Skip to main content

A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury

Abstract

Functional electrical stimulation (FES) has been widely adopted to elicit muscle contraction in rehabilitation training after spinal cord injury (SCI). Conventional FES modalities include stimulations coupled with rowing, cycling, assisted walking and other derivatives. In this review, we studied thirteen clinical reports from the past 5 years and evaluated the effects of various FES aided rehabilitation plans on the functional recovery after SCI, highlighting upper and lower extremity strength, cardiopulmonary function, and balder control. We further explored potential mechanisms of FES using the Hebbian theory and lumbar locomotor central pattern generators. Overall, FES can be used to improve respiration, circulation, hand strength, mobility, and metabolism after SCI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agrawal, G., Sherman, D., Maybhate, A., Gorelik, M., Kerr, D. A., Thakor, N. V., et al. (2010). Slope analysis of somatosensory evoked potentials in spinal cord injury for detecting contusion injury and focal demyelination. Journal of Clinical Neuroscience, 17(9), 1159–1164. https://doi.org/10.1016/j.jocn.2010.02.005.

    Article  PubMed  Google Scholar 

  2. Agrawal, G., Sherman, D., Thakor, N., & All, A. (2008). A novel shape analysis technique for somatosensory evoked potentials. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1–8, (p. 4688). https://doi.org/10.1109/Iembs.2008.4650259

  3. Al-Nashash, H., Fatoo, N. A., Mirza, N. N., Ahmed, R. I., Agrawal, G., Thakor, N. V., et al. (2009). Spinal cord injury detection and monitoring using spectral coherence. IEEE Transactions on Biomedical Engineering, 56(8), 1971–1979. https://doi.org/10.1109/Tbme.2009.2018296.

    Article  PubMed  Google Scholar 

  4. All, A. H., Bazley, F. A., Gupta, S., Pashai, N., Hu, C., Pourmorteza, A., et al. (2012). Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury. PLoS ONE, 7(10), e47645. https://doi.org/10.1371/journal.pone.0047645.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Ambrosini, E., Ferrante, S., Schauer, T., Ferrigno, G., Molteni, F., & Pedrocchi, A. (2010). Design of a symmetry controller for cycling induced by electrical stimulation: Preliminary results on post-acute stroke patients. Artificial Organs. https://doi.org/10.1111/j.1525-1594.2009.00941.x.

    Article  PubMed  Google Scholar 

  6. American Spinal Injury Association. (2002). International standards for neurological classification of SCI. The Journal of Spinal Cord Medicine, 34, 535–546.

    Google Scholar 

  7. Baker, L. L., Bowman, B. R., & McNeal, D. R. (1988). Effects of waveform on comfort during neuromuscular electrical stimulation. Clinical Orthopaedics and Related Research, 233, 75–85.

    Google Scholar 

  8. Bakkum, A. J., de Groot, S., Stolwijk-Swuste, J. M., van Kuppevelt, D. J., van der Woude, L. H., et al. (2015). Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: A 16-week randomized controlled trial. Spinal Cord, 53(5), 395–401. https://doi.org/10.1038/sc.2014.237.

    CAS  Article  PubMed  Google Scholar 

  9. Bareyre, F. M., Kerschensteiner, M., Raineteau, O., Mettenleiter, T. C., Weinmann, O., & Schwab, M. E. (2004). The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nature Neuroscience, 7(3), 269–277. https://doi.org/10.1038/nn1195.

    CAS  Article  PubMed  Google Scholar 

  10. Bazley, F. A., All, A. H., Thakor, N. V., & Maybhate, A. (2011). Plasticity associated changes in cortical somatosensory evoked potentials following spinal cord injury in rats. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Embc), (pp. 2005–2008).

  11. Bellman, M. J., Cheng, T. H., Downey, R. J., & Dixon, W. E. (2014). Stationary cycling induced by switched functional electrical stimulation control. In American Control Conference (Acc), (pp. 4802–4809).

  12. Bergquist, A. J., Clair, J. M., Lagerquist, O., Mang, C. S., Okuma, Y., & Collins, D. F. (2011). Neuromuscular electrical stimulation: Implications of the electrically evoked sensory volley. European Journal of Applied Physiology, 111(10), 2409–2426. https://doi.org/10.1007/s00421-011-2087-9.

