Abstract
Functional electrical stimulation (FES) has been widely adopted to elicit muscle contraction in rehabilitation training after spinal cord injury (SCI). Conventional FES modalities include stimulations coupled with rowing, cycling, assisted walking and other derivatives. In this review, we studied thirteen clinical reports from the past 5 years and evaluated the effects of various FES aided rehabilitation plans on the functional recovery after SCI, highlighting upper and lower extremity strength, cardiopulmonary function, and balder control. We further explored potential mechanisms of FES using the Hebbian theory and lumbar locomotor central pattern generators. Overall, FES can be used to improve respiration, circulation, hand strength, mobility, and metabolism after SCI.
Similar content being viewed by others
References
Agrawal, G., Sherman, D., Maybhate, A., Gorelik, M., Kerr, D. A., Thakor, N. V., et al. (2010). Slope analysis of somatosensory evoked potentials in spinal cord injury for detecting contusion injury and focal demyelination. Journal of Clinical Neuroscience, 17(9), 1159–1164. https://doi.org/10.1016/j.jocn.2010.02.005.
Agrawal, G., Sherman, D., Thakor, N., & All, A. (2008). A novel shape analysis technique for somatosensory evoked potentials. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1–8, (p. 4688). https://doi.org/10.1109/Iembs.2008.4650259
Al-Nashash, H., Fatoo, N. A., Mirza, N. N., Ahmed, R. I., Agrawal, G., Thakor, N. V., et al. (2009). Spinal cord injury detection and monitoring using spectral coherence. IEEE Transactions on Biomedical Engineering, 56(8), 1971–1979. https://doi.org/10.1109/Tbme.2009.2018296.
All, A. H., Bazley, F. A., Gupta, S., Pashai, N., Hu, C., Pourmorteza, A., et al. (2012). Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury. PLoS ONE, 7(10), e47645. https://doi.org/10.1371/journal.pone.0047645.
Ambrosini, E., Ferrante, S., Schauer, T., Ferrigno, G., Molteni, F., & Pedrocchi, A. (2010). Design of a symmetry controller for cycling induced by electrical stimulation: Preliminary results on post-acute stroke patients. Artificial Organs. https://doi.org/10.1111/j.1525-1594.2009.00941.x.
American Spinal Injury Association. (2002). International standards for neurological classification of SCI. The Journal of Spinal Cord Medicine, 34, 535–546.
Baker, L. L., Bowman, B. R., & McNeal, D. R. (1988). Effects of waveform on comfort during neuromuscular electrical stimulation. Clinical Orthopaedics and Related Research, 233, 75–85.
Bakkum, A. J., de Groot, S., Stolwijk-Swuste, J. M., van Kuppevelt, D. J., van der Woude, L. H., et al. (2015). Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: A 16-week randomized controlled trial. Spinal Cord, 53(5), 395–401. https://doi.org/10.1038/sc.2014.237.
Bareyre, F. M., Kerschensteiner, M., Raineteau, O., Mettenleiter, T. C., Weinmann, O., & Schwab, M. E. (2004). The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nature Neuroscience, 7(3), 269–277. https://doi.org/10.1038/nn1195.
Bazley, F. A., All, A. H., Thakor, N. V., & Maybhate, A. (2011). Plasticity associated changes in cortical somatosensory evoked potentials following spinal cord injury in rats. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Embc), (pp. 2005–2008).
Bellman, M. J., Cheng, T. H., Downey, R. J., & Dixon, W. E. (2014). Stationary cycling induced by switched functional electrical stimulation control. In American Control Conference (Acc), (pp. 4802–4809).
Bergquist, A. J., Clair, J. M., Lagerquist, O., Mang, C. S., Okuma, Y., & Collins, D. F. (2011). Neuromuscular electrical stimulation: Implications of the electrically evoked sensory volley. European Journal of Applied Physiology, 111(10), 2409–2426. https://doi.org/10.1007/s00421-011-2087-9.
Bersch, I., & Friden, J. (2016). Role of functional electrical stimulation in tetraplegia hand surgery. Archives of Physical Medicine and Rehabilitation, 97(6 Suppl), S154–159. https://doi.org/10.1016/j.apmr.2016.01.035.
Bhadra, N., & Peckham, P. H. (1997). Peripheral nerve stimulation for restoration of motor function. Journal of Clinical Neurophysiology, 14(5), 378–393.
