Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2

Abstract

Neuro-inflammation accompanies numerous neurological disorders and conditions where it can be associated with a progressive neurodegenerative pathology. In a similar manner, alterations in sphingolipid metabolism often accompany or are causative features in degenerative neurological conditions. These include dementias, motor disorders, autoimmune conditions, inherited metabolic disorders, viral infection, traumatic brain and spinal cord injury, psychiatric conditions, and more. Sphingolipids are major regulators of cellular fate and function in addition to being important structural components of membranes. Their metabolism and signaling pathways can also be regulated by inflammatory mediators. Therefore, as certain sphingolipids exert distinct and opposing cellular roles, alterations in their metabolism can have major consequences. Recently, regulation of bioactive sphingolipids by neuro-inflammatory mediators has been shown to activate a neuronal NADPH oxidase 2 (NOX2) that can provoke damaging oxidation. Therefore, the sphingolipid-regulated neuronal NOX2 serves as a mechanistic link between neuro-inflammation and neurodegeneration. Moreover, therapeutics directed at sphingolipid metabolism or the sphingolipid-regulated NOX2 have the potential to alleviate neurodegeneration arising out of neuro-inflammation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abou Daher, A., Francis, M., Azzam, P., Ahmad, A., Eid, A. A., Fornoni, A., et al. (2020). Modulation of radiation-induced damage of human glomerular endothelial cells by SMPDL3B. FASEB Journal, 34(6), 7915–7926.

    CAS  PubMed  Article  Google Scholar 

  2. Alayoubi, A. M., Wang, J. C., Au, B. C., Carpentier, S., Garcia, V., Dworski, S., et al. (2013). Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Molecular Medicine, 5(6), 827–842.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Alpaugh, M., Galleguillos, D., Forero, J., Morales, L. C., Lackey, S. W., Kar, P., et al. (2017). Disease-modifying effects of ganglioside GM1 in Huntington’s disease models. EMBO Molecular Medicine, 9(11), 1537–1557.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Annunziata, I., Bouchè, V., Lombardi, A., Settembre, C., & Ballabio, A. (2007). Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene. Human Mutation, 28(9), 928–928.

    PubMed  Article  Google Scholar 

  5. Ashe, K. M., Budman, E., Bangari, D. S., Siegel, C. S., Nietupski, J. B., Wang, B., et al. (2015). Efficacy of enzyme and substrate reduction therapy with a novel antagonist of glucosylceramide synthase for Fabry disease. Molecular Medicine, 21(1), 389–399.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Bandaru, V. V., McArthur, J. C., Sacktor, N., Cutler, R. G., Knapp, E. L., Mattson, M. P., & Haughey, N. J. (2007). Associative and predictive biomarkers of dementia in HIV-1–infected patients. Neurology, 68(18), 1481–1487.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Bandaru, V. V. R., Mielke, M. M., Sacktor, N., McArthur, J. C., Grant, I., Letendre, S., et al. (2013). A lipid storage–like disorder contributes to cognitive decline in HIV-infected subjects. Neurology, 81(17), 1492–1499.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Bang, J., Spina, S., & Miller, B. L. (2015). Frontotemporal dementia. The Lancet, 386(10004), 1672–1682.

    Article  Google Scholar 

  9. Bansal, R., Winkler, S., & Bheddah, S. (1999). Negative regulation of oligodendrocyte differentiation by galactosphingolipids. Journal of Neuroscience, 19(18), 7913–7924.

    CAS  PubMed  Article  Google Scholar 

  10. Bär, J., Linke, T., Ferlinz, K., Neumann, U., Schuchman, E. H., & Sandhoff, K. (2001). Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Human Mutation, 17(3), 199–209.

    PubMed  Article  Google Scholar 

  11. Barth, B. M., Cabot, M. C., & Kester, M. (2011). Ceramide-based therapeutics for the treatment of cancer. Anti-Cancer Agents in Medicinal Chemistry, 11(9), 911–919.

    CAS  PubMed  Article  Google Scholar 

  12. Barth, B. M., Gustafson, S. J., Hankins, J. L., Kaiser, J. M., Haakenson, J. K., Kester, M., et al. (2012b). Ceramide kinase regulates TNFα-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cellular Signaling, 24(6), 1126–1133.

    CAS  Article  Google Scholar 

  13. Barth, B. M., Gustafson, S. J., & Kuhn, T. B. (2012a). Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-α. Journal of Neuroscience Research, 90(1), 229–242.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Barth, B. M., Gustafson, S. J., Young, M. M., Fox, T. E., Shanmugavelandy, S. S., Kaiser, J. M., et al. (2010). Inhibition of NADPH oxidase by glucosylceramide confers chemoresistance. Cancer Biology and Therapy, 10(11), 1126–1136.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Barth, B. M., Shanmugavelandy, S. S., Kaiser, J. M., McGovern, C., Altınoğlu, E. İ, Haakenson, J. K., et al. (2013). PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate. ACS Nano, 7(3), 2132–2144.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Barth, B. M., Stewart-Smeets, S., & Kuhn, T. B. (2009). Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase. Molecular and Cellular Neuroscience, 41(2), 274–285.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Becker, K. A., Uerschels, A. K., Goins, L., Doolen, S., McQuerry, K. J., Bielawski, J., et al. (2020). Role of 1-Deoxysphingolipids in docetaxel neurotoxicity. Journal of Neurochemistry, 154(6), 662–672.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Bedard, K., & Krause, K.-H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiology Reviews, 87(1), 245–313.

    CAS  Article  Google Scholar 

  19. Bejaoui, K., Uchida, Y., Yasuda, S., Ho, M., Nishijima, M., Brown, R. H., et al. (2002). Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. The Journal of Clinical Investigation, 110(9), 1301–1308.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Bembi, B., Marchetti, F., Guerci, V. I., Ciana, G., Addobbati, R., Grasso, D., et al. (2006). Substrate reduction therapy in the infantile form of Tay-Sachs disease. Neurology, 66(2), 278–280.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Biancini, G. B., Vanzin, C. S., Rodrigues, D. B., Deon, M., Ribas, G. S., Barschak, A. G., et al. (2012). Globotriaosylceramide is correlated with oxidative stress and inflammation in Fabry patients treated with enzyme replacement therapy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822(2), 226–232.