    CAS  Article  PubMed  Google Scholar 

  13. Bersch, I., & Friden, J. (2016). Role of functional electrical stimulation in tetraplegia hand surgery. Archives of Physical Medicine and Rehabilitation, 97(6 Suppl), S154–159. https://doi.org/10.1016/j.apmr.2016.01.035.

    Article  PubMed  Google Scholar 

  14. Bhadra, N., & Peckham, P. H. (1997). Peripheral nerve stimulation for restoration of motor function. Journal of Clinical Neurophysiology, 14(5), 378–393.

    CAS  PubMed  Google Scholar 

  15. Bickel, C. S., Slade, J. M., VanHiel, L. R., Warren, G. L., & Dudley, G. A. (2004). Variable-frequency-train stimulation of skeletal muscle after spinal cord injury. Journal of Rehabilitation Research and Development, 41(1), 33–40.

    PubMed  Google Scholar 

  16. Brindley, G. S. (1977). An implant to empty the bladder or close the urethra. Journal of Neurology, Neurosurgery and Psychiatry, 40(4), 358–369. https://doi.org/10.1136/jnnp.40.4.358.

    CAS  Article  PubMed  Google Scholar 

  17. Carel, C., Loubinoux, I., Boulanouar, K., Manelfe, C., Rascol, O., Celsis, P., et al. (2000). Neural substrate for the effects of passive training on sensorimotor cortical representation: A study with functional magnetic resonance imaging in healthy subjects. Journal of Cerebral Blood Flow & Metabolism, 20(3), 478–484.

    CAS  Google Scholar 

  18. Coupaud, S., Gollee, H., Hunt, K. J., Fraser, M. H., Allan, D. B., & McLean, A. N. (2008). Arm-cranking exercise assisted by Functional Electrical Stimulation in C6 tetraplegia: A pilot study. Technology and Health Care, 16(6), 415–427.

    CAS  PubMed  Google Scholar 

  19. Creasey, G. H., & Craggs, M. D. (2012). Functional electrical stimulation for bladder, bowel, and sexual function. Handbook of Clinical Neurology, 109, 247–257. https://doi.org/10.1016/B978-0-444-52137-8.00015-2.

    Article  PubMed  Google Scholar 

  20. Dancause, N., & Nudo, R. J. (2011). Shaping plasticity to enhance recovery after injury. Progress in Brain Research, 192, 273–295. https://doi.org/10.1016/B978-0-444-53355-5.00015-4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Kroon, J. R., IJzerman, M. J., Chae, J., Lankhorst, G. J., & Zilvold, G. (2005). Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. Journal of Rehabilitation Medicine, 37, 65–74.

    PubMed  Google Scholar 

  22. Deley, G., Denuziller, J., Babault, N., & Taylor, J. A. (2015). Effects of electrical stimulation pattern on quadriceps isometric force and fatigue in individuals with spinal cord injury. Muscle and Nerve, 52(2), 260–264. https://doi.org/10.1002/mus.24530.

    Article  PubMed  Google Scholar 

  23. Dimitrijevic, M. R., Gerasimenko, Y., & Pinter, M. M. (1998). Evidence for a spinal central pattern generator in humans. Annals of the New York Academy of Sciences, 860, 360–376. https://doi.org/10.1111/j.1749-6632.1998.tb09062.x.

    CAS  Article  PubMed  Google Scholar 

  24. Dobkin, B. H. (2003). Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains? Current Opinion in Neurology, 16(6), 685–691.

    PubMed  Google Scholar 

  25. Doucet, B. M., Lam, A., & Griffin, L. (2012). Neuromuscular electrical stimulation for skeletal muscle function. The Yale Journal of Biology and Medicine, 85(2), 201–215.

    PubMed  PubMed Central  Google Scholar 

  26. Downey, R. J., Bellman, M., Sharma, N., Wang, Q., Gregory, C. M., & Dixon, W. E. (2011). A novel modulation strategy to increase stimulation duration in neuromuscular electrical stimulation. Muscle and Nerve, 44(3), 382–387. https://doi.org/10.1002/mus.22058.

    Article  PubMed  Google Scholar 

  27. Downey, R. J., Bellman, M. J., Kawai, H., Gregory, C. M., & Dixon, W. E. (2014). Comparing the induced muscle fatigue between asynchronous and synchronous electrical stimulation in able-bodied and spinal cord injured populations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(6), 964–972.