Bickel, C. S., Slade, J. M., VanHiel, L. R., Warren, G. L., & Dudley, G. A. (2004). Variable-frequency-train stimulation of skeletal muscle after spinal cord injury. Journal of Rehabilitation Research and Development, 41(1), 33–40.
Brindley, G. S. (1977). An implant to empty the bladder or close the urethra. Journal of Neurology, Neurosurgery and Psychiatry, 40(4), 358–369. https://doi.org/10.1136/jnnp.40.4.358.
Carel, C., Loubinoux, I., Boulanouar, K., Manelfe, C., Rascol, O., Celsis, P., et al. (2000). Neural substrate for the effects of passive training on sensorimotor cortical representation: A study with functional magnetic resonance imaging in healthy subjects. Journal of Cerebral Blood Flow & Metabolism, 20(3), 478–484.
Coupaud, S., Gollee, H., Hunt, K. J., Fraser, M. H., Allan, D. B., & McLean, A. N. (2008). Arm-cranking exercise assisted by Functional Electrical Stimulation in C6 tetraplegia: A pilot study. Technology and Health Care, 16(6), 415–427.
Creasey, G. H., & Craggs, M. D. (2012). Functional electrical stimulation for bladder, bowel, and sexual function. Handbook of Clinical Neurology, 109, 247–257. https://doi.org/10.1016/B978-0-444-52137-8.00015-2.
Dancause, N., & Nudo, R. J. (2011). Shaping plasticity to enhance recovery after injury. Progress in Brain Research, 192, 273–295. https://doi.org/10.1016/B978-0-444-53355-5.00015-4.
de Kroon, J. R., IJzerman, M. J., Chae, J., Lankhorst, G. J., & Zilvold, G. (2005). Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. Journal of Rehabilitation Medicine, 37, 65–74.
Deley, G., Denuziller, J., Babault, N., & Taylor, J. A. (2015). Effects of electrical stimulation pattern on quadriceps isometric force and fatigue in individuals with spinal cord injury. Muscle and Nerve, 52(2), 260–264. https://doi.org/10.1002/mus.24530.
Dimitrijevic, M. R., Gerasimenko, Y., & Pinter, M. M. (1998). Evidence for a spinal central pattern generator in humans. Annals of the New York Academy of Sciences, 860, 360–376. https://doi.org/10.1111/j.1749-6632.1998.tb09062.x.
Dobkin, B. H. (2003). Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains? Current Opinion in Neurology, 16(6), 685–691.
Doucet, B. M., Lam, A., & Griffin, L. (2012). Neuromuscular electrical stimulation for skeletal muscle function. The Yale Journal of Biology and Medicine, 85(2), 201–215.
Downey, R. J., Bellman, M., Sharma, N., Wang, Q., Gregory, C. M., & Dixon, W. E. (2011). A novel modulation strategy to increase stimulation duration in neuromuscular electrical stimulation. Muscle and Nerve, 44(3), 382–387. https://doi.org/10.1002/mus.22058.
Downey, R. J., Bellman, M. J., Kawai, H., Gregory, C. M., & Dixon, W. E. (2014). Comparing the induced muscle fatigue between asynchronous and synchronous electrical stimulation in able-bodied and spinal cord injured populations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(6), 964–972.
Eser, P. C., Donaldson Nde, N., Knecht, H., & Stussi, E. (2003). Influence of different stimulation frequencies on power output and fatigue during FES-cycling in recently injured SCI people. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(3), 236–240. https://doi.org/10.1109/TNSRE.2003.817677.
Ethier, C., Gallego, J., & Miller, L. E. (2015). Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Current Opinion in Neurobiology, 33, 95–102.
Fazio, C. (2014). Functional electrical stimulation for incomplete spinal cord injury. Baylor University Medical Center Proceedings, 27(4), 353–355. https://doi.org/10.1080/08998280.2014.11929157.
Ferrante, S., Ambrosini, E., Ferrigno, G., & Pedrocchi, A. (2012). Biomimetic NMES controller for arm movements supported by a passive exoskeleton. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Embc), (pp. 1888–1891).
Figoni, S. F. (1990). Perspectives on cardiovascular fitness and SCI. The Journal of the American Paraplegia Society, 13(4), 63–71.
