Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia

Abstract

Dementia poses an ever-growing burden to health care and social services as life expectancies have grown across the world and populations age. The most common forms of dementia are Alzheimer’s disease (AD), vascular dementia, frontotemporal dementia (FTD), and Lewy body dementia, which includes Parkinson’s disease (PD) dementia and dementia with Lewy bodies (DLB). Genomic studies over the past 3 decades have identified variants in genes regulating lipid transporters and endosomal processes as major risk determinants for AD, with the most significant being inheritance of the ε4 allele of the APOE gene, encoding apolipoprotein E. A recent surge in research on lipid handling and metabolism in glia and neurons has established defective lipid clearance from endolysosomes as a central driver of AD pathogenesis. The most prevalent genetic risk factors for DLB are the APOE ε4 allele, and heterozygous loss of function mutations in the GBA gene, encoding the lysosomal catabolic enzyme glucocerebrosidase; whilst heterozygous mutations in the GRN gene, required for lysosomal catabolism of sphingolipids, are responsible for a significant proportion of FTD cases. Homozygous mutations in the GBA or GRN genes produce the lysosomal storage diseases Gaucher disease and neuronal ceroid lipofuscinosis. Research from mouse and cell culture models, and neuropathological evidence from lysosomal storage diseases, has established that impaired cholesterol or sphingolipid catabolism is sufficient to produce the pathological hallmarks of dementia, indicating that defective lipid catabolism is a common mechanism in the etiology of dementia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Abe-Dohmae, S., Ikeda, Y., Matsuo, M., Hayashi, M., Okuhira, K.-I., Ueda, K., et al. (2004). Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. Journal of Biological Chemistry, 279(1), 604–611. https://doi.org/10.1074/jbc.M309888200.

    CAS  Article  Google Scholar 

  2. Afghah, Z., Chen, X., & Geiger, J. D. (2020). Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiology of Disease, 134, 104670. https://doi.org/10.1016/j.nbd.2019.104670.

    CAS  Article  PubMed  Google Scholar 

  3. Ahmed, Z., Mackenzie, I. R., Hutton, M. L., & Dickson, D. W. (2007). Progranulin in frontotemporal lobar degeneration and neuroinflammation. Journal of Neuroinflammation, 4, 7. https://doi.org/10.1186/1742-2094-4-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Almeida, S., Zhou, L., & Gao, F. B. (2011). Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins. PLoS One, 6(10), e26454. https://doi.org/10.1371/journal.pone.0026454.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Almeida, M. R., Macario, M. C., Ramos, L., Baldeiras, I., Ribeiro, M. H., & Santana, I. (2016). Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiology of Aging, 41, 200 e201–200 e205. https://doi.org/10.1016/j.neurobiolaging.2016.02.019.

    CAS  Article  Google Scholar 

  6. Alzheimer’s_Association. (2019). 2019 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 15, 321–387.

    Article  Google Scholar 

  7. Arias-Vásquez, A., Isaacs, A., Aulchenko, Y. S., Hofman, A., Oostra, B. A., Breteler, M., et al. (2007). The cholesteryl ester transfer protein (CETP) gene and the risk of Alzheimer’s disease. Neurogenetics, 8(3), 189–193. https://doi.org/10.1007/s10048-007-0089-x.

    CAS  Article  PubMed  Google Scholar 

  8. Astarita, G., Jung, K.-M., Vasilevko, V., DiPatrizio, N. V., Martin, S. K., Cribbs, D. H., et al. (2011). Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer’s disease. PLoS One, 6(10), e24777. https://doi.org/10.1371/journal.pone.0024777.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Atagi, Y., Liu, C.-C., Painter, M. M., Chen, X.-F., Verbeeck, C., Zheng, H., et al. (2015). Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). The Journal of Biological Chemistry, 290(43), 26043–26050. https://doi.org/10.1074/jbc.M115.679043.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Auer, I. A., Schmidt, M. L., Lee, V. M. Y., Curry, B., Suzuki, K., Shin, R. W., et al. (1995). Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimer’s disease. Acta Neuropathologica, 90(6), 547–551. https://doi.org/10.1007/BF00318566.

    CAS  Article  PubMed  Google Scholar 

  11. Ayciriex, S., Djelti, F., Alves, S., Regazzetti, A., Gaudin, M., Varin, J., et al. (2017). Neuronal cholesterol accumulation induced by Cyp46a1 down-regulation in mouse hippocampus disrupts brain lipid homeostasis. Frontiers in Molecular Neuroscience. https://doi.org/10.3389/fnmol.2017.00211.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bailey, A. P., Koster, G., Guillermier, C., Hirst, E. M., MacRae, J. I., Lechene, C. P., et al. (2015). Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell, 163(2), 340–353. https://doi.org/10.1016/j.cell.2015.09.020.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Baker, M., Mackenzie, I. R., Pickering-Brown, S. M., Gass, J., Rademakers, R., Lindholm, C., et al. (2006). Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 442(7105), 916–919. https://doi.org/10.1038/nature05016.

    CAS  Article  PubMed  Google Scholar 

  14. Bales, K. R., Verina, T., Cummins, D. J., Du, Y., Dodel, R. C., Saura, J., et al. (1999). Apolipoprotein E is essential for amyloid deposition in the APPV717F transgenic mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 15233–15238.

    CAS  Article  Google Scholar 

  15. Bandaru, V. V., Troncoso, J., Wheeler, D., Pletnikova, O., Wang, J., Conant, K., et al. (2009). ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer’s but not normal brain. Neurobiology of Aging, 30(4), 591–599. https://doi.org/10.1016/j.neurobiolaging.2007.07.024.

    CAS  Article  PubMed  Google Scholar 

  16. Bang, O. Y., Kwak, Y. T., Joo, I. S., & Huh, K. (2003). Important link between dementia subtype and apolipoprotein E: A meta-analysis. Yonsei Medical Journal, 44(3), 401–413. https://doi.org/10.3349/ymj.2003.44.3.401.

    CAS  Article  PubMed  Google Scholar 

  17. Beel, A. J., Mobley, C. K., Kim, H. J., Tian, F., Hadziselimovic, A., Jap, B., et al. (2008). Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): Does APP function as a cholesterol sensor? Biochemistry, 47(36), 9428–9446. https://doi.org/10.1021/bi800993c.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Belinson, H., & Michaelson, D. M. (2009). ApoE4-dependent Aβ-mediated neurodegeneration is associated with inflammatory activation in the hippocampus but not the septum. Journal of Neural Transmission, 116(11), 1427–1434. https://doi.org/10.1007/s00702-009-0218-9.

    CAS  Article  PubMed  Google Scholar 

  19. Berlau, D. J., Corrada, M. M., Head, E., & Kawas, C. H. (2009). APOE epsilon2 is associated with intact cognition but increased Alzheimer pathology in the oldest old. Neurology, 72(9), 829–834. https://doi.org/10.1212/01.wnl.0000343853.00346.a4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Beutler, E. (2006). Gaucher disease: Multiple lessons from a single gene disorder. Acta Paediatrica Supplement, 95(451), 103–109.

    Article  Google Scholar 

  21. Bhandari, V., Palfree, R. G., & Bateman, A. (1992). Isolation and sequence of the granulin precursor cDNA from human bone marrow reveals tandem cysteine-rich granulin domains. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1715–1719. https://doi.org/10.1073/pnas.89.5.1715.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Blauwendraat, C., Wilke, C., Simón-Sánchez, J., Jansen, I. E., Reifschneider, A., Capell, A., et al. (2018). The wide genetic landscape of clinical frontotemporal dementia: Systematic combined sequencing of 121 consecutive subjects. Genetics in Medicine, 20(2), 240–249. https://doi.org/10.1038/gim.2017.102.

    Article  PubMed  Google Scholar 

  23. Blauwendraat, C., Nalls, M. A., & Singleton, A. B. (2020). The genetic architecture of Parkinson’s disease. The Lancet Neurology, 19(2), 170–178. https://doi.org/10.1016/S1474-4422(19)30287-X.

    CAS  Article  PubMed  Google Scholar 

  24. Boehm-Cagan, A., & Michaelson, D. M. (2014). Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(21), 7293–7301. https://doi.org/10.1523/JNEUROSCI.5198-13.2014.

    CAS  Article  Google Scholar 

  25. Boehm-Cagan, A., Bar, R., Liraz, O., Bielicki, J. K., Johansson, J. O., & Michaelson, D. M. (2016). ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. Journal of Alzheimer’s Disease: JAD, 54(3), 1219–1233. https://doi.org/10.3233/JAD-160467.

    CAS  Article  PubMed  Google Scholar 

  26. Boland, B., Smith, D. A., Mooney, D., Jung, S. S., Walsh, D. M., & Platt, F. M. (2010). Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. The Journal of Biological Chemistry, 285(48), 37415–37426. https://doi.org/10.1074/jbc.M110.186411.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W., & Taylor, J. M. (1985). Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. The Journal of Clinical Investigation, 76(4), 1501–1513. https://doi.org/10.1172/JCI112130.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.

    CAS  Article  Google Scholar 

  29. Bras, J., Guerreiro, R., Darwent, L., Parkkinen, L., Ansorge, O., Escott-Price, V., et al. (2014). Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 23(23), 6139–6146. https://doi.org/10.1093/hmg/ddu334.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Burkhardt, J. K., Huttler, S., Klein, A., Mobius, W., Habermann, A., Griffiths, G., et al. (1997). Accumulation of sphingolipids in SAP-precursor (prosaposin)-deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAP-precursor. European Journal of Cell Biology, 73(1), 10–18.

    CAS  PubMed  Google Scholar 

  31. Cantoni, C., Bollman, B., Licastro, D., Xie, M., Mikesell, R., Schmidt, R., et al. (2015). TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathologica, 129(3), 429–447. https://doi.org/10.1007/s00401-015-1388-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Caselli, R. J., Dueck, A. C., Osborne, D., Sabbagh, M. N., Connor, D. J., Ahern, G. L., et al. (2009). Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. New England Journal of Medicine, 361(3), 255–263. https://doi.org/10.1056/NEJMoa0809437.

    CAS  Article  Google Scholar 

  33. Castellani, R. J., Plascencia-Villa, G., & Perry, G. (2019). The amyloid cascade and Alzheimer’s disease therapeutics: Theory versus observation. Laboratory Investigation, 99(7), 958–970. https://doi.org/10.1038/s41374-019-0231-z.