    PubMed  Google Scholar 

  28. Eser, P. C., Donaldson Nde, N., Knecht, H., & Stussi, E. (2003). Influence of different stimulation frequencies on power output and fatigue during FES-cycling in recently injured SCI people. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(3), 236–240. https://doi.org/10.1109/TNSRE.2003.817677.

    Article  PubMed  Google Scholar 

  29. Ethier, C., Gallego, J., & Miller, L. E. (2015). Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Current Opinion in Neurobiology, 33, 95–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fazio, C. (2014). Functional electrical stimulation for incomplete spinal cord injury. Baylor University Medical Center Proceedings, 27(4), 353–355. https://doi.org/10.1080/08998280.2014.11929157.

    Article  PubMed  Google Scholar 

  31. Ferrante, S., Ambrosini, E., Ferrigno, G., & Pedrocchi, A. (2012). Biomimetic NMES controller for arm movements supported by a passive exoskeleton. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Embc), (pp. 1888–1891).

  32. Figoni, S. F. (1990). Perspectives on cardiovascular fitness and SCI. The Journal of the American Paraplegia Society, 13(4), 63–71.

    CAS  PubMed  Google Scholar 

  33. Furlan, J. C., & Fehlings, M. G. (2008). Cardiovascular complications after acute spinal cord injury: Pathophysiology, diagnosis, and management. Neurosurgical Focus. https://doi.org/10.3171/Foc.2008.25.11.E13.

    Article  PubMed  Google Scholar 

  34. Gargiulo, P., Reynisson, P. J., Helgason, B., Kern, H., Mayr, W., Ingvarsson, P., et al. (2011). Muscle, tendons, and bone: Structural changes during denervation and FES treatment. Neurological Research, 33(7), 750–758. https://doi.org/10.1179/1743132811Y.0000000007.

    Article  PubMed  Google Scholar 

  35. Gater, D. R., Jr., Dolbow, D., Tsui, B., & Gorgey, A. S. (2011). Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation, 28(3), 231–248. https://doi.org/10.3233/NRE-2011-0652.

    Article  PubMed  Google Scholar 

  36. Gilman, S., & Arbor, A. (1983). Handbook of physiology. Section 1: The nervous system, vol II. Motor control, parts 1 and 2. Section editors: John M. Brookhart and Vernon B. Mountcastle volume editor: Vernon B. Brooks Bethesda, MD, American Physiological Society, 1981 1480 pp, illustrated. Annals of Neurology, 13(1), 111–111. https://doi.org/10.1002/ana.410130130.

    Article  Google Scholar 

  37. Gorgey, A. S., Black, C. D., Elder, C. P., & Dudley, G. A. (2009). Effects of electrical stimulation parameters on fatigue in skeletal muscle. Journal of Orthopaedic and Sports Physical Therapy, 39(9), 684–692. https://doi.org/10.2519/jospt.2009.3045.

    Article  PubMed  Google Scholar 

  38. Gorgey, A. S., & Dudley, G. A. (2008). The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation. Journal of Orthopaedic and Sports Physical Therapy, 38(8), 508–516. https://doi.org/10.2519/jospt.2008.2734.

    Article  PubMed  Google Scholar 

  39. Gorgey, A. S., Graham, Z. A., Bauman, W. A., Cardozo, C., & Gater, D. R. (2017). Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. Journal of Spinal Cord Medicine, 40(4), 439–448. https://doi.org/10.1080/10790268.2016.1229397.

    Article  PubMed  Google Scholar 

  40. Gorgey, A. S., & Lawrence, J. (2016). Acute responses of functional electrical stimulation cycling on the ventilation-to-CO2 production ratio and substrate utilization after spinal cord injury. PM R, 8(3), 225–234. https://doi.org/10.1016/j.pmrj.2015.10.006.

    Article  PubMed  Google Scholar 

  41. Griffin, L., Decker, M. J., Hwang, J. Y., Wang, B., Kitchen, K., Ding, Z., et al. (2009). Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. Journal of Electromyography and Kinesiology, 19(4), 614–622. https://doi.org/10.1016/j.jelekin.2008.03.002.

    CAS  Article  PubMed  Google Scholar 

  42. Griffiths, I. R., & Miller, R. (1974). Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. Journal of the Neurological Sciences, 22(3), 291–304.

    CAS  PubMed  Google Scholar 

  43. Grill, W. M., Jr., & Mortimer, J. T. (1996). The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Transactions on Biomedical Engineering, 43(2), 161–166. https://doi.org/10.1109/10.481985.