Furlan, J. C., & Fehlings, M. G. (2008). Cardiovascular complications after acute spinal cord injury: Pathophysiology, diagnosis, and management. Neurosurgical Focus. https://doi.org/10.3171/Foc.2008.25.11.E13.
Gargiulo, P., Reynisson, P. J., Helgason, B., Kern, H., Mayr, W., Ingvarsson, P., et al. (2011). Muscle, tendons, and bone: Structural changes during denervation and FES treatment. Neurological Research, 33(7), 750–758. https://doi.org/10.1179/1743132811Y.0000000007.
Gater, D. R., Jr., Dolbow, D., Tsui, B., & Gorgey, A. S. (2011). Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation, 28(3), 231–248. https://doi.org/10.3233/NRE-2011-0652.
Gilman, S., & Arbor, A. (1983). Handbook of physiology. Section 1: The nervous system, vol II. Motor control, parts 1 and 2. Section editors: John M. Brookhart and Vernon B. Mountcastle volume editor: Vernon B. Brooks Bethesda, MD, American Physiological Society, 1981 1480 pp, illustrated. Annals of Neurology, 13(1), 111–111. https://doi.org/10.1002/ana.410130130.
Gorgey, A. S., Black, C. D., Elder, C. P., & Dudley, G. A. (2009). Effects of electrical stimulation parameters on fatigue in skeletal muscle. Journal of Orthopaedic and Sports Physical Therapy, 39(9), 684–692. https://doi.org/10.2519/jospt.2009.3045.
Gorgey, A. S., & Dudley, G. A. (2008). The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation. Journal of Orthopaedic and Sports Physical Therapy, 38(8), 508–516. https://doi.org/10.2519/jospt.2008.2734.
Gorgey, A. S., Graham, Z. A., Bauman, W. A., Cardozo, C., & Gater, D. R. (2017). Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. Journal of Spinal Cord Medicine, 40(4), 439–448. https://doi.org/10.1080/10790268.2016.1229397.
Gorgey, A. S., & Lawrence, J. (2016). Acute responses of functional electrical stimulation cycling on the ventilation-to-CO2 production ratio and substrate utilization after spinal cord injury. PM R, 8(3), 225–234. https://doi.org/10.1016/j.pmrj.2015.10.006.
Griffin, L., Decker, M. J., Hwang, J. Y., Wang, B., Kitchen, K., Ding, Z., et al. (2009). Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. Journal of Electromyography and Kinesiology, 19(4), 614–622. https://doi.org/10.1016/j.jelekin.2008.03.002.
Griffiths, I. R., & Miller, R. (1974). Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. Journal of the Neurological Sciences, 22(3), 291–304.
Grill, W. M., Jr., & Mortimer, J. T. (1996). The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Transactions on Biomedical Engineering, 43(2), 161–166. https://doi.org/10.1109/10.481985.
Grillner, S., & Wallen, P. (1985). Central pattern generators for locomotion, with special reference to vertebrates. Annual Review of Neuroscience, 8, 233–261. https://doi.org/10.1146/annurev.ne.08.030185.001313.
Guertin, P. A. (2012). Central pattern generator for locomotion: Anatomical, physiological, and pathophysiological considerations. Frontiers in Neurology, 3, 183. https://doi.org/10.3389/fneur.2012.00183.
Hamid, S., & Hayek, R. (2008). Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: An overview. European Spine Journal, 17(9), 1256–1269. https://doi.org/10.1007/s00586-008-0729-3.
Hansen, C. N., Faw, T. D., White, S., Buford, J. A., Grau, J. W., & Basso, D. M. (2016). Sparing of descending axons rescues interneuron plasticity in the lumbar cord to allow adaptive learning after thoracic spinal cord injury. Frontiers in Neural Circuits. https://doi.org/10.3389/fncir.2016.00011.
Hebb, D. (1949). The organization οf behavior. New York: Wiley.
Ho, C. H., Triolo, R. J., Elias, A. L., Kilgore, K. L., DiMarco, A. F., Bogie, K., et al. (2014). Functional Electrical Stimulation and Spinal Cord Injury. Physical Medicine and Rehabilitation Clinics of North America,25 (3), 631–654. https://doi.org/10.1016/j.pmr.2014.05.001.
