Abstract
Studies from last two decades have established microRNAs (miRNAs) as the most influential regulator of gene expression, especially at the post-transcriptional stage. The family of small RNA molecules including miRNAs is highly conserved and expressed throughout the multicellular organism. MiRNAs regulate gene expression by binding to 3′ UTR of protein-coding mRNAs and initiating either decay or movement of mRNAs to stress granules. Tissues or cells, which go through cell fate transformation like stem cells, brain cells, iPSCs, or cancer cells show very dynamic expression profile of miRNAs. Inability to pass the developmental stages of Dicer (miRNA maturation enzyme) knockout animals has confirmed that expression of mature and functional miRNAs is essential for proper development of different organs and tissues. Studies from our laboratory and elsewhere have demonstrated the role of miR-200 and miR-34 families in neural development and have shown higher expression of both families in mature and differentiated neurons. In present review, we have provided a general overview of miRNAs and focused on the role of miR-34 and miR-200, two miRNA families, which have the capability to change the phenotype and fate of a cell in different tissues and situations.
Similar content being viewed by others
References
Aberdam, D., Candi, E., Knight, R. A., & Melino, G. (2008). miRNAs, ‘stemness’ and skin. Trends in Biochemical Sciences, 33(12), 583–591.
Agostini, M., Tucci, P., Killick, R., Candi, E., Sayan, B. S., di val Cervo, P. R., et al. (2011). Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proceedings of the National Academy of Sciences, 108(52), 21093–21098.
Alvarez-Garcia, I., & Miska, E. A. (2005). MicroRNA functions in animal development and human disease. Development, 132(21), 4653–4662.
Amaral, P. P., & Mattick, J. S. (2008). Noncoding RNA in development. Mammalian Genome, 19(7–8), 454–492.
Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., et al. (2003). A uniform system for microRNA annotation. RNA, 9(3), 277–279.
Andersen, S. L. (2003). Trajectories of brain development: point of vulnerability or window of opportunity? Neuroscience and Biobehavioral Reviews, 27(1), 3–18.
Aranha, M. M., Santos, D. M., Solá, S., Steer, C. J., & Rodrigues, C. (2011). miR-34a regulates mouse neural stem cell differentiation. PLoS ONE, 6(8), e21396.
Axtell, M. J., & Bartel, D. P. (2005). Antiquity of microRNAs and their targets in land plants. The Plant Cell, 17(6), 1658–1673.
Azari, H., & Reynolds, B. A. (2016). In vitro models for neurogenesis. Cold Spring Harbor Perspectives in Biology, 8(6), a021279.
Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.
Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.
Bhaskaran, M., & Mohan, M. (2014). MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Veterinary Pathology, 51(4), 759–774.
Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop—A motor of cellular plasticity in development and cancer? EMBO Reports, 11(9), 670–677.
Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., & Cohen, S. M. (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113(1), 25–36.
Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.
Burmistrova, O., Goltsov, A., Abramova, L., Kaleda, V., Orlova, V., & Rogaev, E. (2007). MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Moscow), 72(5), 578–582.
Cao, X., Pfaff, S. L., & Gage, F. H. (2007). A functional study of miR-124 in the developing neural tube. Genes & Development, 21(5), 531–536.
Carleton, M., Cleary, M. A., & Linsley, P. S. (2007). MicroRNAs and cell cycle regulation. Cell Cycle, 6(17), 2127–2132.
Chen, F., & Hu, S. J. (2012). Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. Journal of Biochemical and Molecular Toxicology, 26(2), 79–86.
Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8(2), 93–103.
Cheng, L.-C., Pastrana, E., Tavazoie, M., & Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience, 12(4), 399–408.
Cheng, S., Zhang, C., Xu, C., Wang, L., Zou, X., & Chen, G. (2014). Age-dependent neuron loss is associated with impaired adult neurogenesis in forebrain neuron-specific Dicer conditional knockout mice. The international journal of biochemistry & cell biology, 57, 186–196.
Chinwalla, A. T., Cook, L. L., Delehaunty, K. D., Fewell, G. A., Fulton, L. A., Fulton, R. S., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915), 520–562.
Choi, Y. J., Lin, C.-P., Ho, J. J., He, X., Okada, N., Bu, P., et al. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biology, 13(11), 1353.