    Article  PubMed  Google Scholar 

  44. Grillner, S., & Wallen, P. (1985). Central pattern generators for locomotion, with special reference to vertebrates. Annual Review of Neuroscience, 8, 233–261. https://doi.org/10.1146/annurev.ne.08.030185.001313.

    CAS  Article  PubMed  Google Scholar 

  45. Guertin, P. A. (2012). Central pattern generator for locomotion: Anatomical, physiological, and pathophysiological considerations. Frontiers in Neurology, 3, 183. https://doi.org/10.3389/fneur.2012.00183.

    Article  PubMed  Google Scholar 

  46. Hamid, S., & Hayek, R. (2008). Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: An overview. European Spine Journal, 17(9), 1256–1269. https://doi.org/10.1007/s00586-008-0729-3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hansen, C. N., Faw, T. D., White, S., Buford, J. A., Grau, J. W., & Basso, D. M. (2016). Sparing of descending axons rescues interneuron plasticity in the lumbar cord to allow adaptive learning after thoracic spinal cord injury. Frontiers in Neural Circuits. https://doi.org/10.3389/fncir.2016.00011.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hebb, D. (1949). The organization οf behavior. New York: Wiley.

    Google Scholar 

  49. Ho, C. H., Triolo, R. J., Elias, A. L., Kilgore, K. L., DiMarco, A. F., Bogie, K., et al. (2014). Functional Electrical Stimulation and Spinal Cord Injury. Physical Medicine and Rehabilitation Clinics of North America,25 (3), 631–654. https://doi.org/10.1016/j.pmr.2014.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ibitoye, M. O., Hamzaid, N. A., Hasnan, N., Abdul Wahab, A. K., & Davis, G. M. (2016). Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal cord injury: A systematic review. PLoS ONE, 11(2), e0149024. https://doi.org/10.1371/journal.pone.0149024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Itoh, S., Ohta, T., Sekino, Y., Yukawa, Y., & Shinomiya, K. (2008). Treatment of distal radius fractures with a wrist-bridging external fixation: The value of alternating electric current stimulation. Journal of Hand Surgery, 33(5), 605–608. https://doi.org/10.1177/1753193408092253.

    CAS  Article  PubMed  Google Scholar 

  52. Kapadia, N., Masani, K., Catharine Craven, B., Giangregorio, L. M., Hitzig, S. L., Richards, K., et al. (2014a). A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency. Journal of Spinal Cord Medicine, 37(5), 511–524. https://doi.org/10.1179/2045772314Y.0000000263.

    Article  PubMed  Google Scholar 

  53. Kapadia, N. M., Bagher, S., & Popovic, M. R. (2014b). Influence of different rehabilitation therapy models on patient outcomes: Hand function therapy in individuals with incomplete SCI. Journal of Spinal Cord Medicine, 37(6), 734–743. https://doi.org/10.1179/2045772314Y.0000000203.

    Article  PubMed  Google Scholar 

  54. Kebaetse, M. B., Turner, A. E., & Binder-Macleod, S. A. (2002). Effects of stimulation frequencies and patterns on performance of repetitive, nonisometric tasks. Journal of Applied Physiology, 92(1), 109–116. https://doi.org/10.1152/jappl.2002.92.1.109.

    Article  PubMed  Google Scholar 

  55. Kilgore, K. L., Hoyen, H. A., Bryden, A. M., Hart, R. L., Keith, M. W., & Peckham, P. H. (2008). An implanted upper-extremity neuroprosthesis using myoelectric control. Journal of Hand Surgery-American Volume, 33a(4), 539–550. https://doi.org/10.1016/j.jhsa.2008.01.007.

    Article  Google Scholar 

  56. Kjaer, M., Perko, G., Secher, N. H., Boushel, R., Beyer, N., Pollack, S., et al. (1994). Cardiovascular and ventilatory responses to electrically induced cycling with complete epidural anaesthesia in humans. Acta Physiologica Scandinavica, 151(2), 199–207. https://doi.org/10.1111/j.1748-1716.1994.tb09738.x.

    CAS  Article  PubMed  Google Scholar 

  57. Kobetic, R., To, C. S., Schnellenberger, J. R., Audu, M. L., Bulea, T. C., Gaudio, R., et al. (2009). Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. Journal of Rehabilitation Research and Development, 46(3), 447–462.

