Abousleiman, P. M., Muqit, M. M. K., & Wood, N. W. (2006). Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nature Reviews Neuroscience,7(3), 207–219.
CAS
Google Scholar
Arsikin, K., Kravic-Stevovic, T., & Jovanovic, M. (2012). Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. Biochimica et Biophysica Acta,1822(11), 1826–1836.
CAS
PubMed
Google Scholar
Auciello, F. R., Ross, F. A., Ikematsu, N., & Hardie, D. G. (2014). Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS Letters,588(18), 3361–3366.
CAS
PubMed
PubMed Central
Google Scholar
Ball, N., Teo, W. P., Chandra, S., & Chapman, J. (2019). Parkinson’s disease and the environment. Front Neurol,10, 219.
Google Scholar
Banerjee, R., Starkov, A. A., Beal, M. F., & Thomas, B. (2009). Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta,1792(7), 651–663.
CAS
PubMed
Google Scholar
Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative disease and oxidative stress. Nature Reviews Drug Discovery,3(3), 205–214.
CAS
PubMed
Google Scholar
Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., & Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neuroscience,3(12), 1301–1306.
CAS
PubMed
Google Scholar
Burbulla, L. F., Song, P., Mazzulli, J. R., Zampese, E., Wong, Y. C., & Jeon, S. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science,357(6357), 1255–1261.
CAS
PubMed
PubMed Central
Google Scholar
Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron,39(6), 889–909.
CAS
PubMed
Google Scholar
Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., et al. (2014). Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochimica et Biophysica Acta,1842(7), 902–915.
CAS
PubMed
Google Scholar
Fu, W., Zhuang, W., Zhou, S., & Wang, X. (2015). Plant-derived neuroprotective agents in Parkinson’s disease. American Journal of Translational Research,7(7), 1189–1202.
PubMed
PubMed Central
Google Scholar
Garcia-Jimenez, A., Teruel-Puche, J. A., Berna, J., Rodriguez-Lopez, J. N., Tudela, J., & Garcia-Canovas, F. (2017). Action of tyrosinase on alpha and beta- arbutin: A kinetic study. PLoS ONE,12(5), e0177330.
PubMed
PubMed Central
Google Scholar
Ghosh, A., Chandran, K., Kalivendi, S. V., Joseph, J., Antholine, W. E., Hillard, C. J., et al. (2010). Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radical Biology and Medicine,49(11), 1674–1684.
CAS
PubMed
Google Scholar
González-Polo, R. A., Niso-Santano, M., Ortíz-Ortíz, M. A., Gómez-Martín, A., Morán, J. M., García-Rubio, L., et al. (2007). Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicological Sciences,97(2), 448–458.
PubMed
Google Scholar
Greene, J. C., Whitworth, A. J., Kuo, I., Andrews, L. A., Feany, M. B., & Pallanck, L. J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proceedings of the National Academy of Sciences of the United States of America,100(7), 4078–4083.
CAS
PubMed
PubMed Central
Google Scholar
Hall, A. G. (1999). Review: The role of glutathione in the regulation of apoptosis. European Journal of Clinical Investigation,29(3), 238–245.
CAS
PubMed
Google Scholar
Hardie, D. G. (2007). AMP-activated/SNF1 protein kinases, conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology,8(3), 774–785.
CAS
PubMed
Google Scholar
Isenberg, J. S., & Klaunig, J. E. (2000). Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicological Sciences,53(2), 340–351.
CAS
PubMed
Google Scholar
Katsuragi, Y., Ichimura, Y., & Komatsu, M. (2015). p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS Journal,282(24), 4672–4678.
CAS
PubMed
Google Scholar
Kavitha, M., Manivasagam, T., Essa, M. M., Tamilselvam, K., Selvakumar, G. P., Karthikeyan, S., et al. (2014). Mangiferin antagonizes rotenone: Induced apoptosis through attenuating mitochondrial dysfunction and oxidative stress in SK-N-SH neuroblastoma cells. Neurochemical Research,39(4), 668–676.
CAS
PubMed
Google Scholar
Koppula, S., Kumar, H., More, S. V., Lim, H. W., Hong, S. M., & Choi, D. K. (2012). Recent updates in redox regulation and free radical scavenging effects by herbal products in experimental models of Parkinson’s disease. Molecules,17(10), 11391–11420.
CAS
PubMed
PubMed Central
Google Scholar
Lim, K. L., & Ng, C. H. (2009). Genetic models of Parkinson disease. Biochimica et Biophysica Acta,1792(7), 604–615.
CAS
PubMed
Google Scholar
Liu, C. S., Chen, N. H., & Zhang, J. T. (2006). Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine,14(7–8), 492–497.
PubMed
Google Scholar
Liu, C. Q., Deng, L., & Zhang, P. (2013). Screening of high α-arbutin producing strains and production of α-arbutin by fermentation. World Journal of Microbiology and Biotechnology,29(8), 1391–1398.
CAS
PubMed
Google Scholar
Moon, Y., Lee, K. H., Park, J. H., Geum, D., & Kim, K. (2005). Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: Protective effect of coenzyme Q (10). Journal of Neurochemistry,93(5), 1199–1208.
CAS
PubMed
Google Scholar
Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology,183(5), 795–803.