Ibitoye, M. O., Hamzaid, N. A., Hasnan, N., Abdul Wahab, A. K., & Davis, G. M. (2016). Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal cord injury: A systematic review. PLoS ONE, 11(2), e0149024. https://doi.org/10.1371/journal.pone.0149024
Itoh, S., Ohta, T., Sekino, Y., Yukawa, Y., & Shinomiya, K. (2008). Treatment of distal radius fractures with a wrist-bridging external fixation: The value of alternating electric current stimulation. Journal of Hand Surgery, 33(5), 605–608. https://doi.org/10.1177/1753193408092253.
Kapadia, N., Masani, K., Catharine Craven, B., Giangregorio, L. M., Hitzig, S. L., Richards, K., et al. (2014a). A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency. Journal of Spinal Cord Medicine, 37(5), 511–524. https://doi.org/10.1179/2045772314Y.0000000263.
Kapadia, N. M., Bagher, S., & Popovic, M. R. (2014b). Influence of different rehabilitation therapy models on patient outcomes: Hand function therapy in individuals with incomplete SCI. Journal of Spinal Cord Medicine, 37(6), 734–743. https://doi.org/10.1179/2045772314Y.0000000203.
Kebaetse, M. B., Turner, A. E., & Binder-Macleod, S. A. (2002). Effects of stimulation frequencies and patterns on performance of repetitive, nonisometric tasks. Journal of Applied Physiology, 92(1), 109–116. https://doi.org/10.1152/jappl.2002.92.1.109.
Kilgore, K. L., Hoyen, H. A., Bryden, A. M., Hart, R. L., Keith, M. W., & Peckham, P. H. (2008). An implanted upper-extremity neuroprosthesis using myoelectric control. Journal of Hand Surgery-American Volume, 33a(4), 539–550. https://doi.org/10.1016/j.jhsa.2008.01.007.
Kjaer, M., Perko, G., Secher, N. H., Boushel, R., Beyer, N., Pollack, S., et al. (1994). Cardiovascular and ventilatory responses to electrically induced cycling with complete epidural anaesthesia in humans. Acta Physiologica Scandinavica, 151(2), 199–207. https://doi.org/10.1111/j.1748-1716.1994.tb09738.x.
Kobetic, R., To, C. S., Schnellenberger, J. R., Audu, M. L., Bulea, T. C., Gaudio, R., et al. (2009). Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. Journal of Rehabilitation Research and Development, 46(3), 447–462.
Koyuncu, E., Nakipoglu-Yuzer, G. F., Dogan, A., & Ozgirgin, N. (2010). The effectiveness of functional electrical stimulation for the treatment of shoulder subluxation and shoulder pain in hemiplegic patients: A randomized controlled trial. Disability and Rehabilitation, 32(7), 560–566. https://doi.org/10.3109/09638280903183811.
Kralj, A. R., & Bajd, T. (1989). Functional electrical stimulation: Standing and walking after spinal cord injury. Boca Raton: CRC Press.
Lee, H. U., Blasiak, A., Agrawal, D. R., Loong, D. T. B., Thakor, N. V., All, A. H., et al. (2017). Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS ONE, 12(7), e0179642. https://doi.org/10.1371/journal.pone.0179642.
Loong, D. B., Chua, S. M., Prasad, A., Kakkos, I., Jiang, W. X., Yue, M., et al. (2018). Neuroprotective assessment of prolonged local hypothermia post contusive spinal cord injury in rodent model. Spine Journal, 18(3), 507–514. https://doi.org/10.1016/j.spinee.2017.10.066.
Lynch, C. L., & Popovic, M. R. (2008). Functional electrical stimulation. IEEE Control Systems Magazine, 28(2), 40–50.
Maffiuletti, N. A., Pensini, M., & Martin, A. (2002). Activation of human plantar flexor muscles increases after electromyostimulation training. Journal of Applied Physiology, 92(4), 1383–1392. https://doi.org/10.1152/japplphysiol.00884.2001.
Mangold, S., Keller, T., Curt, A., & Dietz, V. (2005). Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord, 43(1), 1–13. https://doi.org/10.1038/sj.sc.3101644.
Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11(23), R986–996.
Martin, R., Sadowsky, C., Obst, K., Meyer, B., & McDonald, J. (2012). Functional electrical stimulation in spinal cord injury: From theory to practice. Topics in Spinal Cord Injury Rehabilitation, 18(1), 28–33.