    CAS  Article  Google Scholar 

  22. Bickert, A., Ginkel, C., Kol, M., Vom Dorp, K., Jastrow, H., Degen, J., et al. (2015). Functional characterization of enzymes catalyzing ceramide phosphoethanolamine biosynthesis in mice. Journal of Lipid Research, 56(4), 821–835.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Blaho, V. A., Galvani, S., Engelbrecht, E., Liu, C., Swendeman, S. L., Kono, M., et al. (2015). HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 523(7560), 342–346.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Blomqvist, M., Borén, J., Zetterberg, H., Blennow, K., Månsson, J. E., & Ståhlman, M. (2017). High-throughput analysis of sulfatides in cerebrospinal fluid using automated extraction and UPLC-MS/MS. Journal of Lipid Research, 58(7), 1482–1489.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Bode, H., Bourquin, F., Suriyanarayanan, S., Wei, Y., Alecu, I., Othman, A., et al. (2016). HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Human Molecular Genetics, 25(5), 853–865.

    CAS  PubMed  Article  Google Scholar 

  26. Boudker, O., & Futerman, A. H. (1993). Detection and characterization of ceramide-1-phosphate phosphatase activity in rat liver plasma membrane. Journal of Biological Chemistry, 268(29), 22150–22155.

    CAS  Article  Google Scholar 

  27. Breiden, B., & Sandhoff, K. (2020). Mechanism of secondary ganglioside and lipid accumulation in Lysosomal disease. International Journal of Molecular Sciences, 21(7), 2566.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  28. Brekk, O. R., Korecka, J. A., Crapart, C. C., Huebecker, M., MacBain, Z. K., Rosenthal, S. A., et al. (2020). Upregulating β-hexosaminidase activity in rodents prevents α-synuclein lipid associations and protects dopaminergic neurons from α-synuclein-mediated neurotoxicity. Acta Neuropathologica Communications, 8(1), 127.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Bright, F., Werry, E. L., Dobson-Stone, C., Piguet, O., Ittner, L. M., Halliday, G. M., et al. (2019). Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology, 15(9), 540–555.

    PubMed  Article  Google Scholar 

  30. Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., et al. (2002). The immune modulator FTY720 targets sphingosine 1-phosphate receptors. Journal of Biological Chemistry, 277(24), 21453–21457.

    CAS  Article  Google Scholar 

  31. Brück, W. (2005). The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. Journal of neurology, 252(5), v3–v9.

    PubMed  Article  CAS  Google Scholar 

  32. Cabukusta, B., Nettebrock, N. T., Kol, M., Hilderink, A., Tafesse, F. G., & Holthuis, J. (2017). Ceramide phosphoethanolamine synthase SMSr is a target of caspase-6 during apoptotic cell death. Bioscience Reports, 37(4), 20170867.

    Article  CAS  Google Scholar 

  33. Chen, H., Chan, A. Y., Stone, D. U., & Mandal, N. A. (2014). Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Survey of Ophthalmology, 59(1), 64–76.

    PubMed  Article  Google Scholar 

  34. Cheng, H., Wang, M., Li, J. L., Cairns, N. J., & Han, X. (2013). Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: An early event in disease pathogenesis. Journal of Neurochemistry, 127(6), 733–738.

    CAS  PubMed  Article  Google Scholar 

  35. Choi, S. H., Aid, S., Kim, H. W., Jackson, S. H., & Bosetti, F. (2012). Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. Journal of Neurochemistry, 120(2), 292–301.

    CAS  PubMed  Article  Google Scholar 

  36. Cologna, S. M., Cluzeau, C. V., Yanjanin, N. M., Blank, P. S., Dail, M. K., Siebel, S., et al. (2014). Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1. Journal of Inherited Metabolic Disease, 37(1), 83–92.

    CAS  PubMed  Article  Google Scholar 

  37. Constantin, G., Laudanna, C., Baron, P., & Berton, G. (1994). Sulfatides trigger cytokine gene expression and secretion in human monocytes. FEBS Letters, 350(1), 66–70.

    CAS  PubMed  Article  Google Scholar 

  38. Cristóvão, A. C., Guhathakurta, S., Bok, E., Je, G., Yoo, S. D., Choi, D. H., & Kim, Y. S. (2012). NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease. Journal of Neuroscience, 32(42), 14465–14477.

    PubMed  Article  CAS  Google Scholar 

  39. Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D., & Mattson, M. P. (2002). Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress–induced death of motor neurons in amyotrophic lateral sclerosis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 52(4), 448–457.

    CAS  Article  Google Scholar 

  40. Czubowicz, K., Jęśko, H., Wencel, P., Lukiw, W. J., & Strosznajder, R. P. (2019). The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Molecular Neurobiology, 56(8), 5436–5455.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. D’Angelo, G., Capasso, S., Sticco, L., & Russo, D. (2013). Glycosphingolipids: Synthesis and functions. The FEBS Journal, 280(24), 6338–6353.

    PubMed  Article  CAS  Google Scholar 

  42. De Wit, N. M., den Hoedt, S., Martinez-Martinez, P., Rozemuller, A. J., Mulder, M. T., & de Vries, H. E. (2019). Astrocytic ceramide as possible indicator of neuroinflammation. Journal of Neuroinflammation, 16(48), 1–11.

    Google Scholar 

  43. Di Pardo, A., Amico, E., Basit, A., Armirotti, A., Joshi, P., Neely, M. D., & Pepe, G. (2017a). Defective sphingosine-1-phosphate metabolism is a druggable target in Huntington’s disease. Scientific Reports, 7(1), 1–14.