    Article  PubMed  Google Scholar 

  34. Castellano, J. M., Kim, J., Stewart, F. R., Jiang, H., DeMattos, R. B., Patterson, B. W., et al. (2011). Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Science Translational Medicine, 3(89), 89ra57. https://doi.org/10.1126/scitranslmed.3002156.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Cataldo, A. M., Barnett, J. L., Berman, S. A., Li, J., Quarless, S., Bursztajn, S., et al. (1995). Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: Evidence for early up-regulation of the endosomal–lysosomal system. Neuron, 14(3), 671–680. https://doi.org/10.1016/0896-6273(95)90324-0.

    CAS  Article  PubMed  Google Scholar 

  36. Cataldo, A. M., Peterhoff, C. M., Troncoso, J. C., Gomez-Isla, T., Hyman, B. T., & Nixon, R. A. (2000). Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer’s disease and Down syndrome. The American Journal of Pathology, 157(1), 277–286.

    CAS  Article  Google Scholar 

  37. Cenik, B., Sephton, C. F., Kutluk Cenik, B., Herz, J., & Yu, G. (2012). Progranulin: A proteolytically processed protein at the crossroads of inflammation and neurodegeneration. Journal of Biological Chemistry, 287(39), 32298–32306. https://doi.org/10.1074/jbc.R112.399170.

    CAS  Article  Google Scholar 

  38. Chan, R. B., Oliveira, T. G., Cortes, E. P., Honig, L. S., Duff, K. E., Small, S. A., et al. (2012). Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. The Journal of Biological Chemistry, 287(4), 2678–2688. https://doi.org/10.1074/jbc.M111.274142.

    CAS  Article  PubMed  Google Scholar 

  39. Chen, S., Averett, N. T., Manelli, A., Ladu, M. J., May, W., & Ard, M. D. (2005a). Isoform-specific effects of apolipoprotein E on secretion of inflammatory mediators in adult rat microglia. Journal of Alzheimer’s Disease: JAD, 7(1), 25–35. https://doi.org/10.3233/jad-2005-7104.

    CAS  Article  PubMed  Google Scholar 

  40. Chen, W., Wang, N., & Tall, A. R. (2005b). A PEST deletion mutant of ABCA1 shows impaired internalization and defective cholesterol efflux from late endosomes. Journal of Biological Chemistry, 280(32), 29277–29281. https://doi.org/10.1074/jbc.M505566200.

    CAS  Article  Google Scholar 

  41. Chen, Y., Durakoglugil, M. S., Xian, X., & Herz, J. (2010). ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 12011–12016. https://doi.org/10.1073/pnas.0914984107.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chiasserini, D., Paciotti, S., Eusebi, P., Persichetti, E., Tasegian, A., Kurzawa-Akanbi, M., et al. (2015). Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. Molecular Neurodegeneration, 10, 15. https://doi.org/10.1186/s13024-015-0010-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Chow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromolecular Medicine, 12(1), 1–12. https://doi.org/10.1007/s12017-009-8104-z.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Christomanou, H., Chabas, A., Pampols, T., & Guardiola, A. (1989). Activator protein deficient Gaucher’s disease. A second patient with the newly identified lipid storage disorder. Klinische Wochenschrift, 67(19), 999–1003. https://doi.org/10.1007/BF01716064.

    CAS  Article  PubMed  Google Scholar 

  45. Clark, L. N., Ross, B. M., Wang, Y., Mejia-Santana, H., Harris, J., Louis, E. D., et al. (2007). Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology, 69(12), 1270–1277. https://doi.org/10.1212/01.wnl.0000276989.17578.02.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Conway, O. J., Carrasquillo, M. M., Wang, X., Bredenberg, J. M., Reddy, J. S., Strickland, S. L., et al. (2018). ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans. Molecular Neurodegeneration, 13(1), 53. https://doi.org/10.1186/s13024-018-0289-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (New York, N.Y.), 261(5123), 921–923. https://doi.org/10.1126/science.8346443.

    CAS  Article  Google Scholar 

  48. Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., et al. (1994). Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genetics, 7(2), 180–184. https://doi.org/10.1038/ng0694-180.

    CAS  Article  PubMed  Google Scholar 

  49. Cossec, J.-C., Simon, A., Marquer, C., Moldrich, R. X., Leterrier, C., Rossier, J., et al. (2010). Clathrin-dependent APP endocytosis and Aβ secretion are highly sensitive to the level of plasma membrane cholesterol. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1801(8), 846–852. https://doi.org/10.1016/j.bbalip.2010.05.010.

    CAS  Article  Google Scholar 

  50. Couttas, T. A., Kain, N., Daniels, B., Lim, X. Y., Shepherd, C., Kril, J., et al. (2014). Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer’s disease pathogenesis. Acta Neuropathologica Communications, 2, 9. https://doi.org/10.1186/2051-5960-2-9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Couttas, T. A., Kain, N., Tran, C., Chatterton, Z., Kwok, J. B., & Don, A. S. (2018). Age-dependent changes to sphingolipid balance in the human hippocampus are gender-specific and may sensitize to neurodegeneration. Journal of Alzheimer’s Disease: JAD, 63(2), 503–514. https://doi.org/10.3233/JAD-171054.

    CAS  Article  PubMed  Google Scholar 

  52. Coyle-Gilchrist, I. T., Dick, K. M., Patterson, K., Vazquez Rodriquez, P., Wehmann, E., Wilcox, A., et al. (2016). Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology, 86(18), 1736–1743. https://doi.org/10.1212/WNL.0000000000002638.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Cruchaga, C., Karch, C. M., Jin, S. C., Benitez, B. A., Cai, Y., Guerreiro, R., et al. (2014). Rare coding variants in phospholipase D3 (PLD3) confer risk for Alzheimer’s disease. Nature, 505(7484), 550–554. https://doi.org/10.1038/nature12825.

    CAS  Article  PubMed  Google Scholar 

  54. Cruts, M., Gijselinck, I., van der Zee, J., Engelborghs, S., Wils, H., Pirici, D., et al. (2006). Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature, 442(7105), 920–924. https://doi.org/10.1038/nature05017.

    CAS  Article  PubMed  Google Scholar 

  55. Cuervo, A. M., & Dice, J. F. (1998). How do intracellular proteolytic systems change with age? Frontiers in Bioscience, 3, d25–d43. https://doi.org/10.2741/a264.

    CAS  Article  PubMed  Google Scholar 

  56. Cuervo, A. M., & Dice, J. F. (2000). When lysosomes get old. Experimental Gerontology, 35(2), 119–131. https://doi.org/10.1016/s0531-5565(00)00075-9.

    CAS  Article  PubMed  Google Scholar 

  57. Cummings, J., Lee, G., Ritter, A., Sabbagh, M., & Zhong, K. (2020). Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y), 6(1), e12050. https://doi.org/10.1002/trc2.12050.

    Article  Google Scholar 

  58. Davis, A. A., Inman, C. E., Wargel, Z. M., Dube, U., Freeberg, B. M., Galluppi, A., et al. (2020). APOE genotype regulates pathology and disease progression in synucleinopathy. Science Translational Medicine, 12(529), eaay3069. https://doi.org/10.1126/scitranslmed.aay3069.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. de Chaves, E. I., Rusiñol, A. E., Vance, D. E., Campenot, R. B., & Vance, J. E. (1997). Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. The Journal of Biological Chemistry, 272(49), 30766–30773. https://doi.org/10.1074/jbc.272.49.30766.

    Article  PubMed  Google Scholar 

  60. Dickson, D. W., Heckman, M. G., Murray, M. E., Soto, A. I., Walton, R. L., Diehl, N. N., et al. (2018). APOE ε4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology, 91(12), e1182–e1195. https://doi.org/10.1212/WNL.0000000000006212.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Dik, M. G., Jonker, C., Bouter, L. M., Geerlings, M. I., van Kamp, G. J., & Deeg, D. J. (2000). APOE-epsilon4 is associated with memory decline in cognitively impaired elderly. Neurology, 54(7), 1492–1497. https://doi.org/10.1212/wnl.54.7.1492.

    CAS  Article  PubMed  Google Scholar 

  62. Djelti, F., Braudeau, J., Hudry, E., Dhenain, M., Varin, J., Bièche, I., et al. (2015). CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain, 138(8), 2383–2398. https://doi.org/10.1093/brain/awv166.

    Article  PubMed  Google Scholar 

  63. Du, W., Tan, J., Xu, W., Chen, J., & Wang, L. (2016). Association between clusterin gene polymorphism rs11136000 and late-onset Alzheimer’ disease susceptibility: A review and meta-analysis of case-control studies. Experimental and Therapeutic Medicine, 12(5), 2915–2927. https://doi.org/10.3892/etm.2016.3734.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Ehehalt, R., Keller, P., Haass, C., Thiele, C., & Simons, K. (2003). Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. The Journal of Cell Biology, 160(1), 113–123. https://doi.org/10.1083/jcb.200207113.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C., Mizuno, Y., et al. (2007). Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Movement Disorders, 22(12), 1689–1707. https://doi.org/10.1002/mds.21507 (quiz 1837).

    Article  PubMed  Google Scholar 

  66. Evers, B. M., Rodriguez-Navas, C., Tesla, R. J., Prange-Kiel, J., Wasser, C. R., Yoo, K. S., et al. (2017). Lipidomic and transcriptomic basis of lysosomal dysfunction in progranulin deficiency. Cell Reports, 20(11), 2565–2574. https://doi.org/10.1016/j.celrep.2017.08.056.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., et al. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: A meta-analysis. JAMA, 278(16), 1349–1356. https://doi.org/10.1001/jama.1997.03550160069041.

    CAS  Article  PubMed  Google Scholar 

  68. Federoff, M., Jimenez-Rolando, B., Nalls, M. A., & Singleton, A. B. (2012). A large study reveals no association between APOE and Parkinson’s disease. Neurobiology of Disease, 46(2), 389–392. https://doi.org/10.1016/j.nbd.2012.02.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Floris, G., Borghero, G., Cannas, A., Di Stefano, F., Murru, M. R., Corongiu, D., et al. (2015). Clinical phenotypes and radiological findings in frontotemporal dementia related to TARDBP mutations. Journal of Neurology, 262(2), 375–384. https://doi.org/10.1007/s00415-014-7575-5.