    PubMed  Google Scholar 

  58. Koyuncu, E., Nakipoglu-Yuzer, G. F., Dogan, A., & Ozgirgin, N. (2010). The effectiveness of functional electrical stimulation for the treatment of shoulder subluxation and shoulder pain in hemiplegic patients: A randomized controlled trial. Disability and Rehabilitation, 32(7), 560–566. https://doi.org/10.3109/09638280903183811.

    Article  PubMed  Google Scholar 

  59. Kralj, A. R., & Bajd, T. (1989). Functional electrical stimulation: Standing and walking after spinal cord injury. Boca Raton: CRC Press.

    Google Scholar 

  60. Lee, H. U., Blasiak, A., Agrawal, D. R., Loong, D. T. B., Thakor, N. V., All, A. H., et al. (2017). Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS ONE, 12(7), e0179642. https://doi.org/10.1371/journal.pone.0179642.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Loong, D. B., Chua, S. M., Prasad, A., Kakkos, I., Jiang, W. X., Yue, M., et al. (2018). Neuroprotective assessment of prolonged local hypothermia post contusive spinal cord injury in rodent model. Spine Journal, 18(3), 507–514. https://doi.org/10.1016/j.spinee.2017.10.066.

    Article  Google Scholar 

  62. Lynch, C. L., & Popovic, M. R. (2008). Functional electrical stimulation. IEEE Control Systems Magazine, 28(2), 40–50.

    Google Scholar 

  63. Maffiuletti, N. A., Pensini, M., & Martin, A. (2002). Activation of human plantar flexor muscles increases after electromyostimulation training. Journal of Applied Physiology, 92(4), 1383–1392. https://doi.org/10.1152/japplphysiol.00884.2001.

    Article  PubMed  Google Scholar 

  64. Mangold, S., Keller, T., Curt, A., & Dietz, V. (2005). Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord, 43(1), 1–13. https://doi.org/10.1038/sj.sc.3101644.

    CAS  Article  PubMed  Google Scholar 

  65. Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11(23), R986–996.

    CAS  PubMed  Google Scholar 

  66. Martin, R., Sadowsky, C., Obst, K., Meyer, B., & McDonald, J. (2012). Functional electrical stimulation in spinal cord injury: From theory to practice. Topics in Spinal Cord Injury Rehabilitation, 18(1), 28–33.

    PubMed  Google Scholar 

  67. Maybhate, A., Hu, C., Bazley, F. A., Yu, Q. L., Thakor, N. V., Kerr, C. L., et al. (2012). Potential long-term benefits of acute hypothermia after spinal cord injury: Assessments with somatosensory-evoked potentials. Critical Care Medicine, 40(2), 573–579. https://doi.org/10.1097/CCM.0b013e318232d97e.

    Article  PubMed  PubMed Central  Google Scholar 

  68. McCoin, J. L., Bhadra, N., & Gustafson, K. J. (2013). Electrical stimulation of sacral dermatomes can suppress aberrant urethral reflexes in felines with chronic spinal cord injury. Neurourology and Urodynamics, 32(1), 92–97.

    PubMed  Google Scholar 

  69. Med, C. S. C. (2008). Early acute management in adults with spinal cord injury: A clinical practice guideline for health-care professionals. Journal of Spinal Cord Medicine, 31(4), 403–479.

    Google Scholar 

  70. Menendez, H., Ferrero, C., Martin-Hernandez, J., Figueroa, A., Marin, P. J., & Herrero, A. J. (2016). Acute effects of simultaneous electromyostimulation and vibration on leg blood flow in spinal cord injury. Spinal Cord, 54(5), 383–389. https://doi.org/10.1038/sc.2015.181.

    CAS  Article  PubMed  Google Scholar 

  71. Mesin, L., Merlo, E., Merletti, R., & Orizio, C. (2010). Investigation of motor unit recruitment during stimulated contractions of tibialis anterior muscle. Journal of Electromyography and Kinesiology, 20(4), 580–589. https://doi.org/10.1016/j.jelekin.2009.11.008.

    CAS  Article  PubMed  Google Scholar 

  72. Mir, H., Al-Nashash, H., Kerr, D., Thakor, N., & All, A. (2010). Histogram based quantification of spinal cord injury level using somatosensory evoked potentials. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Embc),, (pp. 4942–4945). https://doi.org/10.1109/Iembs.2010.5627238.