    Article  CAS  Google Scholar 

  44. Di Pardo, A., Basit, A., Armirotti, A., Amico, E., Castaldo, S., Pepe, G., et al. (2017b). De novo synthesis of sphingolipids is defective in experimental models of Huntington’s disease. Frontiers in Neuroscience, 11, 698.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Di Pardo, A., Castaldo, S., Amico, E., Pepe, G., Marracino, F., Capocci, L., et al. (2018). Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood–brain barrier integrity and exerts therapeutic effect in an animal model of Huntington’s disease. Human Molecular Genetics, 27(14), 2490–2501.

    PubMed  Article  CAS  Google Scholar 

  46. Ding, G., Sonoda, H., Yu, H., Kajimoto, T., Goparaju, S. K., Jahangeer, S., et al. (2007). Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. Journal of Biological Chemistry, 282(37), 27493–27502.

    CAS  Article  Google Scholar 

  47. Dinkins, M. B., Enasko, J., Hernandez, C., Wang, G., Kong, J., Helwa, I., et al. (2016). Neutral Sphingomyelinase-2 deficiency ameliorates Alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. Journal of Neuroscience, 36(33), 8653–8667.

    CAS  PubMed  Article  Google Scholar 

  48. Diop, F., Vial, T., Ferraris, P., Wichit, S., Bengue, M., Hamel, R., et al. (2018). Zika virus infection modulates the metabolomic profile of microglial cells. PLoS ONE, 13(10), e0206093.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Dodge, J. C., Clarke, J., Treleaven, C. M., Taksir, T. V., Griffiths, D. A., Yang, W., et al. (2009). Intracerebroventricular infusion of acid sphingomyelinase corrects CNS manifestations in a mouse model of Niemann-Pick A disease. Experimental Neurology, 215(2), 349–357.

    CAS  PubMed  Article  Google Scholar 

  50. Dodge, J. C., Treleaven, C. M., Pacheco, J., Cooper, S., Bao, C., Abraham, M., et al. (2015). Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences, 112(26), 8100–8105.

    CAS  Article  Google Scholar 

  51. Dohrn, M. F., Othman, A., Hirshman, S. K., Bode, H., Alecu, I., Fähndrich, E., et al. (2015). Elevation of plasma 1-deoxy-sphingolipids in type 2 diabetes mellitus: A susceptibility to neuropathy? European Journal of Neurology, 22(5), 806-e55.

    CAS  PubMed  Article  Google Scholar 

  52. Dominguez, G., Maddelein, M. L., Pucelle, M., Nicaise, Y., Maurage, C. A., Duyckaerts, C., et al. (2018). Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer’s disease brain. Acta Neuropathologica Communications, 6(1), 25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Dworski, S., Lu, P., Khan, A., Maranda, B., Mitchell, J. J., Parini, R., et al. (2017). Acid ceramidase deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863(2), 386–394.

    CAS  Article  Google Scholar 

  54. Eichler, F., & Van Haren, K. (2007). Immune response in leukodystrophies. Pediatric Neurology, 37(4), 235–244.

    PubMed  Article  Google Scholar 

  55. Ernst, D., Murphy, S. M., Sathiyanadan, K., Wei, Y., Othman, A., Laurá, M., et al. (2015). Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity. Neuromolecular Medicine, 17(1), 47–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Farfel-Becker, T., Vitner, E. B., Kelly, S. L., Bame, J. R., Duan, J., Shinder, V., et al. (2014). Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Human Molecular Genetics, 23(4), 843–854.

    CAS  PubMed  Article  Google Scholar 

  57. Farrell, D. F., & McKhann, G. M. (1971). Characterization of cerebroside sulfotransferase from rat brain. Journal of Biological Chemistry, 246(15), 4694–4702.

    CAS  Article  Google Scholar 

  58. Figuera-Losada, M., Stathis, M., Dorskind, J. M., Thomas, A. G., Bandaru, V. V. R., Yoo, S. W., et al. (2015). Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS ONE, 10(5), 1–18.

    Article  CAS  Google Scholar 

  59. Fox, T. E., Houck, K. L., O’Neill, S. M., Nagarajan, M., Stover, T. C., Pomianowski, P. T., et al. (2007). Ceramide recruits and activates protein kinase C ζ (PKCζ) within structured membrane microdomains. Journal of Biological Chemistry, 282(17), 12450–12457.

    CAS  Article  Google Scholar 

  60. Frey, R. S., Rahman, A., Kefer, J. C., Minshall, R. D., & Malik, A. B. (2002). PKCζ regulates TNF-α–induced activation of NADPH oxidase in endothelial cells. Circulation Research, 90(9), 1012–1019.

    CAS  PubMed  Article  Google Scholar 

  61. Furukawa, K., Ohmi, Y., Ji, S., Zhang, P., Bhuiyan, R. H., Ohkawa, Y., et al. (2017). Glycolipids: Essential regulator of neuro-inflammation, metabolism and gliomagenesis. Biochimica et Biophysica Acta BBA, 1861(10), 2479–2484.

    CAS  Article  Google Scholar 

  62. Gault, C. R., Obeid, L. M., & Hannun, Y. A. (2010). An overview of sphingolipid metabolism: From synthesis to breakdown. Sphingolipids as signaling and regulatory molecules. New York, NY: Springer.

    Google Scholar 

  63. Germain, D. P. (2010). Fabry disease. Orphanet Journal of Rare Diseases, 5(1), 30.

    PubMed  PubMed Central  Article  Google Scholar 

  64. Gill, J. S., & Windebank, A. J. (2000). Ceramide initiates NFκB-mediated caspase activation in neuronal apoptosis. Neurobiology of Disease, 7(4), 448–461.

    CAS  PubMed  Article  Google Scholar 

  65. Giri, S., Khan, M., Rattan, R., Singh, I., & Singh, A. K. (2006). Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. Journal of Lipid Research, 47(7), 1478–1492.

    CAS  PubMed  Article  Google Scholar 

  66. Gómez-Muñoz, A. (2006). Ceramide 1-phosphate/ceramide, a switch between life and death. Biochimica Biophysica Acta, 1758(12), 2049–2056.