CAS
PubMed
PubMed Central
Google Scholar
Ng, C. H., Guan, M. S., Koh, C., Ouyang, X., Yu, F., Tan, E. K., et al. (2012). AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. Journal of Neuroscience,32(41), 14311–14317.
CAS
PubMed
Google Scholar
Park, J. S., Davis, R. L., & Sue, C. M. (2018). Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Current Neurology and Neuroscience Reports,18(5), 21.
PubMed
PubMed Central
Google Scholar
Park, J., Lee, S. B., Lee, S., Kim, Y., Song, S., Kim, S., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature,44(7097), 1157–1161.
Google Scholar
Poels, J., Spasić, M. R., & Callaerts, P. (2009). Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. BioEssays,31(9), 944–952.
CAS
PubMed
Google Scholar
Reed, D. J., & Savage, M. K. (1995). Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochimica et Biophysica Acta,1271(1), 43–50.
PubMed
Google Scholar
Reinhardt, P., Schmid, B., Burbulla, L. F., Schondorf, D. C., Wagner, L., Glatza, M., et al. (2013). Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell,12(3), 354–367.
CAS
PubMed
Google Scholar
Ryan, B. J., Hoek, S., Fon, E. A., & Wade-Martins, R. (2015). Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends in Biochemical Sciences,40(4), 200–210.
CAS
PubMed
Google Scholar
Schapira, A. H. V. (2008). Mitochondria in the etiology and pathogenesis of Parkinson’s disease. The Lancet Neurology,7(3), 97–109.
CAS
PubMed
Google Scholar
Solesio, M., Prime, T., Logan, A., Murphy, M. P., Del Mar Arroyo-Jimenez, M., Jordán, J., et al. (2013). The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochimica et Biophysica Acta,1832(1), 174–182.
CAS
PubMed
Google Scholar
Sugimoto, K., Nishimura, T., Nomura, K., Sugimoto, K., & Kuriki, T. (2003). Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Chemical & Pharmaceutical Bulletin,51(7), 798–801.
CAS
Google Scholar
Sundararaman, A., Amirtham, U., & Rangarajan, A. (2016). Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation. Journal of Biological Chemistry,291(28), 14410–14429.
CAS
PubMed
PubMed Central
Google Scholar
Surmeier, D. J., Obeso, J. A., & Halliday, G. M. (2017). Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience,18(2), 101–113.
CAS
PubMed
PubMed Central
Google Scholar
Talpade, D. J., Greene, J. G., Higgins, D. S., & Greenamyre, J. T. (2000). In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. Journal of Neurochemistry,75(6), 2611–2621.
CAS
PubMed
Google Scholar
Tessari, I., Bisaglia, M., Valle, F., et al. (2008). The reaction of alpha-synuclein with tyrosinase: Possible implications for Parkinson disease. Journal of Biological Chemistry,283(24), 16808–16817.
CAS
PubMed
Google Scholar
Thomas, B., & Beal, M. F. (2007). Parkinson’s disease. Human Molecular Genetics,16(2), 183–194.
Google Scholar
Uribe, P., Villegas, J. V., Boguen, R., Treulen, F., Sánchez, R., Mallmann, P., et al. (2017). Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa. Andrologia. https://doi.org/10.1111/and.12753.
Article
PubMed
Google Scholar
Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options”. Current Neuropharmacology,7(1), 65–74.
CAS
PubMed
PubMed Central
Google Scholar
Wang, X., & Hai, C. (2016). Novel insights into redox system and the mechanism of redox regulation. Molecular Biology Reports,43(7), 607–628.
CAS
PubMed
Google Scholar
Wang, C., Lu, R., Ouyang, X., Ho, M. W., Chia, W., Yu, F., et al. (2007). Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. Journal of Neuroscience,27(32), 8563–8570.
CAS
PubMed
Google Scholar
Weisova, P., Davila, D., Tuffy, L. P., Ward, M. W., Concannon, C. G., & Prehn, J. H. (2011). Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxidants & Redox Signaling,14(2011), 1863–1876.
CAS
Google Scholar
Whitworth, A. J., Wes, P. D., & Pallanck, L. J. (2006). Drosophila models pioneer a new approach to drug discovery for Parkinson’s disease. Drug Discovery Today,11(3/4), 119–126.
CAS
PubMed
Google Scholar
Xiong, N., Huang, J., Zhang, Z., Zhang, Z., Xiong, J., Liu, X., et al. (2009). Stereotaxical infusion of rotenone: A reliable rodent model for Parkinson’s disease. PLoS ONE,4(11), e7878.
PubMed
PubMed Central
Google Scholar
Xiong, N., Long, X., Xiong, J., Jia, M., Chen, C., Huang, J., et al. (2012). Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Critical Reviews in Toxicology,42(7), 613–632.
CAS
PubMed
Google Scholar
Zhang, H. A., Gao, M., Zhang, L., Zhao, Y., Shi, L. L., Chen, B. N., et al. (2012). Salvianolic acid A protects human SH-SY5Y neuroblastoma cells against H2O2-induced injury by increasing stress tolerance ability. Biochemical and Biophysical Research Communications,421(3), 479–483.
CAS
PubMed
Google Scholar