  73. Mir, H., Al-Nashash, H., Kortelainen, J., & All, A. (2018). Novel Modeling of somatosensory evoked potentials for the assessment of spinal cord injury. IEEE Transactions on Biomedical Engineering, 65(3), 511–520. https://doi.org/10.1109/Tbme.2017.2700498.

    Article  PubMed  Google Scholar 

  74. Moe, J. H., & Post, H. W. (1962). Functional electrical stimulation for ambulation in hemiplegia. Journal-Lancet, 82(7), 285–290.

    CAS  PubMed  Google Scholar 

  75. Mohr, T., Andersen, J. L., Biering-Sorensen, F., Galbo, H., Bangsbo, J., Wagner, A., et al. (1997). Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord, 35(1), 1–16.

    CAS  PubMed  Google Scholar 

  76. Moritz, C. T., Perlmutter, S. I., & Fetz, E. E. (2008). Direct control of paralysed muscles by cortical neurons. Nature, 456(7222), 639–642. https://doi.org/10.1038/nature07418.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Moxon, K. A., Oliviero, A., Aguilar, J., & Foffani, G. (2014). Cortical reorganization after spinal cord injury: Always for good? Neuroscience, 283, 78–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. National Cancer Institute. (n.d.). NCI dictionary of cancer terms. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/nmes.

  79. Center, N. S. C. I. S. (2019). Facts and figures at a glance. Birmingham, AL: University of Alabama at Birmingham.

    Google Scholar 

  80. NINDS. (2013). Spinal cord injury: Hope through research. Bethesda: NIH Publication.

    Google Scholar 

  81. Norenberg, M. D., Smith, J., & Marcillo, A. (2004). The pathology of human spinal cord injury: Defining the problems. New Rochelle: Mary Ann Liebert, Inc.

    Google Scholar 

  82. Nuwer, M. R. (1998). Fundamentals of evoked potentials and common clinical applications today. Electroencephalography and Clinical Neurophysiology, 106(2), 142–148. https://doi.org/10.1016/S0013-4694(97)00117-X.

    CAS  Article  PubMed  Google Scholar 

  83. Ojha, R., George, J., Chandy, B. R., Tharion, G., & Devasahayam, S. R. (2015). Neuromodulation by surface electrical stimulation of peripheral nerves for reduction of detrusor overactivity in patients with spinal cord injury: A pilot study. Journal of Spinal Cord Medicine, 38(2), 207–213. https://doi.org/10.1179/2045772313Y.0000000175.

    Article  PubMed  Google Scholar 

  84. Okada, S. (2016). The pathophysiological role of acute inflammation after spinal cord injury. Inflammation and Regeneration. https://doi.org/10.1186/s41232-016-0026-1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Partida, E., Mironets, E., Hou, S., & Tom, V. J. (2016). Cardiovascular dysfunction following spinal cord injury. Neural Regeneration Research, 11(2), 189.

    PubMed  PubMed Central  Google Scholar 

  86. Peckham, P. H., & Knutson, J. S. (2005). Functional electrical stimulation for neuromuscular applications. Annual Review of Biomedical Engineering, 7, 327–360. https://doi.org/10.1146/annurev.bioeng.6.040803.140103.

    CAS  Article  PubMed  Google Scholar 

  87. Petrie, M., Suneja, M., & Shields, R. K. (2015). Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. Journal of Applied Physiology, 118(6), 723–731. https://doi.org/10.1152/japplphysiol.00628.2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Prasad, A., Teh, D. B. L., Blasiak, A., Chai, C., Wu, Y., Gharibani, P. M., et al. (2017). Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Scientific Reports, 7(1), 6743. https://doi.org/10.1038/s41598-017-06331-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Price, C. I., & Pandyan, A. D. (2000). Electrical stimulation for preventing and treating post-stroke shoulder pain. Cochrane Database Systematic Reviews. https://doi.org/10.1002/14651858.CD001698.

    Article  Google Scholar 

  90. Ragnarsson, K. T. (2008). Functional electrical stimulation after spinal cord injury: Current use, therapeutic effects and future directions. Spinal Cord, 46(4), 255–274. https://doi.org/10.1038/sj.sc.3102091.