    Article  CAS  Google Scholar 

  67. Grimm, M. O., Grimm, H. S., Pätzold, A. J., Zinser, E. G., Halonen, R., Duering, M., et al. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nature Cell Biology, 7(11), 1118–1123.

    CAS  PubMed  Article  Google Scholar 

  68. Gustafson, S. J., Barth, B. M., McGill, C. M., Clausen, T. P., & Kuhn, T. B. (2007). Wild Alaskan blueberry extracts inhibit a magnesium-dependent sphingomyelinase activity in neurons exposed to TNFα. Current Topics in Nutraceutical Research, 5(4), 183–188.

    CAS  Google Scholar 

  69. Gustafson, S. J., Dunlap, K. L., McGill, C. M., & Kuhn, T. B. (2012). A nonpolar blueberry fraction blunts NADPH oxidase activation in neuronal cells exposed to tumor necrosis factor-α. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2012/768101.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hagen, N., Van Veldhoven, P. P., Proia, R. L., Park, H., Merrill, A. H., & van Echten-Deckert, G. (2009). Subcellular origin of sphingosine 1-phosphate is essential for its toxic effect in lyase-deficient neurons. Journal of Biological Chemistry, 284(17), 11346–11353.

    CAS  Article  Google Scholar 

  71. Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., et al. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1 phosphate. Science, 325(5945), 1254–1257.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Hannun, Y. A., & Obeid, L. M. (2018). Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology, 19(3), 175–191.

    CAS  PubMed  Article  Google Scholar 

  73. Henriques, A., Croixmarie, V., Bouscary, A., Mosbach, A., Keime, C., Boursier-Neyret, C., et al. (2018). Sphingolipid metabolism is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of amyotrophic lateral sclerosis. Frontiers in Molecular Neuroscience, 10, 433.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. Herr, D. R., Reolo, M. J., Peh, Y. X., Wang, W., Lee, C. W., Rivera, R., et al. (2016). Sphingosine-1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: Implications for otoprotective therapy. Scientific Reports, 6, 24541.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Hirabayashi, Y., Igarashi, Y., & Merrill, A. J. (2006). Sphingolipid biology. New York, NY: Springer Science & Business Media.

    Google Scholar 

  76. Hou, L., Sun, F., Huang, R., Sun, W., Zhang, D., & Wang, Q. (2019). Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson’s disease model. Redox Biology, 22, 101134.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Huang, Y., Li, Y., Zhang, H., Zhao, R., Jing, R., Xu, Y., et al. (2018). Zika virus propagation and release in human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell Discovery, 4(19), 1–16.

    Google Scholar 

  78. Ilyas, A. A., Chen, Z. W., & Cook, S. D. (2003). Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. Journal of Neuroimmunology, 139(1–2), 76–80.

    CAS  PubMed  Article  Google Scholar 

  79. Imarisio, S., Carmichael, J., Korolchuk, V., Chen, C. W., Saiki, S., Rose, C., et al. (2008). Huntington’s disease: From pathology and genetics to potential therapies. Biochemical Journal, 412(2), 191–209.

    CAS  Article  Google Scholar 

  80. Jackman, N., Ishii, A., & Bansal, R. (2009). Oligodendrocyte development and myelin biogenesis: Parsing out the roles of glycosphingolipids. Physiology, 24(5), 290–297.

    CAS  PubMed  Article  Google Scholar 

  81. Jana, A., & Pahan, K. (2004). Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. Journal of Neuroscience, 24(43), 9531–9540.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. Jana, A., & Pahan, K. (2010). Sphingolipids in multiple sclerosis. Neuromolecular Medicine, 12(4), 351–361.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Jana, M., Palencia, C. A., & Pahan, K. (2008). Fibrillar amyloid-β peptides activate microglia via TLR2: Implications for Alzheimer’s disease. The Journal of Immunology, 181(10), 7254–7262.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. Jazvinšćak Jembrek, M., Hof, P. R., & Šimić, G. (2015). Ceramides in Alzheimer’s disease: Key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxidative Medicine and Cellular Longevity, 2015, 1–17.

    Article  Google Scholar 

  85. Jennemann, R., Sandhoff, R., Wang, S., Kiss, E., Gretz, N., Zuliani, C., et al. (2005). Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proceedings of the National Academy of Sciences, 102(35), 12459–12464.

    CAS  Article  Google Scholar 

  86. Jeon, S. B., Yoon, H. J., Park, S. H., Kim, I. H., & Park, E. J. (2008). Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. The Journal of Immunology, 181(11), 8077–8087.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. Jeong, Y. H., Kim, Y., Song, H., Chung, Y. S., Park, S. B., & Kim, H. S. (2014). Anti-inflammatory effects of α-galactosylceramide analogs in activated microglia: Involvement of the p38 MAPK signaling pathway. PLoS ONE, 9(2), e87030.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. Jęśko, H., Wencel, P. L., Wójtowicz, S., Strosznajder, J., Lukiw, W. J., & Strosznajder, R. P. (2020). Fingolimod affects transcription of genes encoding enzymes of ceramide metabolism in animal model of Alzheimer’s disease. Molecular Neurobiology, 57(6), 2799.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. Jin, S., Zhou, F., Katirai, F., & Li, P. L. (2011). Lipid raft redox signaling: Molecular mechanisms in health and disease. Antioxidants & Redox Signaling, 15(4), 1043–1083.

    CAS  Article  Google Scholar 

  90. Johnson, K. R., Johnson, K. Y., Becker, K. P., Bielawski, J., Mao, C., & Obeid, L. M. (2003). Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra-and extracellular sphingosine-1-phosphate levels and cell viability. Journal of Biological Chemistry, 278(36), 34541–34547.