    CAS  Article  PubMed  Google Scholar 

  70. Friedberg, J. S., Aytan, N., Cherry, J. D., Xia, W., Standring, O. J., Alvarez, V. E., et al. (2020). Associations between brain inflammatory profiles and human neuropathology are altered based on apolipoprotein E ε4 genotype. Scientific Reports, 10(1), 2924. https://doi.org/10.1038/s41598-020-59869-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Fritchie, K., Siintola, E., Armao, D., Lehesjoki, A. E., Marino, T., Powell, C., et al. (2009). Novel mutation and the first prenatal screening of cathepsin D deficiency (CLN10). Acta Neuropathologica, 117(2), 201–208. https://doi.org/10.1007/s00401-008-0426-7.

    Article  PubMed  Google Scholar 

  72. Gegg, M. E., Burke, D., Heales, S. J., Cooper, J. M., Hardy, J., Wood, N. W., et al. (2012). Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Annals of Neurology, 72(3), 455–463. https://doi.org/10.1002/ana.23614.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Gegg, M. E., Sweet, L., Wang, B. H., Shihabuddin, L. S., Sardi, S. P., & Schapira, A. H. (2015). No evidence for substrate accumulation in Parkinson brains with GBA mutations. Movement Disorders, 30(8), 1085–1089. https://doi.org/10.1002/mds.26278.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Gilat-Frenkel, M., Boehm-Cagan, A., Liraz, O., Xian, X., Herz, J., & Michaelson, D. M. (2014). Involvement of the Apoer2 and Lrp1 receptors in mediating the pathological effects of ApoE4 in vivo. Current Alzheimer Research, 11(6), 549–557. https://doi.org/10.2174/1567205010666131119232444.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Ginsberg, S. D., Mufson, E. J., Counts, S. E., Wuu, J., Alldred, M. J., Nixon, R. A., et al. (2010). Regional selectivity of rab5 and rab7 protein up regulation in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD, 22(2), 631–639. https://doi.org/10.3233/JAD-2010-101080.

    CAS  Article  PubMed  Google Scholar 

  76. Ginsberg, S. D., Mufson, E. J., Alldred, M. J., Counts, S. E., Wuu, J., Nixon, R. A., et al. (2011). Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. Journal of Chemical Neuroanatomy, 42(2), 102–110. https://doi.org/10.1016/j.jchemneu.2011.05.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Global_Burden_of_Disease_Dementia_Collaborators. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurologys, 18(1), 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4.

    Article  Google Scholar 

  78. Gomez-Ramos, A., Diaz-Nido, J., Smith, M. A., Perry, G., & Avila, J. (2003). Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. Journal of Neuroscience Research, 71(6), 863–870. https://doi.org/10.1002/jnr.10525.

    CAS  Article  PubMed  Google Scholar 

  79. Goritz, C., Mauch, D. H., & Pfrieger, F. W. (2005). Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Molecular and Cellular Neuroscience, 29(2), 190–201. https://doi.org/10.1016/j.mcn.2005.02.006.

    CAS  Article  PubMed  Google Scholar 

  80. Gotzl, J. K., Mori, K., Damme, M., Fellerer, K., Tahirovic, S., Kleinberger, G., et al. (2014). Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathologica, 127(6), 845–860. https://doi.org/10.1007/s00401-014-1262-6.

    CAS  Article  PubMed  Google Scholar 

  81. Graham, W. V., Bonito-Oliva, A., & Sakmar, T. P. (2017). Update on Alzheimer’s disease therapy and prevention strategies. Annual Review of Medicine, 68, 413–430. https://doi.org/10.1146/annurev-med-042915-103753.

    CAS  Article  PubMed  Google Scholar 

  82. Greaves, C. V., & Rohrer, J. D. (2019). An update on genetic frontotemporal dementia. Journal of Neurology, 266(8), 2075–2086. https://doi.org/10.1007/s00415-019-09363-4.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., et al. (2013). TREM2 variants in Alzheimer’s disease. The New England Journal of Medicine, 368(2), 117–127. https://doi.org/10.1056/NEJMoa1211851.

    CAS  Article  PubMed  Google Scholar 

  84. Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., & Selkoe, D. J. (1992). Targeting of cell-surface beta-amyloid precursor protein to lysosomes: Alternative processing into amyloid-bearing fragments. Nature, 357(6378), 500–503. https://doi.org/10.1038/357500a0.

    CAS  Article  PubMed  Google Scholar 

  85. Han, X., Cheng, H., Fryer, J. D., Fagan, A. M., & Holtzman, D. M. (2003). Novel role for apolipoprotein E in the central nervous system. Modulation of sulfatide content. Journal of Biological Chemistry, 278(10), 8043–8051. https://doi.org/10.1074/jbc.M212340200.

    CAS  Article  Google Scholar 

  86. Hanson, A. J., Bayer-Carter, J. L., Green, P. S., Montine, T. J., Wilkinson, C. W., Baker, L. D., et al. (2013). Effect of apolipoprotein E genotype and diet on apolipoprotein E lipidation and amyloid peptides: Randomized clinical trial. JAMA Neurology, 70(8), 972–980. https://doi.org/10.1001/jamaneurol.2013.396.

    Article  PubMed  Google Scholar 

  87. Hardy, J., Crook, R., Prihar, G., Roberts, G., Raghavan, R., & Perry, R. (1994). Senile dementia of the Lewy body type has an apolipoprotein E epsilon 4 allele frequency intermediate between controls and Alzheimer’s disease. Neuroscience Letters, 182(1), 1–2. https://doi.org/10.1016/0304-3940(94)90190-2.

    CAS  Article  PubMed  Google Scholar 

  88. Hayashi, M., Abe-Dohmae, S., Okazaki, M., Ueda, K., & Yokoyama, S. (2005). Heterogeneity of high density lipoprotein generated by ABCA1 and ABCA7. Journal of Lipid Research, 46(8), 1703–1711. https://doi.org/10.1194/jlr.M500092-JLR200.

    CAS  Article  PubMed  Google Scholar 

  89. He, Z., Ong, C. H., Halper, J., & Bateman, A. (2003). Progranulin is a mediator of the wound response. Nature Medicine, 9(2), 225–229. https://doi.org/10.1038/nm816.

    CAS  Article  PubMed  Google Scholar 

  90. He, X., Huang, Y., Li, B., Gong, C.-X., & Schuchman, E. H. (2010). Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiology of Aging, 31(3), 398–408. https://doi.org/10.1016/j.neurobiolaging.2008.05.010.

    CAS  Article  PubMed  Google Scholar 

  91. Heinsinger, N. M., Gachechiladze, M. A., & Rebeck, G. W. (2016). Apolipoprotein E genotype affects size of ApoE complexes in cerebrospinal fluid. Journal of Neuropathology and Experimental Neurology, 75(10), 918–924. https://doi.org/10.1093/jnen/nlw067.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Helkala, E. L., Koivisto, K., Hanninen, T., Vanhanen, M., Kervinen, K., Kuusisto, J., et al. (1995). The association of apolipoprotein E polymorphism with memory: A population based study. Neuroscience Letters, 191(3), 141–144. https://doi.org/10.1016/0304-3940(95)11575-h.

    CAS  Article  PubMed  Google Scholar 

  93. Henderson, M. X., Sedor, S., McGeary, I., Cornblath, E. J., Peng, C., Riddle, D. M., et al. (2020). Glucocerebrosidase activity modulates neuronal susceptibility to pathological alpha-synuclein insult. Neuron, 105(5), 822–836. https://doi.org/10.1016/j.neuron.2019.12.004.

    CAS  Article  PubMed  Google Scholar 

  94. Hiraiwa, M., Martin, B. M., Kishimoto, Y., Conner, G. E., Tsuji, S., & O’Brien, J. S. (1997). Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): Its mechanism and inhibition by ganglioside. Archives of Biochemistry and Biophysics, 341(1), 17–24. https://doi.org/10.1006/abbi.1997.9958.

    CAS  Article  PubMed  Google Scholar 

  95. Hirsch-Reinshagen, V., Zhou, S., Burgess, B. L., Bernier, L., McIsaac, S. A., Chan, J. Y., et al. (2004). Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. Journal of Biological Chemistry, 279(39), 41197–41207. https://doi.org/10.1074/jbc.M407962200.

    CAS  Article  Google Scholar 

  96. Hogan, D. B., Fiest, K. M., Roberts, J. I., Maxwell, C. J., Dykeman, J., Pringsheim, T., et al. (2016a). The prevalence and incidence of dementia with Lewy bodies: A systematic review. Canadian Journal of Neurological Sciences, 43(Suppl 1), S83–S95. https://doi.org/10.1017/cjn.2016.2.

    Article  Google Scholar 

  97. Hogan, D. B., Jette, N., Fiest, K. M., Roberts, J. I., Pearson, D., Smith, E. E., et al. (2016b). The prevalence and incidence of frontotemporal dementia: A systematic review. Canadian Journal of Neurological Sciences, 43(Suppl 1), S96–S109. https://doi.org/10.1017/cjn.2016.25.

    Article  Google Scholar 

  98. Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J.-C., Carrasquillo, M. M., et al. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature Genetics, 43(5), 429–435. https://doi.org/10.1038/ng.803.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Hu, F., Padukkavidana, T., Vaegter, C. B., Brady, O. A., Zheng, Y., Mackenzie, I. R., et al. (2010). Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron, 68(4), 654–667. https://doi.org/10.1016/j.neuron.2010.09.034.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Hu, J., Liu, C. C., Chen, X. F., Zhang, Y. W., Xu, H., & Bu, G. (2015). Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Abeta metabolism in apoE4-targeted replacement mice. Molecular Neurodegeneration, 10, 6. https://doi.org/10.1186/s13024-015-0001-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Huang, Y., & Mahley, R. W. (2014). Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiology of Disease, 72PA, 3–12. https://doi.org/10.1016/j.nbd.2014.08.025.

    CAS  Article  PubMed Central  Google Scholar 

  102. Huang, M., Wang, D., Xu, Z., Xu, Y., Xu, X., Ma, Y., et al. (2015). Lack of genetic association between TREM2 and Alzheimer’s disease in East Asian population: A systematic review and meta-analysis. American Journal of Alzheimer’s Disease & Other Dementiasr, 30(6), 541–546. https://doi.org/10.1177/1533317515577128.