Choi, Y. J., Lin, C.-P., Risso, D., Chen, S., Tan, M. H., Li, J. B., et al. (2017). Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science, 355(6325). https://doi.org/10.1126/science.aag1927.
Choi, P. S., Zakhary, L., Choi, W.-Y., Caron, S., Alvarez-Saavedra, E., Miska, E. A., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57(1), 41–55.
Chua, H., Bhat-Nakshatri, P., Clare, S., Morimiya, A., Badve, S., & Nakshatri, H. (2007). NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26(5), 711.
Cifuentes, D., Xue, H., Taylor, D. W., Patnode, H., Mishima, Y., Cheloufi, S., et al. (2010). A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science, 328(5986), 1694–1698.
Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., et al. (2011). Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 478(7370), 519–523.
Coolen, M., & Bally-Cuif, L. (2009). MicroRNAs in brain development and physiology. Current Opinion in Neurobiology, 19(5), 461–470.
Cui, Y., Xiao, Z., Han, J., Sun, J., Ding, W., Zhao, Y., et al. (2012). MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neuroscience, 13(1), 1.
Datson, N. A., van der Perk, J., de Kloet, E. R., & Vreugdenhil, E. (2001). Expression profile of 30,000 genes in rat hippocampus using SAGE. Hippocampus, 11(4), 430–444.
Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. The Journal of Neuroscience, 28(17), 4322–4330.
de Antonellis, P., Medaglia, C., Cusanelli, E., Andolfo, I., Liguori, L., De Vita, G., et al. (2011). MiR-34a targeting of Notch ligand delta-like 1 impairs CD15/CD133 tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS ONE, 6(9), e24584.
Du, Z.-W., Ma, L.-X., Phillips, C., & Zhang, S.-C. (2013). miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development, 140(12), 2611–2618.
Friedman, R. C., Farh, K. K.-H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.
Gangaraju, V. K., & Lin, H. (2009). MicroRNAs: Key regulators of stem cells. Nature Reviews Molecular Cell Biology, 10(2), 116.
Gao, F.-B. (2008). Posttranscriptional control of neuronal development by microRNA networks. Trends in Neurosciences, 31(1), 20–26.
Gioia, U., Di Carlo, V., Caramanica, P., Toselli, C., Cinquino, A., Marchioni, M., et al. (2014). Mir-23a and mir-125b regulate neural stem/progenitor cell proliferation by targeting Musashi1. RNA Biology, 11(9), 1105–1112.
Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308(5723), 833–838.
Giusti, S. A., Vogl, A. M., Brockmann, M. M., Vercelli, C. A., Rein, M. L., Trümbach, D., et al. (2014). MicroRNA-9 controls dendritic development by targeting REST. Elife, 3, e02755.
Gonzalez, G., & Behringer, R. R. (2009). Dicer is required for female reproductive tract development and fertility in the mouse. Molecular Reproduction and Development, 76(7), 678–688.
Gregory, P. A., Bracken, C. P., Bert, A. G., & Goodall, G. J. (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 7(20), 3112–3117.
Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., et al. (2011). An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.
Guroff, G. (1985). PC12 cells as a model of neuronal differentiation. In J. E. Bottenstein & G. Sato (Eds.), Cell culture in the neurosciences (pp. 245–272). Boston: Springer.
Gustincich, S., Sandelin, A., Plessy, C., Katayama, S., Simone, R., Lazarevic, D., et al. (2006). The complexity of the mammalian transcriptome. The Journal of Physiology, 575(2), 321–332.
Hamada, N., Fujita, Y., Kojima, T., Kitamoto, A., Akao, Y., Nozawa, Y., et al. (2012). MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. Neurochemistry International, 60(8), 743–750.
He, X., & Rosenfeld, M. G. (1991). Mechanisms of complex transcriptional regulation: implications for brain development. Neuron, 7(2), 183–196.
Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death and Differentiation, 17(2), 193–199.
Hohjoh, H., & Fukushima, T. (2007a). Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene, 391(1), 39–44.
Hohjoh, H., & Fukushima, T. (2007b). Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells. Biochemical and Biophysical Research Communications, 362(2), 360–367.
Hosseinahli, N., Aghapour, M., Duijf, P. H., & Baradaran, B. (2018). Treating cancer with microRNA replacement therapy: A literature review. Journal of cellular Physiology, 233, 5574–5588.