    CAS  Article  Google Scholar 

  91. Jung, J. S., Shin, K. O., Lee, Y. M., Shin, J. A., Park, E. M., Jeong, J., et al. (2013). Anti-inflammatory mechanism of exogenous C2 ceramide in lipopolysaccharide-stimulated microglia. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1831(6), 1016–1026.

    CAS  Google Scholar 

  92. Karaca, I., Tamboli, I. Y., Glebov, K., Richter, J., Fell, L. H., Grimm, M. O., et al. (2014). Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. Journal of Biological Chemistry, 289(24), 16761–16772.

    CAS  Article  Google Scholar 

  93. Kataoka, H., Sugahara, K., Shimano, K., Teshima, K., Koyama, M., Fukunari, A., & Chiba, K. (2005). FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cellular & Molecular Immunology, 2(6), 439–448.

    CAS  Google Scholar 

  94. Kikumoto, Y., Kai, Y., Morinaga, H., Iga-Murahashi, M., Matsuyama, M., Sasaki, T., et al. (2010). Fabry disease exhibiting recurrent stroke and persistent inflammation. Internal Medicine, 49(20), 2247–2252.

    PubMed  Article  Google Scholar 

  95. Kim, O. S., Park, E. J., Joe, E. H., & Jou, I. (2002). JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. Journal of Biological Chemistry, 277(43), 40594–40601.

    CAS  Article  Google Scholar 

  96. Kim, S., & Sieburth, D. (2018). Sphingosine kinase activates the mitochondrial unfolded protein response and is targeted to mitochondria by stress. Cell Reports, 24(11), 2932-2945.e4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Kitatani, K., Idkowiak-Baldys, J., & Hannun, Y. A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular Signaling, 20(6), 1010–1018.

    CAS  Article  Google Scholar 

  98. Kleinschnitz, C., Grund, H., Wingler, K., Armitage, M. E., Jones, E., Mittal, M., et al. (2010). Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biology, 8(9), e1000479.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. Kolter, T., Proia, R. L., & Sandhoff, K. (2002). Combinatorial ganglioside biosynthesis. Journal of Biological Chemistry, 277(29), 25859–25862.

    CAS  Article  Google Scholar 

  100. Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., et al. (2015). Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB Journal, 29(11), 4461–4472.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Kuhle, J., Lindberg, R. L. P., Regeniter, A., Mehling, M., Steck, A. J., Kappos, L., & Czaplinski, A. (2009). Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. European Journal of Neurology, 16(6), 771–774.

    CAS  PubMed  Article  Google Scholar 

  102. Kułakowska, A., Żendzian-Piotrowska, M., Baranowski, M., Konończuk, T., Drozdowski, W., Górski, J., & Bucki, R. (2010). Intrathecal increase of sphingosine 1-phosphate at early stage multiple sclerosis. Neuroscience Letters, 477(3), 149–152.

    PubMed  Article  CAS  Google Scholar 

  103. Lamour, N. F., Wijesinghe, D. S., Mietla, J. A., Ward, K. E., Stahelin, R. V., & Chalfant, C. E. (2011). Ceramide kinase regulates the production of tumor necrosis factor α (TNFα) via inhibition of TNFα-converting enzyme. Journal of Biological Chemistry, 286(50), 42808–42817.

    CAS  Article  Google Scholar 

  104. Lee, K. D., Chow, W. N., Sato-Bigbee, C., Graf, M. R., Graham, R. S., Colello, R. J., et al. (2009). FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. Journal of Neurotrauma, 26(12), 2335–2344.

    PubMed  PubMed Central  Article  Google Scholar 

  105. Lee, W. C., Tsoi, Y. K., Troendle, F. J., DeLucia, M. W., Ahmed, Z., Dicky, C. A., et al. (2007). Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. The FASEB Journal, 21(10), 2520–2527.

    CAS  PubMed  Article  Google Scholar 

  106. Lei, M., Teo, J. D., Song, H., McEwen, H. P., Lee, J. Y., Couttas, T. A., et al. (2019). Sphingosine kinase 2 potentiates amyloid deposition but protects against hippocampal volume loss and demyelination in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 39(48), 9645–9659.

    CAS  PubMed  Article  Google Scholar 

  107. Leto, T. L., Morand, S., Hurt, D., & Ueyama, T. (2009). Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxidants & Redox Signaling, 11(10), 2607–2619.

    CAS  Article  Google Scholar 

  108. Levade, T., Moser, H. W., Fensom, A. H., Harzer, K., Moser, A. B., & Salvayre, R. (1995). Neurodegenerative course in ceramidase deficiency (Farber disease) correlates with the residual lysosomal ceramide turnover in cultured living patient cells. Journal of the Neurological Sciences, 134(1–2), 108–114.

    CAS  PubMed  Article  Google Scholar 

  109. Li, X., Jin, S. J., Su, J., Li, X. X., & Xu, M. (2018). Acid sphingomyelinase down-regulation alleviates vascular endothelial insulin resistance in diabetic rats. Basic & Clinical Pharmacology & Toxicology, 123(6), 645–659.

    CAS  Article  Google Scholar 

  110. Li, Z., Hailemariam, T. K., Zhou, H., Li, Y., Duckworth, D. C., Peake, D. A., et al. (2007). Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1771(9), 1186–1194.

    CAS  Google Scholar 

  111. Lloyd-Evans, E., Morgan, A. J., He, X., Smith, D. A., Elliot-Smith, E., Sillence, D. J., et al. (2008). Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Medicine, 14(11), 1247.

    CAS  PubMed  Article  Google Scholar 

  112. Lone, M. A., Santos, S., Alecu, I., Silva, L. C., & Hornemann, T. (2019). 1-Deoxysphingolipids. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1864(4), 512–521.

    CAS  Google Scholar 

  113. Lugrin, J., Ciarlo, E., Santos, A., Grandmaison, G., Dos Santos, I., Le Roy, D., & Roger, T. (2013). The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune responses and protects from septic shock. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833(6), 1498–1510.

    CAS  Article  Google Scholar 

  114. Maceyka, M., Harikumar, K. B., Milstien, S., & Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends in Cell Biology, 22(1), 50–60.