    CAS  Article  PubMed  Google Scholar 

  91. Ralston, K. E., Harvey, L. A., Batty, J., Lee, B. B., Ben, M., Cusmiani, R., et al. (2013). Functional electrical stimulation cycling has no clear effect on urine output, lower limb swelling, and spasticity in people with spinal cord injury: A randomised cross-over trial. Journal of Physiotherapy, 59(4), 237–243.

    PubMed  Google Scholar 

  92. Righetti, L., Buchli, J., & Ijspeert, A. J. (2006). Dynamic hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena, 216(2), 269–281.

    CAS  Google Scholar 

  93. Roberts, T. T., Leonard, G. R., & Cepela, D. J. (2017). Classifications in brief: American Spinal Injury Association (ASIA) Impairment Scale. Clinical Orthopaedics and Related Research, 475(5), 1499–1504. https://doi.org/10.1007/s11999-016-5133-4.

    Article  PubMed  Google Scholar 

  94. Robinson, A. J. (2008). Clinical electrophysiology: Electrotherapy and electrophysiologic testing. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  95. Rossignol, S. (2000). Locomotion and its recovery after spinal injury. Current Opinion in Neurobiology, 10(6), 708–716.

    CAS  PubMed  Google Scholar 

  96. Sabut, S. K., Sikdar, C., Kumar, R., & Mahadevappa, M. (2011). Functional electrical stimulation of dorsiflexor muscle: Effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation, 29(4), 393–400. https://doi.org/10.3233/NRE-2011-0717.

    Article  PubMed  Google Scholar 

  97. Sahin, N., Ugurlu, H., & Albayrak, I. (2012). The efficacy of electrical stimulation in reducing the post-stroke spasticity: A randomized controlled study. Disability and Rehabilitation, 34(2), 151–156. https://doi.org/10.3109/09638288.2011.593679.

    Article  PubMed  Google Scholar 

  98. Salameh, A., Al Mohajer, M., & Daroucihe, R. O. (2015). Prevention of urinary tract infections in patients with spinal cord injury. CMAJ, 187(11), 807–811.

    PubMed  PubMed Central  Google Scholar 

  99. Sieck, G. C., & Mantilla, C. B. (2004). Influence of sex hormones on the neuromuscular junction. In Advances in molecular and cell biology (Vol. 34, pp. 183–194). Amsterdam: Elsevier.

  100. Sluka, K. A., & Walsh, D. (2003). Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. Journal of Pain, 4(3), 109–121.

    PubMed  Google Scholar 

  101. Stein, R. B., Everaert, D. G., Thompson, A. K., Chong, S. L., Whittaker, M., Robertson, J., et al. (2010). Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabilitation and Neural Repair, 24(2), 152–167. https://doi.org/10.1177/1545968309347681.

    Article  PubMed  Google Scholar 

  102. Szecsi, J., Fornusek, C., Krause, P., & Straube, A. (2007). Low-frequency rectangular pulse is superior to middle frequency alternating current stimulation in cycling of people with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 88(3), 338–345.

    PubMed  Google Scholar 

  103. Tator, C. H., & Koyanagi, I. (1997). Vascular mechanisms in the pathophysiology of human spinal cord injury. Journal of Neurosurgery, 86(3), 483–492. https://doi.org/10.3171/jns.1997.86.3.0483.

    CAS  Article  PubMed  Google Scholar 

  104. Thijssen, D. H., Ellenkamp, R., Smits, P., & Hopman, M. T. (2006). Rapid vascular adaptations to training and detraining in persons with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 87(4), 474–481. https://doi.org/10.1016/j.apmr.2005.11.005.

    Article  PubMed  Google Scholar 

  105. Thorsen, R., Dalla Costa, D., Chiaramonte, S., Binda, L., Beghi, E., Redaelli, T., et al. (2013). A noninvasive neuroprosthesis augments hand grasp force in individuals with cervical spinal cord injury: The functional and therapeutic effects. Scientific World Journal, 2013, 836959. https://doi.org/10.1155/2013/836959.

    Article  PubMed  Google Scholar 

  106. Thrasher, A., Graham, G. M., & Popovic, M. R. (2005). Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters. Artificial Organs, 29(6), 453–458.

    PubMed  Google Scholar 

  107. Van Duijnhoven, N. T., Janssen, T. W., Green, D. J., Minson, C. T., Hopman, M. T., & Thijssen, D. H. (2009). Effect of functional electrostimulation on impaired skin vasodilator responses to local heating in spinal cord injury. Journal of Applied Physiology, 106(4), 1065–1071. https://doi.org/10.1152/japplphysiol.91611.2008.