Maybhate, A., Hu, C., Bazley, F. A., Yu, Q. L., Thakor, N. V., Kerr, C. L., et al. (2012). Potential long-term benefits of acute hypothermia after spinal cord injury: Assessments with somatosensory-evoked potentials. Critical Care Medicine, 40(2), 573–579. https://doi.org/10.1097/CCM.0b013e318232d97e.
McCoin, J. L., Bhadra, N., & Gustafson, K. J. (2013). Electrical stimulation of sacral dermatomes can suppress aberrant urethral reflexes in felines with chronic spinal cord injury. Neurourology and Urodynamics, 32(1), 92–97.
Med, C. S. C. (2008). Early acute management in adults with spinal cord injury: A clinical practice guideline for health-care professionals. Journal of Spinal Cord Medicine, 31(4), 403–479.
Menendez, H., Ferrero, C., Martin-Hernandez, J., Figueroa, A., Marin, P. J., & Herrero, A. J. (2016). Acute effects of simultaneous electromyostimulation and vibration on leg blood flow in spinal cord injury. Spinal Cord, 54(5), 383–389. https://doi.org/10.1038/sc.2015.181.
Mesin, L., Merlo, E., Merletti, R., & Orizio, C. (2010). Investigation of motor unit recruitment during stimulated contractions of tibialis anterior muscle. Journal of Electromyography and Kinesiology, 20(4), 580–589. https://doi.org/10.1016/j.jelekin.2009.11.008.
Mir, H., Al-Nashash, H., Kerr, D., Thakor, N., & All, A. (2010). Histogram based quantification of spinal cord injury level using somatosensory evoked potentials. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Embc),, (pp. 4942–4945). https://doi.org/10.1109/Iembs.2010.5627238.
Mir, H., Al-Nashash, H., Kortelainen, J., & All, A. (2018). Novel Modeling of somatosensory evoked potentials for the assessment of spinal cord injury. IEEE Transactions on Biomedical Engineering, 65(3), 511–520. https://doi.org/10.1109/Tbme.2017.2700498.
Moe, J. H., & Post, H. W. (1962). Functional electrical stimulation for ambulation in hemiplegia. Journal-Lancet, 82(7), 285–290.
Mohr, T., Andersen, J. L., Biering-Sorensen, F., Galbo, H., Bangsbo, J., Wagner, A., et al. (1997). Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord, 35(1), 1–16.
Moritz, C. T., Perlmutter, S. I., & Fetz, E. E. (2008). Direct control of paralysed muscles by cortical neurons. Nature, 456(7222), 639–642. https://doi.org/10.1038/nature07418.
Moxon, K. A., Oliviero, A., Aguilar, J., & Foffani, G. (2014). Cortical reorganization after spinal cord injury: Always for good? Neuroscience, 283, 78–94.
National Cancer Institute. (n.d.). NCI dictionary of cancer terms. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/nmes.
Center, N. S. C. I. S. (2019). Facts and figures at a glance. Birmingham, AL: University of Alabama at Birmingham.
NINDS. (2013). Spinal cord injury: Hope through research. Bethesda: NIH Publication.
Norenberg, M. D., Smith, J., & Marcillo, A. (2004). The pathology of human spinal cord injury: Defining the problems. New Rochelle: Mary Ann Liebert, Inc.
Nuwer, M. R. (1998). Fundamentals of evoked potentials and common clinical applications today. Electroencephalography and Clinical Neurophysiology, 106(2), 142–148. https://doi.org/10.1016/S0013-4694(97)00117-X.
Ojha, R., George, J., Chandy, B. R., Tharion, G., & Devasahayam, S. R. (2015). Neuromodulation by surface electrical stimulation of peripheral nerves for reduction of detrusor overactivity in patients with spinal cord injury: A pilot study. Journal of Spinal Cord Medicine, 38(2), 207–213. https://doi.org/10.1179/2045772313Y.0000000175.
Okada, S. (2016). The pathophysiological role of acute inflammation after spinal cord injury. Inflammation and Regeneration. https://doi.org/10.1186/s41232-016-0026-1.
Partida, E., Mironets, E., Hou, S., & Tom, V. J. (2016). Cardiovascular dysfunction following spinal cord injury. Neural Regeneration Research, 11(2), 189.