    Article  Google Scholar 

  103. Hubin, E., Verghese, P. B., van Nuland, N., & Broersen, K. (2019). Apolipoprotein E associated with reconstituted high-density lipoprotein-like particles is protected from aggregation. FEBS Letters, 593(11), 1144–1153. https://doi.org/10.1002/1873-3468.13428.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Hulkova, H., Cervenkova, M., Ledvinova, J., Tochackova, M., Hrebicek, M., Poupetova, H., et al. (2001). A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Human Molecular Genetics, 10(9), 927–940. https://doi.org/10.1093/hmg/10.9.927.

    CAS  Article  PubMed  Google Scholar 

  105. Hung, C. O. Y., & Livesey, F. J. (2018). Altered γ-secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer’s disease. Cell Reports, 25(13), 3647-3660.e3642. https://doi.org/10.1016/j.celrep.2018.11.095.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., et al. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dementia, 8(1), 1–13. https://doi.org/10.1016/j.jalz.2011.10.007.

    Article  Google Scholar 

  107. Infante, R. E., Wang, M. L., Radhakrishnan, A., Kwon, H. J., Brown, M. S., & Goldstein, J. L. (2008). NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15287–15292. https://doi.org/10.1073/pnas.0807328105.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ioannou, M. S., Jackson, J., Sheu, S. H., Chang, C. L., Weigel, A. V., Liu, H., et al. (2019). Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell, 177(6), 1522–1535 e1514. https://doi.org/10.1016/j.cell.2019.04.001.

    CAS  Article  PubMed  Google Scholar 

  109. Ittner, A., Chua, S. W., Bertz, J., Volkerling, A., van der Hoven, J., Gladbach, A., et al. (2016). Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer’s mice. Science, 354(6314), 904–908. https://doi.org/10.1126/science.aah6205.

    CAS  Article  PubMed  Google Scholar 

  110. Jankowsky, J. L., & Zheng, H. (2017). Practical considerations for choosing a mouse model of Alzheimer’s disease. Molecular Neurodegeneration, 12(1), 89. https://doi.org/10.1186/s13024-017-0231-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Jeyakumar, M., Thomas, R., Elliot-Smith, E., Smith, D. A., van der Spoel, A. C., d’Azzo, A., et al. (2003). Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain, 126(Pt 4), 974–987. https://doi.org/10.1093/brain/awg089.

    CAS  Article  PubMed  Google Scholar 

  112. Jiang, T., Tan, L., Chen, Q., Tan, M. S., Zhou, J. S., Zhu, X. C., et al. (2016). A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese. Neurobiology of Aging, 42(217), e211–e213. https://doi.org/10.1016/j.neurobiolaging.2016.02.023.

    CAS  Article  Google Scholar 

  113. Jin, S. C., Carrasquillo, M. M., Benitez, B. A., Skorupa, T., Carrell, D., Patel, D., et al. (2015). TREM2 is associated with increased risk for Alzheimer’s disease in African Americans. Molecular Neurodegeneration, 10, 19. https://doi.org/10.1186/s13024-015-0016-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Jochemsen, H. M., Muller, M., van der Graaf, Y., & Geerlings, M. I. (2012). APOE epsilon4 differentially influences change in memory performance depending on age. The SMART-MR study. Neurobiology of Aging, 33(4), 832.e15–832.e22. https://doi.org/10.1016/j.neurobiolaging.2011.07.016.

    CAS  Article  Google Scholar 

  115. Jones, P. B., Adams, K. W., Rozkalne, A., Spires-Jones, T. L., Hshieh, T. T., Hashimoto, T., et al. (2011). Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid-beta in human Alzheimer brain. PLoS One, 6(1), e14586. https://doi.org/10.1371/journal.pone.0014586.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., et al. (2012). A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 488(7409), 96–99. https://doi.org/10.1038/nature11283.

    CAS  Article  PubMed  Google Scholar 

  117. Kabashi, E., Valdmanis, P. N., Dion, P., Spiegelman, D., McConkey, B. J., Vande Velde, C., et al. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics, 40(5), 572–574. https://doi.org/10.1038/ng.132.

    CAS  Article  PubMed  Google Scholar 

  118. Kane, L. A., Lazarou, M., Fogel, A. I., Li, Y., Yamano, K., Sarraf, S. A., et al. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. Journal of Cell Biology, 205(2), 143–153. https://doi.org/10.1083/jcb.201402104.

    CAS  Article  Google Scholar 

  119. Kane, J. P. M., Surendranathan, A., Bentley, A., Barker, S. A. H., Taylor, J. P., Thomas, A. J., et al. (2018). Clinical prevalence of Lewy body dementia. Alzheimer’s Research & Therapy, 10(1), 19. https://doi.org/10.1186/s13195-018-0350-6.

    Article  Google Scholar 

  120. Karch, C. M., & Goate, A. M. (2015). Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biological Psychiatry, 77(1), 43–51. https://doi.org/10.1016/j.biopsych.2014.05.006.

    CAS  Article  PubMed  Google Scholar 

  121. Keilani, S., Lun, Y., Stevens, A. C., Williams, H. N., Sjoberg, E. R., Khanna, R., et al. (2012). Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-β peptide. The Journal of Neuroscience, 32(15), 5223–5236. https://doi.org/10.1523/JNEUROSCI.4860-11.2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., et al. (2017). A unique microglia type associated with restricting development of Alzheimer’s disease. Cell, 169(7), 1276–1290.e1217. https://doi.org/10.1016/j.cell.2017.05.018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Kim, W. S., Li, H., Ruberu, K., Chan, S., Elliott, D. A., Low, J. K., et al. (2013). Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(10), 4387–4394. https://doi.org/10.1523/JNEUROSCI.4165-12.2013.

    CAS  Article  Google Scholar 

  124. Klein, Z. A., Takahashi, H., Ma, M., Stagi, M., Zhou, M., Lam, T. T., et al. (2017). Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron, 95(2), 281–296 e286. https://doi.org/10.1016/j.neuron.2017.06.026.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. Kline, A. (2012). Apolipoprotein E, amyloid-ß clearance and therapeutic opportunities in Alzheimer’s disease. Alzheimer’s Research & Therapy, 4(4), 32. https://doi.org/10.1186/alzrt135.

    CAS  Article  Google Scholar 

  126. Konttinen, H., Cabral-da-Silva, M. E. C., Ohtonen, S., Wojciechowski, S., Shakirzyanova, A., Caligola, S., et al. (2019). PSEN1DeltaE9, APPswe, and APOE4 confer disparate phenotypes in human iPSC-derived microglia. Stem Cell Reports, 13(4), 669–683. https://doi.org/10.1016/j.stemcr.2019.08.004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Koo, E. H., & Squazzo, S. L. (1994). Evidence that production and release of amyloid beta-protein involves the endocytic pathway. The Journal of Biological Chemistry, 269(26), 17386–17389.

    CAS  Article  Google Scholar 

  128. Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., et al. (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510(7503), 162–166. https://doi.org/10.1038/nature13392.

    CAS  Article  PubMed  Google Scholar 

  129. Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., et al. (2017). The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 47(3), 566–581.e569. https://doi.org/10.1016/j.immuni.2017.08.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. Kuchar, L., Ledvinova, J., Hrebicek, M., Myskova, H., Dvorakova, L., Berna, L., et al. (2009). Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): Report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. American Journal of Medical Genetics Part A, 149A(4), 613–621. https://doi.org/10.1002/ajmg.a.32712.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Kurzawa-Akanbi, M., Hanson, P. S., Blain, P. G., Lett, D. J., McKeith, I. G., Chinnery, P. F., et al. (2012). Glucocerebrosidase mutations alter the endoplasmic reticulum and lysosomes in Lewy body disease. Journal of Neurochemistry, 123(2), 298–309. https://doi.org/10.1111/j.1471-4159.2012.07879.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Kwart, D., Gregg, A., Scheckel, C., Murphy, E. A., Paquet, D., Duffield, M., et al. (2019). A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP β-CTFs, not Aβ. Neuron, 104(5), 1022. https://doi.org/10.1016/j.neuron.2019.11.010.

    CAS  Article  PubMed  Google Scholar 

  133. Kwon, Y. H., Kim, J., Kim, C. S., Tu, T. H., Kim, M. S., Suk, K., et al. (2017). Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Letters, 591(12), 1742–1751. https://doi.org/10.1002/1873-3468.12691.

    CAS  Article  PubMed  Google Scholar 

  134. Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics, 45(12), 1452–1458. https://doi.org/10.1038/ng.2802.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Lee, J.-H., Yu, W. H., Kumar, A., Lee, S., Mohan, P. S., Peterhoff, C. M., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell, 141(7), 1146–1158. https://doi.org/10.1016/j.cell.2010.05.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. Lee, J. S., Kanai, K., Suzuki, M., Kim, W. S., Yoo, H. S., Fu, Y., et al. (2019). Arylsulfatase A, a genetic modifier of Parkinson’s disease, is an alpha-synuclein chaperone. Brain, 142(9), 2845–2859. https://doi.org/10.1093/brain/awz205.

    Article  PubMed  Google Scholar 

  137. Lefterov, I., Wolfe, C. M., Fitz, N. F., Nam, K. N., Letronne, F., Biedrzycki, R. J., et al. (2019). APOE2 orchestrated differences in transcriptomic and lipidomic profiles of postmortem AD brain. Alzheimer’s Research & Therapy, 11(1), 113. https://doi.org/10.1186/s13195-019-0558-0.

    CAS  Article  Google Scholar 

  138. Lei, M., Teo, J. D., Song, H., McEwen, H. P., Lee, J. Y., Couttas, T. A., et al. (2019). Sphingosine kinase 2 potentiates amyloid deposition but protects against hippocampal volume loss and demyelination in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 39(48), 9645–9659. https://doi.org/10.1523/JNEUROSCI.0524-19.2019.

    CAS  Article  PubMed  Google Scholar 

  139. Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), 285–291. https://doi.org/10.1038/nature19057.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Li, Y., Liu, L., Barger, S. W., & Griffin, W. S. T. (2003). Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. The Journal of Neuroscience, 23(5), 1605. https://doi.org/10.1523/JNEUROSCI.23-05-01605.2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Liao, Y. C., Lee, W. J., Hwang, J. P., Wang, Y. F., Tsai, C. F., Wang, P. N., et al. (2014). ABCA7 gene and the risk of Alzheimer’s disease in Han Chinese in Taiwan. Neurobiol Aging, 35(10), 2423 e2427–2423 e2413. https://doi.org/10.1016/j.neurobiolaging.2014.05.009.