Huang, T., Liu, Y., Huang, M., Zhao, X., & Cheng, L. (2010). Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. Journal of Molecular Cell Biology, 2(3), 152–163.
Huang, B., & Zhang, R. (2014). Regulatory non-coding RNAs: revolutionizing the RNA world. Molecular Biology Reports, 41(6), 3915–3923.
Humphries, B., & Yang, C. (2015). The microRNA-200 family: Small molecules with novel roles in cancer development, progression and therapy. Oncotarget, 6(9), 6472–6498.
Hwang, H., & Mendell, J. (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer, 94(6), 776.
Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R.-F., Fish, J. E., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2(3), 219–229.
Jauhari, A., Singh, T., Pandey, A., Singh, P., Singh, N., Srivastava, A. K., et al. (2017). Differentiation induces dramatic changes in miRNA profile, where loss of dicer diverts differentiating SH-SY5Y cells toward senescence. Molecular Neurobiology, 54(7), 4986–4995.
Jauhari, A., Singh, T., Singh, P., Parmar, D., & Yadav, S. (2018a). Regulation of miR-34 family in neuronal development. Molecular Neurobiology, 55(2), 936–945.
Jauhari, A., Singh, T., & Yadav, S. (2018b). Expression of miR-145 and its target proteins are regulated by miR-29b in differentiated neurons. Molecular Neurobiology. https://doi.org/10.1007/s12035-018-1009-9.
Jiang, F., Ye, X., Liu, X., Fincher, L., McKearin, D., & Liu, Q. (2005). Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes & Development, 19(14), 1674–1679.
Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.
Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., et al. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478(7370), 483–489.
Kapranov, P., St Laurent, G., Raz, T., Ozsolak, F., Reynolds, C. P., Sorensen, P. H., et al. (2010). The majority of total nuclear-encoded non-ribosomal RNA in a human cell is’ dark matter’un-annotated RNA. BMC Biology, 8(1), 149.
Karp, X., & Ambros, V. (2005). Encountering microRNAs in cell fate signaling. Science, 310(5752), 1288–1289.
Kawasaki, H., & Taira, K. (2003). Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature, 423(6942), 838–842.
Kawase-Koga, Y., Low, R., Otaegi, G., Pollock, A., Deng, H., Eisenhaber, F., et al. (2010). RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. Journal of Cell Science, 123(4), 586–594.
Kawase-Koga, Y., Otaegi, G., & Sun, T. (2009). Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Developmental Dynamics, 238(11), 2800–2812.
Kiecker, C., & Lumsden, A. (2005). Compartments and their boundaries in vertebrate brain development. Nature Reviews Neuroscience, 6(7), 553.
Kim, V. N. (2005). MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6(5), 376–385.
Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., & Plasterk, R. H. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nature Methods, 3(1), 27–29.
Kole, A. J., Swahari, V., Hammond, S. M., & Deshmukh, M. (2011). miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes & Development, 25(2), 125–130.
Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., et al. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495–500.
Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9(10), 1274–1281.
Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell–derived neurogenesis. Stem Cells, 24(4), 857–864.
Le, M. T., Xie, H., Zhou, B., Chia, P. H., Rizk, P., Um, M., et al. (2009). MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Molecular and Cellular Biology, 29(19), 5290–5305.
Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.
Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G.-J., Kennerdell, J. R., et al. (2012). The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature, 482(7386), 519–523.
Liu, C., & Zhao, X. (2009). MicroRNAs in adult and embryonic neurogenesis. NeuroMolecular Medicine, 11(3), 141–152.
Loring, J., Wen, X., Lee, J., Seilhamer, J., & Somogyi, R. (2001). A gene expression profile of Alzheimer’s disease. DNA and Cell Biology, 20(11), 683–695.
Lu, M., Jolly, M. K., Levine, H., Onuchic, J. N., & Ben-Jacob, E. (2013). MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination. Proceedings of the National Academy of Sciences, 110(45), 18144–18149.
Lukiw, W. J. (2013). Circular RNA (circRNA) in Alzheimer’s disease (AD). Frontiers in Genetics, 4, 307.
Luxenhofer, G., Helmbrecht, M. S., Langhoff, J., Giusti, S. A., Refojo, D., & Huber, A. B. (2014). MicroRNA-9 promotes the switch from early-born to late-born motor neuron populations by regulating Onecut transcription factor expression. Developmental Biology, 386(2), 358–370.
Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27(3), 435–448.
Mattick, J. S. (2001). Non-coding RNAs: The architects of eukaryotic complexity. EMBO Reports, 2(11), 986–991.
Mattick, J. S., & Makunin, I. V. (2006). Non-coding RNA. Human Molecular Genetics, 15((suppl_1)), R17–R29.
Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano, Y., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8(6), 633–638.
Motti, D., Bixby, J. L., & Lemmon, V. P. (2012). MicroRNAs and neuronal development. Seminars in Fetal and Neonatal Medicine, 17(6), 347–352.
Muljo, S. A., Kanellopoulou, C., & Aravind, L. (2010). MicroRNA targeting in mammalian genomes: genes and mechanisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(2), 148–161.
Narendra, D., Tanaka, A., Suen, D.-F., & Youle, R. J. (2009). Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy, 5(5), 706–708.
O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043), 839–843.
Otto, T., Candido, S. V., Pilarz, M. S., Sicinska, E., Bronson, R. T., Bowden, M., et al. (2017). Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proceedings of the National Academy of Sciences, 114(40), 10660–10665.
Pandey, A., Jauhari, A., Singh, T., Singh, P., Singh, N., Srivastava, A. K., et al. (2015a). Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicology Research, 4(6), 1578–1586.
Pandey, A., Singh, P., Jauhari, A., Singh, T., Khan, F., Pant, A. B., et al. (2015b). Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. Journal of Neurochemistry, 133(5), 640–652.
Peng, C., Li, N., Ng, Y.-K., Zhang, J., Meier, F., Theis, F. J., et al. (2012). A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. The Journal of Neuroscience, 32(38), 13292–13308.
Peng, D., Wang, H., Li, L., Ma, X., Chen, Y., Zhou, H., et al. (2018). miR-34c-5p promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding. Leukemia, 32, 1180.
Petri, R., Malmevik, J., Fasching, L., Åkerblom, M., & Jakobsson, J. (2014). miRNAs in brain development. Experimental Cell Research, 321(1), 84–89.
Qi, X. (2015). The role of miR-9 during neuron differentiation of mouse retinal stem cells. Artificial Cells, Nanomedicine, and Biotechnology. https://doi.org/10.3109/21691401.2015.1111231.
Rajewsky, N. (2006). microRNA target predictions in animals. Nature Genetics, 38, S8–S13.
Roese-Koerner, B., Stappert, L., Berger, T., Braun, N. C., Veltel, M., Jungverdorben, J., et al. (2016). Reciprocal regulation between bifunctional miR-9/9∗ and its transcriptional modulator notch in human neural stem cell self-renewal and differentiation. Stem Cell Reports, 7(2), 207–219.
Roshan, R., Shridhar, S., Sarangdhar, M. A., Banik, A., Chawla, M., Garg, M., et al. (2014). Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA, 20(8), 1287–1297.
Sandberg, R., Yasuda, R., Pankratz, D. G., Carter, T. A., Del Rio, J. A., Wodicka, L., et al. (2000). Regional and strain-specific gene expression mapping in the adult mouse brain. Proceedings of the National Academy of Sciences, 97(20), 11038–11043.
Santra, M., Chopp, M., Santra, S., Nallani, A., Vyas, S., Zhang, Z. G., et al. (2016). Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. Journal of Neurochemistry, 136(1), 118–132.
Sayed, D., & Abdellatif, M. (2011). MicroRNAs in development and disease. Physiological Reviews, 91(3), 827–887.
Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.
Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5(3), R13.
Shin, S., & Blenis, J. (2010). ERK2/Fra1/ZEB pathway induces epithelial-to-mesenchymal transition. Routledge: Taylor & Francis.
Shin, J., Shin, Y., Oh, S., Yang, H., Yu, W., Lee, J., et al. (2014). MiR-29b controls fetal mouse neurogenesis by regulating ICAT-mediated Wnt/β-catenin signaling. Cell Death & Disease, 5(10), e1473.
Siemens, H., Jackstadt, R., Hünten, S., Kaller, M., Menssen, A., Götz, U., et al. (2011). miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle, 10(24), 4256–4271.