Peckham, P. H., & Knutson, J. S. (2005). Functional electrical stimulation for neuromuscular applications. Annual Review of Biomedical Engineering, 7, 327–360. https://doi.org/10.1146/annurev.bioeng.6.040803.140103.
Petrie, M., Suneja, M., & Shields, R. K. (2015). Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. Journal of Applied Physiology, 118(6), 723–731. https://doi.org/10.1152/japplphysiol.00628.2014.
Prasad, A., Teh, D. B. L., Blasiak, A., Chai, C., Wu, Y., Gharibani, P. M., et al. (2017). Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Scientific Reports, 7(1), 6743. https://doi.org/10.1038/s41598-017-06331-8.
Price, C. I., & Pandyan, A. D. (2000). Electrical stimulation for preventing and treating post-stroke shoulder pain. Cochrane Database Systematic Reviews. https://doi.org/10.1002/14651858.CD001698.
Ragnarsson, K. T. (2008). Functional electrical stimulation after spinal cord injury: Current use, therapeutic effects and future directions. Spinal Cord, 46(4), 255–274. https://doi.org/10.1038/sj.sc.3102091.
Ralston, K. E., Harvey, L. A., Batty, J., Lee, B. B., Ben, M., Cusmiani, R., et al. (2013). Functional electrical stimulation cycling has no clear effect on urine output, lower limb swelling, and spasticity in people with spinal cord injury: A randomised cross-over trial. Journal of Physiotherapy, 59(4), 237–243.
Righetti, L., Buchli, J., & Ijspeert, A. J. (2006). Dynamic hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena, 216(2), 269–281.
Roberts, T. T., Leonard, G. R., & Cepela, D. J. (2017). Classifications in brief: American Spinal Injury Association (ASIA) Impairment Scale. Clinical Orthopaedics and Related Research, 475(5), 1499–1504. https://doi.org/10.1007/s11999-016-5133-4.
Robinson, A. J. (2008). Clinical electrophysiology: Electrotherapy and electrophysiologic testing. Philadelphia: Lippincott Williams & Wilkins.
Rossignol, S. (2000). Locomotion and its recovery after spinal injury. Current Opinion in Neurobiology, 10(6), 708–716.
Sabut, S. K., Sikdar, C., Kumar, R., & Mahadevappa, M. (2011). Functional electrical stimulation of dorsiflexor muscle: Effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation, 29(4), 393–400. https://doi.org/10.3233/NRE-2011-0717.
Sahin, N., Ugurlu, H., & Albayrak, I. (2012). The efficacy of electrical stimulation in reducing the post-stroke spasticity: A randomized controlled study. Disability and Rehabilitation, 34(2), 151–156. https://doi.org/10.3109/09638288.2011.593679.
Salameh, A., Al Mohajer, M., & Daroucihe, R. O. (2015). Prevention of urinary tract infections in patients with spinal cord injury. CMAJ, 187(11), 807–811.
Sieck, G. C., & Mantilla, C. B. (2004). Influence of sex hormones on the neuromuscular junction. In Advances in molecular and cell biology (Vol. 34, pp. 183–194). Amsterdam: Elsevier.
Sluka, K. A., & Walsh, D. (2003). Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. Journal of Pain, 4(3), 109–121.
Stein, R. B., Everaert, D. G., Thompson, A. K., Chong, S. L., Whittaker, M., Robertson, J., et al. (2010). Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabilitation and Neural Repair, 24(2), 152–167. https://doi.org/10.1177/1545968309347681.
Szecsi, J., Fornusek, C., Krause, P., & Straube, A. (2007). Low-frequency rectangular pulse is superior to middle frequency alternating current stimulation in cycling of people with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 88(3), 338–345.
Tator, C. H., & Koyanagi, I. (1997). Vascular mechanisms in the pathophysiology of human spinal cord injury. Journal of Neurosurgery, 86(3), 483–492. https://doi.org/10.3171/jns.1997.86.3.0483.
Thijssen, D. H., Ellenkamp, R., Smits, P., & Hopman, M. T. (2006). Rapid vascular adaptations to training and detraining in persons with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 87(4), 474–481. https://doi.org/10.1016/j.apmr.2005.11.005.
Thorsen, R., Dalla Costa, D., Chiaramonte, S., Binda, L., Beghi, E., Redaelli, T., et al. (2013). A noninvasive neuroprosthesis augments hand grasp force in individuals with cervical spinal cord injury: The functional and therapeutic effects. Scientific World Journal, 2013, 836959. https://doi.org/10.1155/2013/836959.