    CAS  PubMed  Article  Google Scholar 

  115. Maceyka, M., Sankala, H., Hait, N. C., Le Stunff, H., Liu, H., Toman, R., et al. (2005). SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. Journal of Biological Chemistry, 280(44), 37118–37129.

    CAS  Article  Google Scholar 

  116. Maglione, V., Marchi, P., Di Pardo, A., Lingrell, S., Horkey, M., Tidmarsh, E., & Sipione, S. (2010). Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. Journal of Neuroscience, 30(11), 4072–4080.

    CAS  PubMed  Article  Google Scholar 

  117. Marshall, J., Sun, Y., Bangari, D. S., Budman, E., Park, H., Nietupski, J. B., et al. (2016). CNS-accessible inhibitor of glucosylceramide synthase for substrate reduction therapy of neuronopathic Gaucher disease. Molecular Therapy, 24(6), 1019–1029.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Marshall, M. S., Jakubauskas, B., Bogue, W., Stoskute, M., Hauck, Z., Rue, E., et al. (2018). Analysis of age-related changes in psychosine metabolism in the human brain. PLoS ONE, 13(2), e0193438.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. McCampbell, A., Truong, D., Broom, D. C., Allchorne, A., Gable, K., Cutler, R. G., et al. (2005). Mutant SPTLC1 dominantly inhibits serine palmitoyltransferase activity in vivo and confers as age-dependent neuropathy. Human Molecular Genetics, 14(22), 3507–3521.

    CAS  PubMed  Article  Google Scholar 

  120. Miguez, A., Garcia-Diaz Barriga, G., Brito, V., Straccia, M., Giralt, A., Ginés, S., et al. (2015). Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Human Molecular Genetics, 24(17), 4958–4970.

    CAS  PubMed  Article  Google Scholar 

  121. Mitrofanova, A., Mallela, S. K., Ducasa, G. M., Yoo, T. H., Rosenfeld-Gur, E., Zelnik, I. D., et al. (2019). SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nature Communications, 10(1), 2692.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. Mitsutake, S., Date, T., Yokota, H., Sugiura, M., Kohama, T., & Igarashi, Y. (2012). Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Letters, 586(9), 1300–1305.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. Myerowitz, R. (1997). Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Human Mutation, 9(3), 195–208.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. Neubauer, H. A., Tea, M. N., Zebol, J. R., Gliddon, B. L., Stefanidis, C., Moretti, P. A. B., et al. (2019). Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene, 38(8), 1151–1165.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. Neumann, J., Bras, J., Deas, E., O’Sullivan, S. S., Parkkinen, L., Lachmann, R. H., et al. (2009). Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain, 132(7), 1783–1794.

    PubMed  PubMed Central  Article  Google Scholar 

  126. Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., et al. (2017). FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. The FASEB Journal, 31(4), 1719–1730.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Newton, J., Milstien, S., & Spiegel, S. (2018). Niemann-Pick type C disease: The atypical sphingolipidosis. Advances in Biological Regulation, 70, 82–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Norman, E., Cutler, R. G., Flannery, R., Wang, Y., & Mattson, M. P. (2010). Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. Journal of Neurochemistry, 114(2), 430–439.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Othman, A., Bianchi, R., Alecu, I., Wei, Y., Porretta-Serapiglia, C., Lombardi, R., et al. (2015). Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes, 64(3), 1035–1045.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. Paciotti, S., Albi, E., Parnetti, L., & Beccari, T. (2020). Lysosomal ceramide metabolism disorders: Implications in Parkinson’s disease. Journal of Clinical Medicine, 9(2), 594.

    CAS  PubMed Central  Article  Google Scholar 

  131. Pasqui, A. L., Di Renzo, M., Auteri, A., Federico, G., & Puccetti, L. (2007). Increased TNF-α production by peripheral blood mononuclear cells in patients with Krabbe’s disease: Effect of psychosine. European Journal of Clinical Investigation, 37(9), 742–745.

    CAS  PubMed  Article  Google Scholar 

  132. Penno, A., Reilly, M. M., Houlden, H., Laurá, M., Rentsch, K., Niederkofler, V., et al. (2010). Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. Journal of Biological Chemistry, 285(15), 11178–11187.

    CAS  Article  Google Scholar 

  133. Persidsky, Y., Buttini, M., Limoges, J., Bock, P., & Gendelman, H. E. (1997). An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. Journal of Neurovirology, 3(6), 401–416.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. Pettus, B. J., Bielawska, A., Subramanian, P., Wijesinghe, D. S., Maceyka, M., Leslie, C. C., et al. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. Journal of Biological Chemistry, 279(12), 11320–11326.

    CAS  Article  Google Scholar 

  135. Porubsky, S., Jennemann, R., Lehmann, L., & Gröne, H. J. (2014). Depletion of globosides and isoglobosides fully reverts the morphologic phenotype of Fabry disease. Cell and Tissue Research, 358(1), 217–227.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. Potenza, R. L., De Simone, R., Armida, M., Mazziotti, V., Pèzzola, A., Popoli, P., & Minghetti, L. (2016). Fingolimod: A disease-modifier drug in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics, 13(4), 918–927.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Robak, L. A., Jansen, I. E., Van Rooij, J., Uitterlinden, A. G., Kraaij, R., Jankovic, J., et al. (2017). Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain, 140(12), 3191–3203.

    PubMed  PubMed Central  Article  Google Scholar 

  138. Rombach, S. M., Smid, B. E., Bouwman, M. G., Linthorst, G. E., Dijkgraaf, M. G., & Hollak, C. E. (2013). Long term enzyme replacement therapy for Fabry disease: Effectiveness on kidney, heart and brain. Orphanet Journal of Rare Diseases, 8(1), 47.

    PubMed  PubMed Central  Article  Google Scholar 

  139. Rothhammer, V., Kenison, J. E., Tjon, E., Takenaka, M. C., de Lima, K. A., Borucki, D. M., et al. (2017). Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proceedings of the National Academy of Sciences, 114(8), 2012–2017.