    CAS  Article  Google Scholar 

  142. Lin, Y.-T., Seo, J., Gao, F., Feldman, H. M., Wen, H.-L., Penney, J., et al. (2018). APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron, 98(6), 1141–1154.e1147. https://doi.org/10.1016/j.neuron.2018.05.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. Lingwood, D., & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327(5961), 46–50. https://doi.org/10.1126/science.1174621.

    CAS  Article  PubMed  Google Scholar 

  144. Lipinski, M. M., Zheng, B., Lu, T., Yan, Z., Py, B. F., Ng, A., et al. (2010). Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14164–14169. https://doi.org/10.1073/pnas.1009485107.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lippa, C. F., Fujiwara, H., Mann, D. M., Giasson, B., Baba, M., Schmidt, M. L., et al. (1998). Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. American Journal of Pathology, 153(5), 1365–1370. https://doi.org/10.1016/s0002-9440(10)65722-7.

    CAS  Article  Google Scholar 

  146. Liu, G., Li, F., Zhang, S., Jiang, Y., Ma, G., Shang, H., et al. (2014a). Analyzing large-scale samples confirms the association between the ABCA7 rs3764650 polymorphism and Alzheimer’s disease susceptibility. Molecular Neurobiology, 50(3), 757–764. https://doi.org/10.1007/s12035-014-8670-4.

    CAS  Article  PubMed  Google Scholar 

  147. Liu, G., Wang, H., Liu, J., Li, J., Li, H., Ma, G., et al. (2014b). The CLU gene rs11136000 variant is significantly associated with Alzheimer’s disease in Caucasian and Asian populations. NeuroMolecular Medicine, 16(1), 52–60. https://doi.org/10.1007/s12017-013-8250-1.

    CAS  Article  PubMed  Google Scholar 

  148. Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., et al. (2015). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell, 160(1–2), 177–190. https://doi.org/10.1016/j.cell.2014.12.019.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. Liu, L., MacKenzie, K. R., Putluri, N., Maletic-Savatic, M., & Bellen, H. J. (2017). The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metabolism, 26(5), 719–737 e716. https://doi.org/10.1016/j.cmet.2017.08.024.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Liu, P. P., Xie, Y., Meng, X. Y., & Kang, J. S. (2019). History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduction and Targeted Therapy, 4(1), 29. https://doi.org/10.1038/s41392-019-0063-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Lynch, J. R., Tang, W., Wang, H., Vitek, M. P., Bennett, E. R., Sullivan, P. M., et al. (2003). APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. Journal of Biological Chemistry, 278(49), 48529–48533. https://doi.org/10.1074/jbc.M306923200.

    CAS  Article  Google Scholar 

  152. Mann, D. M., Yates, P. O., & Stamp, J. E. (1978). The relationship between lipofuscin pigment and ageing in the human nervous system. Journal of the Neurological Sciences, 37(1–2), 83–93. https://doi.org/10.1016/0022-510x(78)90229-0.

    CAS  Article  PubMed  Google Scholar 

  153. Marchi, C., Adorni, M. P., Caffarra, P., Ronda, N., Spallazzi, M., Barocco, F., et al. (2019). ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer’s disease. Journal of Lipid Research, 60(8), 1449–1456. https://doi.org/10.1194/jlr.P091033.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Marian, O. C., Tran, C., & Don, A. S. (2020). Chapter 23—Altered lipid metabolic homeostasis in the pathogenesis of Alzheimer’s disease. In J. M. Ntambi (Ed.), Lipid signaling and metabolism (pp. 469–504). London, UK: Academic Press.

    Google Scholar 

  155. Marquer, C., Laine, J., Dauphinot, L., Hanbouch, L., Lemercier-Neuillet, C., Pierrot, N., et al. (2014). Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer’s disease early phenotypes. Molecular Neurodegeneration. https://doi.org/10.1186/1750-1326-9-60.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Marschallinger, J., Iram, T., Zardeneta, M., Lee, S. E., Lehallier, B., Haney, M. S., et al. (2020). Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nature Neuroscience, 23(2), 194–208. https://doi.org/10.1038/s41593-019-0566-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. Mata, I. F., Leverenz, J. B., Weintraub, D., Trojanowski, J. Q., Chen-Plotkin, A., Van Deerlin, V. M., et al. (2016). GBA variants are associated with a distinct pattern of cognitive deficits in Parkinson’s disease. Movement Disorders, 31(1), 95–102. https://doi.org/10.1002/mds.26359.

    CAS  Article  PubMed  Google Scholar 

  158. Matsuda, J. (2008). Sphingolipid activator proteins. In N. Taniguchi, A. Suzuki, Y. Ito, H. Narimatsu, T. Kawasaki, & S. Hase (Eds.), Experimental glycoscience: Glycobiology (pp. 125–129). Tokyo: Springer.

    Google Scholar 

  159. Mattson, M. P., Fu, W., Waeg, G., & Uchida, K. (1997). 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. NeuroReport, 8(9–10), 2275–2281. https://doi.org/10.1097/00001756-199707070-00036.

    CAS  Article  PubMed  Google Scholar 

  160. Mauch, D. H., Nägler, K., Schumacher, S., Göritz, C., Müller, E. C., Otto, A., et al. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. Science (New York, N.Y.), 294(5545), 1354–1357. https://doi.org/10.1126/science.294.5545.1354.

    CAS  Article  Google Scholar 

  161. Mazzulli, J. R., Xu, Y. H., Sun, Y., Knight, A. L., McLean, P. J., Caldwell, G. A., et al. (2011). Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell, 146(1), 37–52. https://doi.org/10.1016/j.cell.2011.06.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  162. Michikawa, M., Fan, Q. W., Isobe, I., & Yanagisawa, K. (2000). Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. Journal of Neurochemistry, 74(3), 1008–1016. https://doi.org/10.1046/j.1471-4159.2000.0741008.x.

    CAS  Article  PubMed  Google Scholar 

  163. Minagawa, H., Gong, J.-S., Jung, C.-G., Watanabe, A., Lund-Katz, S., Phillips, M. C., et al. (2009). Mechanism underlying apolipoprotein E (ApoE) isoform-dependent lipid efflux from neural cells in culture. Journal of Neuroscience Research, 87(11), 2498–2508. https://doi.org/10.1002/jnr.22073.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. Miron, V. E., Boyd, A., Zhao, J.-W., Yuen, T. J., Ruckh, J. M., Shadrach, J. L., et al. (2013). M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neuroscience, 16(9), 1211–1218. https://doi.org/10.1038/nn.3469.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. Mitroi, D. N., Pereyra-Gómez, G., Soto-Huelin, B., Senovilla, F., Kobayashi, T., Esteban, J. A., et al. (2019). NPC1 enables cholesterol mobilization during long-term potentiation that can be restored in Niemann–Pick disease type C by CYP46A1 activation. EMBO Reports, 20(11), e48143. https://doi.org/10.15252/embr.201948143.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. Morel, E., Chamoun, Z., Lasiecka, Z. M., Chan, R. B., Williamson, R. L., Vetanovetz, C., et al. (2013). Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nature Communications, 4, 2250. https://doi.org/10.1038/ncomms3250.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. Moreno-Garcia, A., Kun, A., Calero, O., Medina, M., & Calero, M. (2018). An overview of the role of lipofuscin in age-related neurodegeneration. Frontiers in Neuroscience, 12, 464. https://doi.org/10.3389/fnins.2018.00464.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Morrow, J. A., Hatters, D. M., Lu, B., Hochtl, P., Oberg, K. A., Rupp, B., et al. (2002). Apolipoprotein E4 forms a molten globule. A potential basis for its association with disease. Journal of Biological Chemistry, 277(52), 50380–50385. https://doi.org/10.1074/jbc.M204898200.

    CAS  Article  Google Scholar 

  169. Mueller, C., Ballard, C., Corbett, A., & Aarsland, D. (2017). The prognosis of dementia with Lewy bodies. The Lancet Neurology, 16(5), 390–398. https://doi.org/10.1016/S1474-4422(17)30074-1.

    Article  PubMed  Google Scholar 

  170. Murphy, K. E., Gysbers, A. M., Abbott, S. K., Tayebi, N., Kim, W. S., Sidransky, E., et al. (2014). Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson’s disease. Brain, 137(Pt 3), 834–848. https://doi.org/10.1093/brain/awt367.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Nalls, M. A., Duran, R., Lopez, G., Kurzawa-Akanbi, M., McKeith, I. G., Chinnery, P. F., et al. (2013). A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurology, 70(6), 727–735. https://doi.org/10.1001/jamaneurol.2013.1925.

    Article  PubMed  Google Scholar 

  172. Nalls, M. A., Pankratz, N., Lill, C. M., Do, C. B., Hernandez, D. G., Saad, M., et al. (2014). Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nature Genetics, 46(9), 989–993. https://doi.org/10.1038/ng.3043.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. Neudorfer, O., Giladi, N., Elstein, D., Abrahamov, A., Turezkite, T., Aghai, E., et al. (1996). Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM, 89(9), 691–694. https://doi.org/10.1093/qjmed/89.9.691.

    CAS  Article  PubMed  Google Scholar 

  174. Neumann, J., Bras, J., Deas, E., O’Sullivan, S. S., Parkkinen, L., Lachmann, R. H., et al. (2009a). Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain, 132(Pt 7), 1783–1794. https://doi.org/10.1093/brain/awp044.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Neumann, M., Rademakers, R., Roeber, S., Baker, M., Kretzschmar, H. A., & Mackenzie, I. R. (2009b). A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain, 132(Pt 11), 2922–2931. https://doi.org/10.1093/brain/awp214.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Newton, J., Milstien, S., & Spiegel, S. (2018). Niemann-Pick type C disease: The atypical sphingolipidosis. Advances in Biological Regulation, 70, 82–88. https://doi.org/10.1016/j.jbior.2018.08.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  177. Nilsson, O., & Svennerholm, L. (1982). Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. Journal of Neurochemistry, 39(3), 709–718.

    CAS  Article  Google Scholar 

  178. Nixon, R. A. (2017). Amyloid precursor protein and endosomal–lysosomal dysfunction in Alzheimer’s disease: Inseparable partners in a multifactorial disease. The FASEB Journal, 31(7), 2729–2743. https://doi.org/10.1096/fj.201700359.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  179. Nixon, R. A., Wegiel, J., Kumar, A., Yu, W. H., Peterhoff, C., Cataldo, A., et al. (2005). Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. Journal of Neuropathology and Experimental Neurology, 64(2), 113–122. https://doi.org/10.1093/jnen/64.2.113.