Sim, S.-E., Lim, C.-S., Kim, J.-I., Seo, D., Chun, H., Yu, N.-K., et al. (2016). The brain-enriched MicroRNA miR-9-3p regulates synaptic plasticity and memory. The Journal of Neuroscience, 36(33), 8641–8652.
Singh, T., Jauhari, A., Pandey, A., Singh, P., B Pant, A., Parmar, D., et al. (2014). Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 13(1), 96–103.
Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9(3), 219.
Tanzer, A., & Stadler, P. F. (2004). Molecular evolution of a microRNA cluster. Journal of Molecular Biology, 339(2), 327–335.
Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147.
Terasawa, K., Ichimura, A., Sato, F., Shimizu, K., & Tsujimoto, G. (2009). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS Journal, 276(12), 3269–3276.
Tremblay, R. G., Sikorska, M., Sandhu, J. K., Lanthier, P., Ribecco-Lutkiewicz, M., & Bani-Yaghoub, M. (2010). Differentiation of mouse Neuro 2A cells into dopamine neurons. Journal of Neuroscience Methods, 186(1), 60–67.
Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S.-K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes & Development, 21(7), 744–749.
Wang, Z.-M., Du, W.-J., Piazza, G. A., & Xi, Y. (2013). MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacologica Sinica, 34(11), 1374.
Wheeler, B. M., Heimberg, A. M., Moy, V. N., Sperling, E. A., Holstein, T. W., Heber, S., et al. (2009). The deep evolution of metazoan microRNAs. Evolution & Development, 11(1), 50–68.
Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., et al. (2005). MicroRNA expression in zebrafish embryonic development. Science, 309(5732), 310–311.
Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., & Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genetics, 35(3), 217–218.
Wienholds, E., & Plasterk, R. H. (2005). MicroRNA function in animal development. FEBS Letters, 579(26), 5911–5922.
Xie, H.-R., Hu, L.-S., & Li, G.-Y. (2010). SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chinese Medical Journal, 123(8), 1086–1092.
Xue, Q., Yu, C., Wang, Y., Liu, L., Zhang, K., Fang, C., et al. (2016). miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Scientific Reports, 6, 26781.
Yadav, S., Jauhari, A., Singh, N., Singh, T., Srivastav, A. K., Singh, P., et al. (2015). MicroRNAs are emerging as most potential molecular biomarkers. Biochemistry & Analytical Biochemistry. https://doi.org/10.4172/2161-1009.1000191.
Yadav, S., Pandey, A., Shukla, A., Talwelkar, S. S., Kumar, A., Pant, A. B., et al. (2011). miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. Journal of Biological Chemistry, 286(43), 37347–37357.
Yang, S., Toledo, E. M., Rosmaninho, P., Peng, C., Uhlén, P., Castro, D. S., et al. (2018). A Zeb2-miR-200c loop controls midbrain dopaminergic neuron neurogenesis and migration. Communications Biology, 1(1), 75. https://doi.org/10.1038/s42003-018-0080-0.
Yao, C.-X., Wei, Q.-X., Zhang, Y.-Y., Wang, W.-P., Xue, L.-X., Yang, F., et al. (2013). miR-200b targets GATA-4 during cell growth and differentiation. RNA Biology, 10(4), 465–480.
Yu, J.-Y., Chung, K.-H., Deo, M., Thompson, R. C., & Turner, D. L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314(14), 2618–2633.
Zhang, G.-Y., Wang, J., Jia, Y.-J., Han, R., Li, P., & Zhu, D.-N. (2015). MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy. Neural Regeneration Research, 10(2), 314.
Zou, Y., Huang, Y., Yang, J., Wu, J., & Luo, C. (2017). miR-34a is downregulated in human osteosarcoma stem-like cells and promotes invasion, tumorigenic ability and self-renewal capacity. Molecular Medicine Reports, 15(4), 1631–1637.
Acknowledgements
Funding for the work carried out in the present study has been provided by CSIR network projects (Grant Nos. BSC0111, BSC0115). Mr. Abhishek Jauhari is grateful to UGC, New Delhi, for providing research fellowship. The CSIR-IITR communication reference number is 3426.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no conflict of interest regarding the publication of this review article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jauhari, A., Yadav, S. MiR-34 and MiR-200: Regulator of Cell Fate Plasticity and Neural Development. Neuromol Med 21, 97–109 (2019). https://doi.org/10.1007/s12017-019-08535-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12017-019-08535-9