    CAS  Article  Google Scholar 

  140. Schiffmann, R., FitzGibbon, E. J., Harris, C., DeVile, C., Davies, E. H., Abel, L., et al. (2008). Randomized, controlled trial of miglustat in Gaucher’s disease type 3. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 64(5), 514–522.

    Article  Google Scholar 

  141. Schlotawa, L., Adang, L. A., Radhakrishnan, K., & Ahrens-Nicklas, R. C. (2020). Multiple sulfatase deficiency: A disease comprising mucopolysaccharidosis, sphingolipidosis, and more caused by a defect in posttranslational modification. International Journal of Molecular Sciences, 21(10), 3448.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  142. Schuchman, E. H., & Desnick, R. J. (2017). Types A and B Niemann-pick disease. Molecular Genetics and Metabolism, 120(1–2), 27–33.

    CAS  PubMed  Article  Google Scholar 

  143. Sechi, A., Deroma, L., Dardis, A., Ciana, G., Bertin, N., Concolino, D., et al. (2014). Long term effects of enzyme replacement therapy in an Italian cohort of type 3 Gaucher patients. Molecular Genetics and Metabolism, 113(3), 213–218.

    CAS  PubMed  Article  Google Scholar 

  144. Senkal, C. E., Salama, M. F., Snider, A. J., Allopenna, J. J., Rana, N. A., Koller, A., et al. (2017). Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metabolism, 25(3), 686–697.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Settembre, C., Annunziata, I., Spampanato, C., Zarcone, D., Cobellis, G., Nusco, E., et al. (2007). Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proceedings of the National Academy of Sciences, 104(11), 4506–4511.

    CAS  Article  Google Scholar 

  146. Seyfried, T. N., Choi, H., Chevalier, A., Hogan, D., Akgoc, Z., & Schneider, J. S. (2018). Sex-related abnormalities in substantia nigra lipids in Parkinson’s disease. ASN Neuro, 10, 1–10.

    Article  CAS  Google Scholar 

  147. Seyrantepe, V., Demir, S. A., Timur, Z. K., Von Gerichten, J., Marsching, C., Erdemli, E., et al. (2018). Murine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease. Experimental Neurology, 299, 26–41.

    CAS  PubMed  Article  Google Scholar 

  148. Shanbhogue, P., & Hannun, Y. A. (2020). Exploring the therapeutic landscape of sphingomyelinases. Handbook of Experimental Pharmacology, 259, 19–47.

    CAS  PubMed  Article  Google Scholar 

  149. Shinghal, R., Scheller, R. H., & Bajjalieh, S. M. (1993). Ceramide-1-phosphate phosphatase activity in brain. Journal of Neurochemistry, 61(6), 2279–2285.

    CAS  PubMed  Article  Google Scholar 

  150. Shukitt-Hale, B., Thangthaeng, N., Miller, M. G., Poulose, S. M., Carey, A. N., & Fisher, D. R. (2019). Blueberries improve neuroinflammation and cognition differentially depending on individual cognitive baseline status. The Journals of Gerontology: Series A, 74(7), 977–983.

    CAS  Google Scholar 

  151. Siow, D. L., Anderson, C. D., Berdyshev, E. V., Skobeleva, A., Natarajan, V., Pitson, S. M., et al. (2011). Sphingosine kinase localization in the control of sphingolipid metabolism. Advances in Enzyme Regulation, 51(1), 229–244.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. Siow, D. L., Anderson, C. D., Berdyshev, E. V., Skobeleva, A., Pitson, S. M., & Wattenberg, B. W. (2010). Intracellular localization of sphingosine kinase 1 alters access to substrate pools but does not affect the degradative fate of sphingosine-1-phosphate. Journal of Lipid Research, 51(9), 2546–2559.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. Sivasubramanian, M., Kanagaraj, N., Dheen, S. T., & Tay, S. S. W. (2015). Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson’s disease and in MPP+-treated MN9D cells in vitro. Neuroscience, 290, 636–648.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. Smith, D., Wallom, K. L., Williams, I. M., Jeyakumar, M., & Platt, F. M. (2009). Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiology of Disease, 36(2), 242–251.

    CAS  PubMed  Article  Google Scholar 

  155. Suriyanarayanan, S., Auranen, M., Toppila, J., Paetau, A., Shcherbii, M., Palin, E., et al. (2016). The Variant p.(Arg183Trp) in SPTLC2 causes late-onset hereditary sensory neuropathy. Neuromolecular Medicine, 18(1), 81–90.

    CAS  PubMed  Article  Google Scholar 

  156. Tafesse, F. G., Vacaru, A. M., Bosma, E. F., Hermansson, M., Jain, A., Hilderink, A., et al. (2014). Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. Journal of Cell Science, 127(2), 445–454.

    CAS  PubMed  Article  Google Scholar 

  157. Takajo, D., Matsumoto, H., Noguchi, T., Nishimura, N., & Nonoyama, S. (2020). New variant mutation of glucosylceramidase beta (GBA) and early enzyme replacement therapy for neuronopathic gaucher disease: A case report and literature review. Iranian Journal of Pediatrics. https://doi.org/10.5812/ijp.98996.

    Article  Google Scholar 

  158. Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011). BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. Journal of Neuroscience, 31(18), 6850–6857.

    CAS  PubMed  Article  Google Scholar 

  159. Tappino, B., Biancheri, R., Mort, M., Regis, S., Corsolini, F., Rossi, A., et al. (2010). Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Human Mutation, 31(12), E1894–E1914.

    PubMed  PubMed Central  Article  Google Scholar 

  160. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867), 1244–1247.

    CAS  PubMed  Article  Google Scholar 

  161. Tsai, H. C., & Han, M. H. (2016). Sphingosine-1-phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation. Drugs, 76(11), 1067–1079.