    Article  PubMed  Google Scholar 

  180. Nordestgaard, L. T., Tybjærg-Hansen, A., Nordestgaard, B. G., & Frikke-Schmidt, R. (2015). Loss-of-function mutation in ABCA1 and risk of Alzheimer’s disease and cerebrovascular disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 11(12), 1430–1438. https://doi.org/10.1016/j.jalz.2015.04.006.

    Article  Google Scholar 

  181. Nugent, A. A., Lin, K., Lengerich, B. V., Lianoglou, S., Przybyla, L., Davis, S. S., et al. (2020). TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron, 105(5), 837–854.e839. https://doi.org/10.1016/j.neuron.2019.12.007.

    CAS  Article  PubMed  Google Scholar 

  182. Nuriel, T., Peng, K. Y., Ashok, A., Dillman, A. A., Figueroa, H. Y., Apuzzo, J., et al. (2017). The endosomal–lysosomal pathway is dysregulated by APOE4 expression in vivo. Frontiers in Neuroscience, 11, 702. https://doi.org/10.3389/fnins.2017.00702.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Olney, N. T., Spina, S., & Miller, B. L. (2017). Frontotemporal dementia. Neurologic Clinics, 35(2), 339–374. https://doi.org/10.1016/j.ncl.2017.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ophir, G., Amariglio, N., Jacob-Hirsch, J., Elkon, R., Rechavi, G., & Michaelson, D. M. (2005). Apolipoprotein E4 enhances brain inflammation by modulation of the NF-κB signaling cascade. Neurobiology of Disease, 20(3), 709–718. https://doi.org/10.1016/j.nbd.2005.05.002.

    CAS  Article  PubMed  Google Scholar 

  185. Orme, T., Guerreiro, R., & Bras, J. (2018). The genetics of dementia with Lewy bodies: Current understanding and future directions. Current Neurology and Neuroscience Reports, 18(10), 67. https://doi.org/10.1007/s11910-018-0874-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  186. Park, H. K., & Chung, S. J. (2013). New perspective on parkinsonism in frontotemporal lobar degeneration. Journal of Movement Disorders, 6(1), 1–8. https://doi.org/10.14802/jmd.13001.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Parkkinen, L., Pirttila, T., & Alafuzoff, I. (2008). Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathologica, 115(4), 399–407. https://doi.org/10.1007/s00401-008-0346-6.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Pimenova, A. A., Raj, T., & Goate, A. M. (2018). Untangling genetic risk for Alzheimer’s disease. Biological Psychiatry, 83(4), 300–310. https://doi.org/10.1016/j.biopsych.2017.05.014.

    CAS  Article  PubMed  Google Scholar 

  189. Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D., & Weisgraber, K. H. (1987). Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. The Journal of Biological Chemistry, 262(29), 14352–14360.

    CAS  Article  Google Scholar 

  190. Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F., & Tifft, C. J. (2018). Lysosomal storage diseases. Nature Reviews Disease Primers, 4(1), 27. https://doi.org/10.1038/s41572-018-0025-4.

    Article  PubMed  Google Scholar 

  191. Poliani, P. L., Wang, Y., Fontana, E., Robinette, M. L., Yamanishi, Y., Gilfillan, S., et al. (2015). TREM2 sustains microglial expansion during aging and response to demyelination. The Journal of Clinical Investigation, 125(5), 2161–2170. https://doi.org/10.1172/JCI77983.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Prasad, H., & Rao, R. (2018). Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proceedings of the National Academy of Sciences, 115(28), E6640–E6649. https://doi.org/10.1073/pnas.1801612115.

    CAS  Article  Google Scholar 

  193. Price, J. L., McKeel, D. W., Jr., Buckles, V. D., Roe, C. M., Xiong, C., Grundman, M., et al. (2009). Neuropathology of nondemented aging: Presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 30(7), 1026–1036. https://doi.org/10.1016/j.neurobiolaging.2009.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Puglielli, L., Konopka, G., Pack-Chung, E., Ingano, L. A. M., Berezovska, O., Hyman, B. T., et al. (2001). Acyl-coenzyme A: Cholesterol acyltransferase modulates the generation of the amyloid β-peptide. Nature Cell Biology, 3(10), 905–912. https://doi.org/10.1038/ncb1001-905.

    CAS  Article  PubMed  Google Scholar 

  195. Quadri, M., Mandemakers, W., Grochowska, M. M., Masius, R., Geut, H., Fabrizio, E., et al. (2018). LRP10 genetic variants in familial Parkinson’s disease and dementia with Lewy bodies: A genome-wide linkage and sequencing study. The Lancet Neurology, 17(7), 597–608. https://doi.org/10.1016/S1474-4422(18)30179-0.

    CAS  Article  PubMed  Google Scholar 

  196. Rademakers, R., Eriksen, J. L., Baker, M., Robinson, T., Ahmed, Z., Lincoln, S. J., et al. (2008). Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Human Molecular Genetics, 17(23), 3631–3642. https://doi.org/10.1093/hmg/ddn257.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  197. Ratnavalli, E., Brayne, C., Dawson, K., & Hodges, J. R. (2002). The prevalence of frontotemporal dementia. Neurology, 58(11), 1615–1621. https://doi.org/10.1212/wnl.58.11.1615.

    CAS  Article  PubMed  Google Scholar 

  198. Rawat, V., Wang, S., Sima, J., Bar, R., Liraz, O., Gundimeda, U., et al. (2019). ApoE4 alters ABCA1 membrane trafficking in astrocytes. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39(48), 9611–9622. https://doi.org/10.1523/JNEUROSCI.1400-19.2019.

    CAS  Article  Google Scholar 

  199. Reale, M., Kamal, M. A., Velluto, L., Gambi, D., Di Nicola, M., & Greig, N. H. (2012). Relationship between inflammatory mediators, Aβ levels and ApoE genotype in Alzheimer disease. Current Alzheimer Research, 9(4), 447–457. https://doi.org/10.2174/156720512800492549.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  200. Reas, E. T., Laughlin, G. A., Bergstrom, J., Kritz-Silverstein, D., Barrett-Connor, E., & McEvoy, L. K. (2019). Effects of APOE on cognitive aging in community-dwelling older adults. Neuropsychology, 33(3), 406–416. https://doi.org/10.1037/neu0000501.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Reczek, D., Schwake, M., Schroder, J., Hughes, H., Blanz, J., Jin, X., et al. (2007). LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell, 131(4), 770–783. https://doi.org/10.1016/j.cell.2007.10.018.

    CAS  Article  PubMed  Google Scholar 

  202. Reiman, E. M., Arboleda-Velasquez, J. F., Quiroz, Y. T., Huentelman, M. J., Beach, T. G., Caselli, R. J., et al. (2020). Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 11(1), 667. https://doi.org/10.1038/s41467-019-14279-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  203. Reitz, C., Jun, G., Naj, A., Rajbhandary, R., Vardarajan, B. N., Wang, L. S., et al. (2013). Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 4, and the risk of late-onset Alzheimer disease in African Americans. JAMA, 309(14), 1483–1492. https://doi.org/10.1001/jama.2013.2973.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  204. Riddell, D. R., Zhou, H., Atchison, K., Warwick, H. K., Atkinson, P. J., Jefferson, J., et al. (2008). Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. The Journal of Neuroscience, 28(45), 11445–11453. https://doi.org/10.1523/JNEUROSCI.1972-08.2008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  205. Rigante, D., Cipolla, C., Basile, U., Gulli, F., & Savastano, M. C. (2017). Overview of immune abnormalities in lysosomal storage disorders. Immunology Letters, 188, 79–85. https://doi.org/10.1016/j.imlet.2017.07.004.

    CAS  Article  PubMed  Google Scholar 

  206. Robak, L. A., Jansen, I. E., van Rooij, J., Uitterlinden, A. G., Kraaij, R., Jankovic, J., et al. (2017). Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain, 140(12), 3191–3203. https://doi.org/10.1093/brain/awx285.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Rocha, E. M., Smith, G. A., Park, E., Cao, H., Brown, E., Hallett, P., et al. (2015a). Progressive decline of glucocerebrosidase in aging and Parkinson’s disease. Annals of Clinical and Translational Neurology, 2(4), 433–438. https://doi.org/10.1002/acn3.177.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Rocha, E. M., Smith, G. A., Park, E., Cao, H., Graham, A. R., Brown, E., et al. (2015b). Sustained systemic glucocerebrosidase inhibition induces brain alpha-synuclein aggregation, microglia and complement C1q activation in mice. Antioxidants & Redox Signaling, 23(6), 550–564. https://doi.org/10.1089/ars.2015.6307.

    CAS  Article  Google Scholar 

  209. Rodrigue, K. M., Kennedy, K. M., Devous, M. D., Sr., Rieck, J. R., Hebrank, A. C., Diaz-Arrastia, R., et al. (2012). beta-Amyloid burden in healthy aging: Regional distribution and cognitive consequences. Neurology, 78(6), 387–395. https://doi.org/10.1212/WNL.0b013e318245d295.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  210. Rodríguez, E., Mateo, I., Infante, J., Llorca, J., Berciano, J., & Combarros, O. (2006). Cholesteryl ester transfer protein (CETP) polymorphism modifies the Alzheimer’s disease risk associated with APOE epsilon4 allele. Journal of Neurology, 253(2), 181–185. https://doi.org/10.1007/s00415-005-0945-2.

    CAS  Article  PubMed  Google Scholar 

  211. Rossor, M. N., Fox, N. C., Mummery, C. J., Schott, J. M., & Warren, J. D. (2010). The diagnosis of young-onset dementia. The Lancet Neurology, 9(8), 793–806. https://doi.org/10.1016/s1474-4422(10)70159-9.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Ryan, C. L., Baranowski, D. C., Chitramuthu, B. P., Malik, S., Li, Z., Cao, M., et al. (2009). Progranulin is expressed within motor neurons and promotes neuronal cell survival. BMC Neuroscience, 10, 130. https://doi.org/10.1186/1471-2202-10-130.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  213. Saito, Y., Suzuki, K., Nanba, E., Yamamoto, T., Ohno, K., & Murayama, S. (2002). Niemann-Pick type C disease: Accelerated neurofibrillary tangle formation and amyloid β deposition associated with apolipoprotein E ε4 homozygosity. Annals of Neurology, 52(3), 351–355. https://doi.org/10.1002/ana.10266.