    Article  PubMed  Google Scholar 

  108. Vipin, A., Thow, X. Y., Mir, H., Kortelainen, J., Manivannan, J., Al-Nashash, H., et al. (2016). Natural progression of spinal cord transection injury and reorganization of neural pathways. Journal of Neurotrauma, 33(24), 2191–2201. https://doi.org/10.1089/neu.2015.4383.

    Article  PubMed  Google Scholar 

  109. Wahls, T. L., Reese, D., Kaplan, D., & Darling, W. G. (2010). Rehabilitation with neuromuscular electrical stimulation leads to functional gains in ambulation in patients with secondary progressive and primary progressive multiple sclerosis: A case series report. Journal of Alternative and Complementary Medicine, 16(12), 1343–1349. https://doi.org/10.1089/acm.2010.0080.

    Article  PubMed  Google Scholar 

  110. Wan, J. J., Qin, Z., Wang, P. Y., Sun, Y., & Liu, X. (2017). Muscle fatigue: General understanding and treatment. Experimental & Molecular Medicine, 49(10), e384. https://doi.org/10.1038/emm.2017.194.

    CAS  Article  Google Scholar 

  111. Wheeler, G. D., Andrews, B., Lederer, R., Davoodi, R., Natho, K., Weiss, C., et al. (2002). Functional electric stimulation-assisted rowing: Increasing cardiovascular fitness through functional electric stimulation rowing training in persons with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 83(8), 1093–1099.

    PubMed  Google Scholar 

  112. Wilbanks, S. R., Rogers, R., Pool, S., & Bickel, C. S. (2016). Effects of functional electrical stimulation assisted rowing on aerobic fitness and shoulder pain in manual wheelchair users with spinal cord injury. Journal of Spinal Cord Medicine, 39(6), 645–654. https://doi.org/10.1179/2045772315Y.0000000052.

    Article  PubMed  Google Scholar 

  113. Yarar-Fisher, C., Bickel, C. S., Windham, S. T., McLain, A. B., & Bamman, M. M. (2013). Skeletal muscle signaling associated with impaired glucose tolerance in spinal cord-injured men and the effects of contractile activity. Journal of Applied Physiology, 115(5), 756–764. https://doi.org/10.1152/japplphysiol.00122.2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Yasar, E., Yilmaz, B., Goktepe, S., & Kesikburun, S. (2015). The effect of functional electrical stimulation cycling on late functional improvement in patients with chronic incomplete spinal cord injury. Spinal Cord, 53(12), 866–869. https://doi.org/10.1038/sc.2015.19.

    CAS  Article  PubMed  Google Scholar 

  115. Young, S., Hampton, S., & Tadej, M. (2011). Study to evaluate the effect of low-intensity pulsed electrical currents on levels of oedema in chronic non-healing wounds. Journal of Wound Care, 20(8), 368. https://doi.org/10.12968/jowc.2011.20.8.368.

    CAS  Article  PubMed  Google Scholar 

  116. Young, W. (2015). Electrical stimulation and motor recovery. Cell Transplantation, 24(3), 429–446. https://doi.org/10.3727/096368915X686904.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Johns Hopkins Welch Medical Library Informationist Mr. Robert Wright, MLS for providing his expertise and assistance with the PubMed database search. We would also like to acknowledge the contributions of Ms. Alisa Brown, Mr. Michael Pozin, Ms. Nausheen Tickoo, and Ms. Shichen Zhang for their efforts of preliminary literature search and data mining. The illustrations of this article were created with Biorender.com following an academic licensing agreement.

Funding

The study received no external funding.

Author information

Affiliations

Authors

Contributions

AA, SL, HX and YZ contributed to the conception and design. SL, HX and YZ performed literature search and data analysis. SL and HX drafted the paper. XL provided critical revision of the work. AA supervised and reviewed this study.

Corresponding authors

Correspondence to Xiaogang Liu or Angelo H. All.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Xu, H., Zuo, Y. et al. A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromol Med 22, 447–463 (2020). https://doi.org/10.1007/s12017-019-08589-9

Download citation

Keywords

  • Spinal cord injury
  • Functional electrical stimulation
  • Rehabilitation
  • Neuroplasticity