    PubMed  Article  CAS  Google Scholar 

  162. Uemura, S., Go, S., Shishido, F., & Inokuchi, J. I. (2014). Expression machinery of GM4: The excess amounts of GM3/GM4S synthase (ST3GAL5) are necessary for GM4 synthesis in mammalian cells. Glycoconjugate Journal, 31(2), 101–108.

    CAS  PubMed  Article  Google Scholar 

  163. Vacaru, A. M., Tafesse, F. G., Ternes, P., Kondylis, V., Hermansson, M., Brouwers, J. F., et al. (2009). Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. Journal of Cell Biology, 185(6), 1013–1027.

    CAS  Article  Google Scholar 

  164. Van Doorn, R., Van Horssen, J., Verzijl, D., Witte, M., Ronken, E., Van Het Hof, B., et al. (2010). Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia, 58(12), 1465–1476.

    PubMed  Article  Google Scholar 

  165. Venkatesan, A., & Benavides, D. R. (2015). Autoimmune encephalitis and its relation to infection. Current Neurology and Neuroscience Reports, 15(3), 1–11.

    CAS  Article  Google Scholar 

  166. Villani, M., Subathra, M., Im, Y. B., Choi, Y., Signorelli, P., Del Poeta, M., & Luberto, C. (2008). Sphingomyelin synthases regulate production of diacylglycerol at the Golgi. Biochemical Journal, 414(1), 31–41.

    CAS  Article  Google Scholar 

  167. Vitner, E. B., Farfel-Becker, T., Eilam, R., Biton, I., & Futerman, A. H. (2012). Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher’s disease. Brain, 135(6), 1724–1735.

    PubMed  Article  Google Scholar 

  168. Wang, J., Liu, J., Zhou, R., Ding, X., Zhang, Q., Zhang, C., et al. (2018). Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochemical and Biophysical Research Communications, 497(2), 619–625.

    CAS  PubMed  Article  Google Scholar 

  169. Wang, Q., Qian, L., Chen, S. H., Chu, C. H., Wilson, B., Oyarzabal, E., et al. (2015). Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson’s disease models. Brain, 138(5), 1247–1262.

    PubMed  PubMed Central  Article  Google Scholar 

  170. Wang, W., Shanmugam, M. K., Xiang, P., Yam, T. Y. A., Kumar, V., Chew, W. S., et al. (2020a). Sphingosine-1-phosphate receptor 2 induces otoprotective responses to cisplatin treatment. Cancers, 12(1), 211.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  171. Wang, Y., Nakajima, T., Diao, P., Yamada, Y., Nakamura, K., Nakayama, J., et al. (2020b). Polyunsaturated fatty acid deficiency affects sulfatides and other sulfated glycans in lysosomes through autophagy-mediated degradation. The FASEB Journal. https://doi.org/10.1096/fj.202000030RR.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Weiner, H. L. (2004). Multiple sclerosis is an inflammatory T-cell–mediated autoimmune disease. Archives of Neurology, 61(10), 1613–1615.

    PubMed  Article  Google Scholar 

  173. White, A. J., Wijeyekoon, R. S., Scott, K. M., Gunawardana, N. P., Hayat, S., Solim, I. H., et al. (2018). The peripheral inflammatory response to alpha-synuclein and endotoxin in Parkinson’s disease. Frontiers in Neurology, 9, 946.

    PubMed  PubMed Central  Article  Google Scholar 

  174. Wilson, E. R., Kugathasan, U., Abramov, A. Y., Clark, A. J., Bennett, D. L. H., Reilly, M. M., et al. (2018). Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiology of Disease, 117, 1–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. Wong, Y. C., & Krainc, D. (2016). Lysosomal trafficking defects link Parkinson’s disease with Gaucher’s disease. Movement Disorders, 31(11), 1610–1618.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. Wu, D. C., Ré, D. B., Nagai, M., Ischiropoulos, H., & Przedborski, S. (2006). The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proceedings of the National Academy of Sciences, 103(32), 12132–12137.

    CAS  Article  Google Scholar 

  177. Wu, G., Yan, B., Wang, X., Feng, X., Zhang, A., Xu, X., & Dong, H. (2008). Decreased activities of lysosomal acid alpha-D-galactosidase A in the leukocytes of sporadic Parkinson’s disease. Journal of the Neurological Sciences, 271(1–2), 168–173.

    CAS  PubMed  Article  Google Scholar 

  178. Wu, Y. P., Mizukami, H., Matsuda, J., Saito, Y., Proia, R. L., & Suzuki, K. (2005). Apoptosis accompanied by up-regulation of TNF-α death pathway genes in the brain of Niemann-Pick type C disease. Molecular Genetics and Metabolism, 84(1), 9–17.

    CAS  PubMed  Article  Google Scholar 

  179. Young, M. M., Takahashi, Y., Fox, T. E., Yun, J. K., Kester, M., & Wang, H. G. (2016). Sphingosine kinase 1 cooperates with autophagy to maintain endocytic membrane trafficking. Cell Reports, 17(6), 1532–1545.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. Zhou, W., Woodson, M., Sherman, M. B., Neelakanta, G., & Sultana, H. (2019). Exosomes mediate Zika virus transmission through SMPD3 neutral sphingomyelinase in cortical neurons. Emerging Microbes & Infections, 8(1), 307–326.

    Article  CAS  Google Scholar 

  181. Zunke, F., Moise, A. C., Belur, N. R., Gelyana, E., Stojkovska, I., Dzaferbegovic, H., et al. (2018). Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron, 97(1), 92–107.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support came from the National Institutes for Health and National Cancer Institute through award K22-CA190674 (B.M.B.), as well as the University of New Hampshire Hamel Center for Undergraduate Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brian M. Barth.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arsenault, E.J., McGill, C.M. & Barth, B.M. Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2. Neuromol Med 23, 25–46 (2021). https://doi.org/10.1007/s12017-021-08646-2

Download citation

Keywords

  • Neuro-inflammation
  • Neurodegeneration
  • Sphingolipids
  • Ceramide
  • NADPH oxidase