb.10580.

    CAS  Article  PubMed  Google Scholar 

  22. Masel, B. E., & DeWitt, D. S. (2010). Traumatic brain injury: a disease process, not an event. Journal of Neurotrauma, 27(8), 1529–1540. https://doi.org/10.1089/neu.2010.1358.

    Article  PubMed  Google Scholar 

  23. McGuire, T. F., Trump, D. L., & Johnson, C. S. (2001). Vitamin D(3)-induced apoptosis of murine squamous cell carcinoma cells. Selective induction of caspase-dependent MEK cleavage and up-regulation of MEKK-1. Journal of Biological Chemistry, 276(28), 26365–26373. https://doi.org/10.1074/jbc.M010101200.

    CAS  Article  Google Scholar 

  24. Miller, J. W., Harvey, D. J., Beckett, L. A., Green, R., Farias, S. T., Reed, B. R., et al. (2015). Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurology, 72(11), 1295–1303. https://doi.org/10.1001/jamaneurol.2015.2115.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mokhtari-Zaer, A., Hosseini, M., Salmani, H., Arab, Z., & Zareian, P. (2020). Vitamin D3 attenuates lipopolysaccharide-induced cognitive impairment in rats by inhibiting inflammation and oxidative stress. Life Sciences, 253, 117703. https://doi.org/10.1016/j.lfs.2020.117703.

    CAS  Article  PubMed  Google Scholar 

  26. Park, E., Bell, J. D., & Baker, A. J. (2008). Traumatic brain injury: can the consequences be stopped? CMAJ: Canadian Medical Association Journal, 178(9), 1163–1170. https://doi.org/10.1503/cmaj.080282.

    Article  PubMed  Google Scholar 

  27. Pittas, A. G., Harris, S. S., Stark, P. C., & Dawson-Hughes, B. (2007). The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care, 30(4), 980–986. https://doi.org/10.2337/dc06-1994.

    CAS  Article  PubMed  Google Scholar 

  28. Prins, M., Greco, T., Alexander, D., & Giza, C. C. (2013). The pathophysiology of traumatic brain injury at a glance. Disease Models & Mechanisms, 6(6), 1307–1315. https://doi.org/10.1242/dmm.011585.

    CAS  Article  Google Scholar 

  29. Roozenbeek, B., Maas, A. I., & Menon, D. K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews: Neurology, 9(4), 231–236. https://doi.org/10.1038/nrneurol.2013.22.

    Article  PubMed  Google Scholar 

  30. Segaert, S., Degreef, H., & Bouillon, R. (2000). Vitamin D receptor expression is linked to cell cycle control in normal human keratinocytes. Biochemical and Biophysical Research Communications, 279(1), 89–94. https://doi.org/10.1006/bbrc.2000.3892.

    CAS  Article  PubMed  Google Scholar 

  31. Sharma, S., Kumar, A., Choudhary, A., Sharma, S., Khurana, L., Sharma, N., et al. (2020). Neuroprotective role of oral vitamin D supplementation on consciousness and inflammatory biomarkers in determining severity outcome in acute traumatic brain injury patients: A double-blind randomized clinical trial. Clinical Drug Investigation, 40(4), 327–334. https://doi.org/10.1007/s40261-020-00896-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Tang, H., Hua, F., Wang, J., Yousuf, S., Atif, F., Sayeed, I., et al. (2015). Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Injury, 29(10), 1165–1174. https://doi.org/10.3109/02699052.2015.1035330.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thota, C., Farmer, T., Garfield, R. E., Menon, R., & Al-Hendy, A. (2013). Vitamin D elicits anti-inflammatory response, inhibits contractile-associated proteins, and modulates Toll-like receptors in human myometrial cells. Reproductive Sciences, 20(4), 463–475. https://doi.org/10.1177/1933719112459225.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Toffanello, E. D., Coin, A., Perissinotto, E., Zambon, S., Sarti, S., Veronese, N., et al. (2014). Vitamin D deficiency predicts cognitive decline in older men and women: The Pro.V.A. Study. Neurology, 83(24), 2292–2298. https://doi.org/10.1212/WNL.0000000000001080.

    CAS  Article  PubMed  Google Scholar 

  35. Unterberg, A. W., Stover, J., Kress, B., & Kiening, K. L. (2004). Edema and brain trauma. Neuroscience, 129(4), 1021–1029. https://doi.org/10.1016/j.neuroscience.2004.06.046.

    CAS  Article  PubMed  Google Scholar 

  36. Winkler, E. A., Minter, D., Yue, J. K., & Manley, G. T. (2016). Cerebral edema in traumatic brain injury: Pathophysiology and prospective therapeutic targets. Neurosurgery Clinics of North America, 27(4), 473–488. https://doi.org/10.1016/j.nec.2016.05.008.

    Article  PubMed  Google Scholar 

  37. Yan, L., Wu, P., Gao, D. M., Hu, J., Wang, Q., Chen, N. F., et al. (2019). The impact of vitamin D on cognitive dysfunction in mice with systemic lupus erythematosus. Medical Science Monitor, 25, 4716–4722. https://doi.org/10.12659/MSM.915355.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Yuan, F., Xu, Z. M., Lu, L. Y., Nie, H., Ding, J., Ying, W. H., et al. (2016). SIRT2 inhibition exacerbates neuroinflammation and blood–brain barrier disruption in experimental traumatic brain injury by enhancing NF-kappaB p65 acetylation and activation. Journal of Neurochemistry, 136(3), 581–593. https://doi.org/10.1111/jnc.13423.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by Medical Science Research Project of Hebei Province in 2019 (Project Number: 20190862).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kunpeng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All the experiments and procedures were approved by Ethics Committee of the Affiliated Hospital, Chengde Medical College.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jie Yang and Kunpeng Wang contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, K., Hu, T. et al. Vitamin D3 Supplement Attenuates Blood–Brain Barrier Disruption and Cognitive Impairments in a Rat Model of Traumatic Brain Injury. Neuromol Med (2021). https://doi.org/10.1007/s12017-021-08649-z

Download citation

Keywords

  • Vitamin D3
  • Brain injuries
  • Cognitive deficits
  • Brain edema
  • Inflammation