    CAS  Article  PubMed  Google Scholar 

  214. Sakae, N., Liu, C.-C., Shinohara, M., Frisch-Daiello, J., Ma, L., Yamazaki, Y., et al. (2016). ABCA7 deficiency accelerates amyloid-β generation and Alzheimer’s neuronal pathology. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(13), 3848–3859. https://doi.org/10.1523/JNEUROSCI.3757-15.2016.

    CAS  Article  Google Scholar 

  215. Sandhoff, K. (2013). Metabolic and cellular bases of sphingolipidoses. Biochemical Society Transactions, 41(6), 1562–1568. https://doi.org/10.1042/BST20130083.

    CAS  Article  PubMed  Google Scholar 

  216. Sando, S. B., Melquist, S., Cannon, A., Hutton, M. L., Sletvold, O., Saltvedt, I., et al. (2008). APOE ε4 lowers age at onset and is a high risk factor for Alzheimer’s disease; A case control study from central Norway. BMC Neurology, 8(1), 9. https://doi.org/10.1186/1471-2377-8-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  217. Sardi, S. P., Clarke, J., Kinnecom, C., Tamsett, T. J., Li, L., Stanek, L. M., et al. (2011). CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 12101–12106. https://doi.org/10.1073/pnas.1108197108.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  218. Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., et al. (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43(8), 1467–1472. https://doi.org/10.1212/wnl.43.8.1467.

    CAS  Article  PubMed  Google Scholar 

  219. Schmitt, S., Castelvetri, L. C., & Simons, M. (2015). Metabolism and functions of lipids in myelin. Biochimica et Biophysica Acta, 1851(8), 999–1005. https://doi.org/10.1016/j.bbalip.2014.12.016.

    CAS  Article  PubMed  Google Scholar 

  220. Schnaar, R. L. (2019). The biology of gangliosides. Advances in Carbohydrate Chemistry and Biochemistry, 76, 113–148. https://doi.org/10.1016/bs.accb.2018.09.002.

    Article  PubMed  Google Scholar 

  221. Shi, C. H., Tang, B. S., Wang, L., Lv, Z. Y., Wang, J., Luo, L. Z., et al. (2011). PLA2G6 gene mutation in autosomal recessive early-onset parkinsonism in a Chinese cohort. Neurology, 77(1), 75–81. https://doi.org/10.1212/WNL.0b013e318221acd3.

    Article  PubMed  Google Scholar 

  222. Shibuya, Y., Chang, C. C. Y., Huang, L.-H., Bryleva, E. Y., & Chang, T.-Y. (2014). Inhibiting ACAT1/SOAT1 in microglia stimulates autophagy-mediated lysosomal proteolysis and increases Aβ1-42 clearance. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(43), 14484–14501. https://doi.org/10.1523/JNEUROSCI.2567-14.2014.

    CAS  Article  Google Scholar 

  223. Shibuya, Y., Niu, Z., Bryleva, E. Y., Harris, B. T., Murphy, S. R., Kheirollah, A., et al. (2015). Acyl-coenzyme A:cholesterol acyltransferase 1 blockage enhances autophagy in the neurons of triple transgenic Alzheimer’s disease mouse and reduces human P301L-tau content at the presymptomatic stage. Neurobiology of Aging, 36(7), 2248–2259. https://doi.org/10.1016/j.neurobiolaging.2015.04.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  224. Shulman, J. M., Chen, K., Keenan, B. T., Chibnik, L. B., Fleisher, A., Thiyyagura, P., et al. (2013). Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurology, 70(9), 1150–1157. https://doi.org/10.1001/jamaneurol.2013.2815.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Sidransky, E., Nalls, M. A., Aasly, J. O., Aharon-Peretz, J., Annesi, G., Barbosa, E. R., et al. (2009). Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. New England Journal of Medicine, 361(17), 1651–1661. https://doi.org/10.1056/NEJMoa0901281.

    CAS  Article  Google Scholar 

  226. Sims, R., van der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., et al. (2017). Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nature Genetics, 49(9), 1373–1384. https://doi.org/10.1038/ng.3916.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  227. Sina, F., Shojaee, S., Elahi, E., & Paisan-Ruiz, C. (2009). R632W mutation in PLA2G6 segregates with dystonia-parkinsonism in a consanguineous Iranian family. European Journal of Neurology, 16(1), 101–104. https://doi.org/10.1111/j.1468-1331.2008.02356.x.

    CAS  Article  PubMed  Google Scholar 

  228. Siuda, J., Fujioka, S., & Wszolek, Z. K. (2014). Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism & Related Disorders, 20(9), 957–964. https://doi.org/10.1016/j.parkreldis.2014.06.004.

    Article  Google Scholar 

  229. Sleat, D. E., Wiseman, J. A., El-Banna, M., Price, S. M., Verot, L., Shen, M. M., et al. (2004). Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 5886–5891. https://doi.org/10.1073/pnas.0308456101.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  230. Slooter, A. J. C., Cruts, M., Kalmijn, S., Hofman, A., Breteler, M. M. B., Broeckhoven, C. V., et al. (1998). Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study: The Rotterdam Study. Archives of Neurology, 55(7), 964–968. https://doi.org/10.1001/archneur.55.7.964.

    CAS  Article  PubMed  Google Scholar 

  231. Smith, K. R., Damiano, J., Franceschetti, S., Carpenter, S., Canafoglia, L., Morbin, M., et al. (2012). Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. American Journal of Human Genetics, 90(6), 1102–1107. https://doi.org/10.1016/j.ajhg.2012.04.021.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  232. Song, W., Hooli, B., Mullin, K., Jin, S. C., Cella, M., Ulland, T. K., et al. (2017). Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. Alzheimer’s & Dementia, 13(4), 381–387. https://doi.org/10.1016/j.jalz.2016.07.004.

    Article  Google Scholar 

  233. Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319(5870), 1668–1672. https://doi.org/10.1126/science.1154584.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  234. Stefanatos, R., & Sanz, A. (2018). The role of mitochondrial ROS in the aging brain. FEBS Letters, 592(5), 743–758. https://doi.org/10.1002/1873-3468.12902.

    CAS  Article  PubMed  Google Scholar 

  235. Suzuki, K., Iseki, E., Katsuse, O., Yamaguchi, A., Katsuyama, K., Aoki, I., et al. (2003). Neuronal accumulation of alpha- and beta-synucleins in the brain of a GM2 gangliosidosis mouse model. NeuroReport, 14(4), 551–554. https://doi.org/10.1097/01.wnr.0000061017.47393.dc.

    CAS  Article  PubMed  Google Scholar 

  236. Suzuki, K., Iseki, E., Togo, T., Yamaguchi, A., Katsuse, O., Katsuyama, K., et al. (2007). Neuronal and glial accumulation of alpha- and beta-synucleins in human lipidoses. Acta Neuropathologica, 114(5), 481–489. https://doi.org/10.1007/s00401-007-0264-z.

    CAS  Article  PubMed  Google Scholar 

  237. Tachibana, M., Holm, M.-L., Liu, C.-C., Shinohara, M., Aikawa, T., Oue, H., et al. (2019). APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP1. The Journal of Clinical Investigation, 129(3), 1272–1277. https://doi.org/10.1172/JCI124853.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Taguchi, Y. V., Liu, J., Ruan, J., Pacheco, J., Zhang, X., Abbasi, J., et al. (2017). Glucosylsphingosine promotes alpha-synuclein pathology in mutant GBA-associated Parkinson’s disease. The Journal of Neuroscience, 37(40), 9617–9631. https://doi.org/10.1523/JNEUROSCI.1525-17.2017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  239. Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011). BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(18), 6850–6857. https://doi.org/10.1523/JNEUROSCI.6467-10.2011.

    CAS  Article  Google Scholar 

  240. Tamargo, R. J., Velayati, A., Goldin, E., & Sidransky, E. (2012). The role of saposin C in Gaucher disease. Molecular Genetics and Metabolism, 106(3), 257–263. https://doi.org/10.1016/j.ymgme.2012.04.024.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  241. Tanaka, Y., Suzuki, G., Matsuwaki, T., Hosokawa, M., Serrano, G., Beach, T. G., et al. (2017). Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Human Molecular Genetics, 26(5), 969–988. https://doi.org/10.1093/hmg/ddx011.

    CAS  Article  PubMed  Google Scholar 

  242. Tayebi, N., Walker, J., Stubblefield, B., Orvisky, E., LaMarca, M. E., Wong, K., et al. (2003). Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Molecular Genetics and Metabolism, 79(2), 104–109.

    CAS  Article  Google Scholar 

  243. Tayebi, N., Parisiadou, L., Berhe, B., Gonzalez, A. N., Serra-Vinardell, J., Tamargo, R. J., et al. (2017). Glucocerebrosidase haploinsufficiency in A53T alpha-synuclein mice impacts disease onset and course. Molecular Genetics and Metabolism, 122(4), 198–208. https://doi.org/10.1016/j.ymgme.2017.11.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  244. Tome, S. O., Vandenberghe, R., Ospitalieri, S., Van Schoor, E., Tousseyn, T., Otto, M., et al. (2020). Distinct molecular patterns of TDP-43 pathology in Alzheimer’s disease: Relationship with clinical phenotypes. Acta Neuropathologica Communications, 8(1), 61. https://doi.org/10.1186/s40478-020-00934-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  245. Tsuang, D., Leverenz, J. B., Lopez, O. L., Hamilton, R. L., Bennett, D. A., Schneider, J. A., et al. (2013). APOE epsilon4 increases risk for dementia in pure synucleinopathies. JAMA Neurology, 70(2), 223–228. https://doi.org/10.1001/jamaneurol.2013.600.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Valdez, C., Wong, Y. C., Schwake, M., Bu, G., Wszolek, Z. K., & Krainc, D. (2017). Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Human Molecular Genetics, 26(24), 4861–4872. https://doi.org/10.1093/hmg/ddx364.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  247. Valdez, C., Ysselstein, D., Young, T. J., Zheng, J., & Krainc, D. (2019). Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddz229.