Thrasher, A., Graham, G. M., & Popovic, M. R. (2005). Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters. Artificial Organs, 29(6), 453–458.
Van Duijnhoven, N. T., Janssen, T. W., Green, D. J., Minson, C. T., Hopman, M. T., & Thijssen, D. H. (2009). Effect of functional electrostimulation on impaired skin vasodilator responses to local heating in spinal cord injury. Journal of Applied Physiology, 106(4), 1065–1071. https://doi.org/10.1152/japplphysiol.91611.2008.
Vipin, A., Thow, X. Y., Mir, H., Kortelainen, J., Manivannan, J., Al-Nashash, H., et al. (2016). Natural progression of spinal cord transection injury and reorganization of neural pathways. Journal of Neurotrauma, 33(24), 2191–2201. https://doi.org/10.1089/neu.2015.4383.
Wahls, T. L., Reese, D., Kaplan, D., & Darling, W. G. (2010). Rehabilitation with neuromuscular electrical stimulation leads to functional gains in ambulation in patients with secondary progressive and primary progressive multiple sclerosis: A case series report. Journal of Alternative and Complementary Medicine, 16(12), 1343–1349. https://doi.org/10.1089/acm.2010.0080.
Wan, J. J., Qin, Z., Wang, P. Y., Sun, Y., & Liu, X. (2017). Muscle fatigue: General understanding and treatment. Experimental & Molecular Medicine, 49(10), e384. https://doi.org/10.1038/emm.2017.194.
Wheeler, G. D., Andrews, B., Lederer, R., Davoodi, R., Natho, K., Weiss, C., et al. (2002). Functional electric stimulation-assisted rowing: Increasing cardiovascular fitness through functional electric stimulation rowing training in persons with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 83(8), 1093–1099.
Wilbanks, S. R., Rogers, R., Pool, S., & Bickel, C. S. (2016). Effects of functional electrical stimulation assisted rowing on aerobic fitness and shoulder pain in manual wheelchair users with spinal cord injury. Journal of Spinal Cord Medicine, 39(6), 645–654. https://doi.org/10.1179/2045772315Y.0000000052.
Yarar-Fisher, C., Bickel, C. S., Windham, S. T., McLain, A. B., & Bamman, M. M. (2013). Skeletal muscle signaling associated with impaired glucose tolerance in spinal cord-injured men and the effects of contractile activity. Journal of Applied Physiology, 115(5), 756–764. https://doi.org/10.1152/japplphysiol.00122.2013.
Yasar, E., Yilmaz, B., Goktepe, S., & Kesikburun, S. (2015). The effect of functional electrical stimulation cycling on late functional improvement in patients with chronic incomplete spinal cord injury. Spinal Cord, 53(12), 866–869. https://doi.org/10.1038/sc.2015.19.
Young, S., Hampton, S., & Tadej, M. (2011). Study to evaluate the effect of low-intensity pulsed electrical currents on levels of oedema in chronic non-healing wounds. Journal of Wound Care, 20(8), 368. https://doi.org/10.12968/jowc.2011.20.8.368.
Young, W. (2015). Electrical stimulation and motor recovery. Cell Transplantation, 24(3), 429–446. https://doi.org/10.3727/096368915X686904.
Acknowledgements
We would like to thank Johns Hopkins Welch Medical Library Informationist Mr. Robert Wright, MLS for providing his expertise and assistance with the PubMed database search. We would also like to acknowledge the contributions of Ms. Alisa Brown, Mr. Michael Pozin, Ms. Nausheen Tickoo, and Ms. Shichen Zhang for their efforts of preliminary literature search and data mining. The illustrations of this article were created with Biorender.com following an academic licensing agreement.
Funding
The study received no external funding.
Author information
Authors and Affiliations
Contributions
AA, SL, HX and YZ contributed to the conception and design. SL, HX and YZ performed literature search and data analysis. SL and HX drafted the paper. XL provided critical revision of the work. AA supervised and reviewed this study.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Luo, S., Xu, H., Zuo, Y. et al. A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromol Med 22, 447–463 (2020). https://doi.org/10.1007/s12017-019-08589-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12017-019-08589-9