    Article  Google Scholar 

  248. Van Acker, Z. P., Bretou, M., & Annaert, W. (2019). Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: Impact of genetic risk factors. Molecular Neurodegeneration, 14(1), 20. https://doi.org/10.1186/s13024-019-0323-7.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Van Damme, P., Van Hoecke, A., Lambrechts, D., Vanacker, P., Bogaert, E., van Swieten, J., et al. (2008). Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. Journal of Cell Biology, 181(1), 37–41. https://doi.org/10.1083/jcb.200712039.

    CAS  Article  Google Scholar 

  250. van der Kant, R., Langness, V. F., Herrera, C. M., Williams, D. A., Fong, L. K., Leestemaker, Y., et al. (2019). Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-β in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell, 24(3), 363–375.e369. https://doi.org/10.1016/j.stem.2018.12.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  251. Vann Jones, S. A., & O’Brien, J. T. (2014). The prevalence and incidence of dementia with Lewy bodies: A systematic review of population and clinical studies. Psychological Medicine, 44(4), 673–683. https://doi.org/10.1017/S0033291713000494.

    CAS  Article  PubMed  Google Scholar 

  252. Vieira, R. T., Caixeta, L., Machado, S., Silva, A. C., Nardi, A. E., Arias-Carrion, O., et al. (2013). Epidemiology of early-onset dementia: A review of the literature. Clinical Practice & Epidemiology in Mental Health, 9, 88–95. https://doi.org/10.2174/1745017901309010088.

    Article  Google Scholar 

  253. Vitek, M. P., Brown, C. M., & Colton, C. A. (2009). APOE genotype-specific differences in the innate immune response. Neurobiology of Aging, 30(9), 1350–1360. https://doi.org/10.1016/j.neurobiolaging.2007.11.014.

    CAS  Article  PubMed  Google Scholar 

  254. Vitner, E. B., Platt, F. M., & Futerman, A. H. (2010). Common and uncommon pathogenic cascades in lysosomal storage diseases. Journal of Biological Chemistry, 285(27), 20423–20427. https://doi.org/10.1074/jbc.R110.134452.

    CAS  Article  Google Scholar 

  255. Wahrle, S. E., Jiang, H., Parsadanian, M., Legleiter, J., Han, X., Fryer, J. D., et al. (2004). ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. Journal of Biological Chemistry, 279(39), 40987–40993. https://doi.org/10.1074/jbc.M407963200.

    CAS  Article  Google Scholar 

  256. Wahrle, S. E., Jiang, H., Parsadanian, M., Hartman, R. E., Bales, K. R., Paul, S. M., et al. (2005). Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. Journal of Biological Chemistry, 280(52), 43236–43242. https://doi.org/10.1074/jbc.M508780200.

    CAS  Article  Google Scholar 

  257. Wahrle, S. E., Jiang, H., Parsadanian, M., Kim, J., Li, A., Knoten, A., et al. (2008). Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. Journal of Clinical Investigation, 118(2), 671–682. https://doi.org/10.1172/JCI33622.

    CAS  Article  Google Scholar 

  258. Walker, Z., Possin, K. L., Boeve, B. F., & Aarsland, D. (2015). Lewy body dementias. Lancet, 386(10004), 1683–1697. https://doi.org/10.1016/S0140-6736(15)00462-6.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Wang, Y., Cella, M., Mallinson, K., Ulrich, J. D., Young, K. L., Robinette, M. L., et al. (2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell, 160(6), 1061–1071. https://doi.org/10.1016/j.cell.2015.01.049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  260. Ward, M. E., Chen, R., Huang, H. Y., Ludwig, C., Telpoukhovskaia, M., Taubes, A., et al. (2017). Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Science Translational Medicine, 9(385), eaah5642. https://doi.org/10.1126/scitranslmed.aah5642.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  261. Wils, H., Kleinberger, G., Pereson, S., Janssens, J., Capell, A., Van Dam, D., et al. (2012). Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. The Journal of Pathology, 228(1), 67–76. https://doi.org/10.1002/path.4043.

    CAS  Article  PubMed  Google Scholar 

  262. Winner, B., Jappelli, R., Maji, S. K., Desplats, P. A., Boyer, L., Aigner, S., et al. (2011). In vivo demonstration that alpha-synuclein oligomers are toxic. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4194–4199. https://doi.org/10.1073/pnas.1100976108.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Xian, X., Pohlkamp, T., Durakoglugil, M. S., Wong, C. H., Beck, J. K., Lane-Donovan, C., et al. (2018). Reversal of ApoE4-induced recycling block as a novel prevention approach for Alzheimer’s disease. eLife. https://doi.org/10.7554/eLife.40048.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Xu, Y. H., Sun, Y., Ran, H., Quinn, B., Witte, D., & Grabowski, G. A. (2011). Accumulation and distribution of alpha-synuclein and ubiquitin in the CNS of Gaucher disease mouse models. Molecular Genetics and Metabolism, 102(4), 436–447. https://doi.org/10.1016/j.ymgme.2010.12.014.

    CAS  Article  PubMed  Google Scholar 

  265. Yadav, U. C., & Ramana, K. V. (2013). Regulation of NF-kappaB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxidative Medicine and Cellular Longevity, 2013, 690545. https://doi.org/10.1155/2013/690545.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  266. Yassine, H. N., Feng, Q., Chiang, J., Petrosspour, L. M., Fonteh, A. N., Chui, H. C., et al. (2016). ABCA1-mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer’s disease. Journal of the American Heart Association, 5(2), e002886. https://doi.org/10.1161/JAHA.115.002886.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Ye, S., Huang, Y., Müllendorff, K., Dong, L., Giedt, G., Meng, E. C., et al. (2005). Apolipoprotein (apo) E4 enhances amyloid beta peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18700–18705. https://doi.org/10.1073/pnas.0508693102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  268. Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C., & Sheng, M. (2016). TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron, 91(2), 328–340. https://doi.org/10.1016/j.neuron.2016.06.015.

    CAS  Article  PubMed  Google Scholar 

  269. Yiannopoulou, K. G., & Papageorgiou, S. G. (2020). Current and future treatments in Alzheimer disease: An update. Journal of Central Nervous System Disease, 12, 1179573520907397. https://doi.org/10.1177/1179573520907397.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Yin, F., Dumont, M., Banerjee, R., Ma, Y., Li, H., Lin, M. T., et al. (2010). Behavioral deficits and progressive neuropathology in progranulin-deficient mice: A mouse model of frontotemporal dementia. The FASEB Journal, 24(12), 4639–4647. https://doi.org/10.1096/fj.10-161471.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  271. Yvan-Charvet, L., Ranalletta, M., Wang, N., Han, S., Terasaka, N., Li, R., et al. (2007). Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. Journal of Clinical Investigation, 117(12), 3900–3908. https://doi.org/10.1172/JCI33372.

    CAS  Article  Google Scholar 

  272. Yvan-Charvet, L., Welch, C., Pagler, T. A., Ranalletta, M., Lamkanfi, M., Han, S., et al. (2008). Increased inflammatory gene expression in ABC transporter-deficient macrophages: Free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation, 118(18), 1837–1847. https://doi.org/10.1161/CIRCULATIONAHA.108.793869.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  273. Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O’Keeffe, S., et al. (2014). An RNA-Sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience, 34(36), 11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  274. Zhang, S., Li, X., Ma, G., Jiang, Y., Liao, M., Feng, R., et al. (2016). CLU rs9331888 polymorphism contributes to Alzheimer’s disease susceptibility in Caucasian but not East Asian populations. Molecular Neurobiology, 53(3), 1446–1451. https://doi.org/10.1007/s12035-015-9098-1.

    CAS  Article  PubMed  Google Scholar 

  275. Zhao, N., Liu, C.-C., Van Ingelgom, A. J., Martens, Y. A., Linares, C., Knight, J. A., et al. (2017). Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron, 96(1), 115–129.e115. https://doi.org/10.1016/j.neuron.2017.09.003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  276. Zhao, Y., Wu, X., Li, X., Jiang, L.-L., Gui, X., Liu, Y., et al. (2018). TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron, 97(5), 1023–1031.e1027. https://doi.org/10.1016/j.neuron.2018.01.031.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  277. Zhao, N., Attrebi, O. N., Ren, Y., Qiao, W., Sonustun, B., Martens, Y. A., et al. (2020). APOE4 exacerbates alpha-synuclein pathology and related toxicity independent of amyloid. Science Translational Medicine, 12(529), eaay1809. https://doi.org/10.1126/scitranslmed.aay1809.

    CAS  Article  PubMed  Google Scholar 

  278. Zhou, X., Sun, L., Bastos de Oliveira, F., Qi, X., Brown, W. J., Smolka, M. B., et al. (2015). Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. Journal of Cell Biology, 210(6), 991–1002. https://doi.org/10.1083/jcb.201502029.

    CAS  Article  Google Scholar 

  279. Zhou, X., Sun, L., Bracko, O., Choi, J. W., Jia, Y., Nana, A. L., et al. (2017). Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nature Communications, 8, 15277. https://doi.org/10.1038/ncomms15277.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  280. Zhu, J., Nathan, C., Jin, W., Sim, D., Ashcroft, G. S., Wahl, S. M., et al. (2002). Conversion of proepithelin to epithelins: Roles of SLPI and elastase in host defense and wound repair. Cell, 111(6), 867–878. https://doi.org/10.1016/s0092-8674(02)01141-8.

    CAS  Article  PubMed  Google Scholar 

  281. Zhu, L., Zhong, M., Elder, G. A., Sano, M., Holtzman, D. M., Gandy, S., et al. (2015). Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 112(38), 11965–11970. https://doi.org/10.1073/pnas.1510011112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Project Grants APP1100626 and APP1163429 from the National Health and Medical Research Council of Australia (A.S.D.). J.Y.L. and O.C.M. are supported by Research Training Program scholarships (Department of Education, Skills and Employment, Australia).

Author information

Affiliations

Authors

Contributions

All authors performed the literature searches and wrote sections of the manuscript. JYL and ASD drafted and critically reviewed the complete version.

Corresponding author

Correspondence to Anthony S. Don.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Marian, O.C. & Don, A.S. Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia. Neuromol Med 23, 1–24 (2021). https://doi.org/10.1007/s12017-021-08644-4

Download citation

Keywords

  • Alzheimer’s disease
  • APOE
  • Frontotemporal dementia
  • Granulin
  • Dementia with Lewy bodies
  • Parkinson’s disease
  • Glucocerebrosidase
  • Lipid
  • Dementia