Skip to main content

Advertisement

Log in

How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Congenital myasthenic syndromes (CMS) are heterogeneous genetic diseases in which neuromuscular transmission is compromised. CMS resembling the Lambert–Eaton myasthenic syndrome (CMS–LEMS) are emerging as a rare group of distinct presynaptic CMS that share the same electrophysiological features. They have low compound muscular action potential amplitude that increment after brief exercise (facilitation) or high-frequency repetitive nerve stimulation. Although clinical signs similar to LEMS can be present, the main hallmark is the electrophysiological findings, which are identical to autoimmune LEMS. CMS–LEMS occurs due to deficits in acetylcholine vesicle release caused by dysfunction of different components in its pathway. To date, the genes that have been associated with CMS–LEMS are AGRN, SYT2, MUNC13-1, VAMP1, and LAMA5. Clinicians should keep in mind these newest subtypes of CMS–LEMS to achieve the correct diagnosis and therapy. We believe that CMS–LEMS must be included as an important diagnostic clue to genetic investigation in the diagnostic algorithms to CMS. We briefly review the main features of CMS–LEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aran, A., Segel, R., Kaneshige, K., et al. (2017). Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology, 88, 1021–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bady, D., Chauplannaz, G., & Carrier, H. (1987). Congenital Lambert-Eaton myasthenic syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 50, 476–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeson, D., Hantaï, D., Lochmüller, H., & Engel, A. G. (2005). 126th International Workshop: congenital myasthenic syndromes, 24–26 September 2004, Naarden, The Netherlands. Neuromuscular Disorders, 15, 498–512.

    Article  PubMed  Google Scholar 

  • Campagna, J. A., Ruegg, M. A., & Bixby, J. L. (1997). Evidence that agrin directly influences presynaptic differentiation at neuromuscular junctions in vitro. European Journal of Neuroscience, 9, 2269–2283.

    Article  CAS  PubMed  Google Scholar 

  • Engel, A. G., Ohno, K., & Sine, S. M. (2003). Congenital myasthenic syndromes: Progress over the past decade. Muscle and Nerve, 27, 4–25.

    Article  PubMed  Google Scholar 

  • Engel, A. G., Selcen, D., Shen, X. M., Milone, M., & Harper, C. M. (2016). Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurology Genetics, 2, e105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel, A. G., Shen, X. M., & Selcen, D. (2018). The unfolding landscape of the congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1413, 25–34.

    Article  PubMed  Google Scholar 

  • Han, J., Pluhackova, K., & Böckmann, R. A. (2017). The multifaceted role of SNARE proteins in membrane fusion. Frontiers in Physiology, 8, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrmann, D. N., Horvath, R., Sowden, J. E., et al. (2014). Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. American Journal of Human Genetics, 95, 332–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hülsbrink, R., & Hashemolhosseini, S. (2014). Lambert-Eaton myasthenic syndrome: diagnosis, pathogenesis and therapy. Clinical Neurophysiology, 125, 2328–2336.

    Article  PubMed  Google Scholar 

  • Jahn, R., & Fasshauer, D. (2012). Molecular machines governing exocytosis of synaptic vesicles. Nature, 490, 201–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzoni, P. J., Scola, R. H., Kay, C. S., Parolin, S. F., & Werneck, L. C. (2010). Non-paraneoplastic Lambert-Eaton myasthenic syndrome: A brief review of 10 cases. Arquivos de Neuro-Psiquiatria, 68, 849–854.

    Article  PubMed  Google Scholar 

  • Lorenzoni, P. J., Scola, R. H., Kay, C. S. K., & Werneck, L. C. (2012). Congenital myasthenic syndrome: A brief review. Pediatric Neurology, 46, 141–148.

    Article  PubMed  Google Scholar 

  • Ma, C., Su, L., Seven, A. B., Yu, Y., & Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 339, 421–425.

    Article  CAS  PubMed  Google Scholar 

  • Malsam, J., Kreye, S., & Sollner, T. H. (2008). Membrane fusion: SNAREs and regulation. Cellular and Molecular Life Sciences, 65, 2814–2832.

    Article  CAS  PubMed  Google Scholar 

  • Maselli, R. A., Arredondo, J., Ferns, M. J., & Wollmann, R. L. (2012). Synaptic basal lamina-associated congenital myasthenic syndromes. Annals of the New York Academy of Sciences, 1275, 36–48.

    Article  CAS  PubMed  Google Scholar 

  • Maselli, R. A., Arredondo, J., Vazquez, J., et al. (2017). Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. American Journal of Medical Genetics, 173, 2240–2245.

    Article  CAS  PubMed  Google Scholar 

  • Maselli, R. A., Fernandez, J. M., Arredondo, J., et al. (2012). LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Human Genetics, 131, 1123–1135.

    Article  CAS  PubMed  Google Scholar 

  • McMacken, G., Abicht, A., Evangelista, T., Spendiff, S., & Lochmüller, H. (2017). The increasing genetic and phenotypical diversity of congenital myasthenic syndromes. Neuropediatrics, 48, 294–308.

    Article  CAS  PubMed  Google Scholar 

  • Miner, J. H., Cunningham, J., & Sanes, J. R. (1998). Roles for laminin in embryogenesis: Exencephaly, syndactyly, and placentopathy in mice lacking the laminin-5 chain. Journal of Cell Biology, 143, 1713–1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicole, S., Azuma, Y., Bauché, S., Eymard, B., Lochmüller, H., & Slater, C. (2017). Congenital myasthenic syndromes or inherited disorders of neuromuscular transmission: Recent discoveries and open questions. Journal of Neuromuscular Diseases, 4, 269–284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicole, S., Chaouch, A., Torbergsen, T., et al. (2014). Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain, 137, 2429–2443.

    Article  PubMed  Google Scholar 

  • Nishimune, H., Sanes, J. R., & Carlson, S. S. (2004). A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature, 432, 580–587.

    Article  CAS  PubMed  Google Scholar 

  • Rizo, J., & Xu, J. (2015). The synaptic vesicle release machinery. Annual Review of Biophysics, 44, 339–367.

    Article  CAS  PubMed  Google Scholar 

  • Salpietro, V., Lin, W., Vedove, A. D., et al. (2017). Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Annals of Neurology, 81, 597–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoser, B., Eymard, B., Datt, J., & Mantegazza, R. (2017). Lambert-Eaton myasthenic syndrome (LEMS): A rare autoimmune presynaptic disorder often associated with cancer. Journal of Neurology, 264, 1854–1863.

    Article  CAS  PubMed  Google Scholar 

  • Shen, X. M., Scola, R. H., Lorenzoni, P. J., et al. (2017). Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Annals of Clinical and Translational Neurology, 4, 130–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, X. M., Selcen, D., Brengman, J., & Engel, A. G. (2014). Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology, 83, 2247–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, Y. J., Scranton, T. W., Sunderland, W. J., et al. (2000). The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. Journal of Biological Chemistry, 275, 451–460.

    Article  CAS  PubMed  Google Scholar 

  • Souza, P. V., Batistella, G. N., Lino, V. C., Pinto, W. B., Annes, M., & Oliveira, A. S. (2016). Clinical and genetic basis of congenital myasthenic syndromes. Arquivos de Neuro-Psiquiatria, 4, 750–760.

    Article  Google Scholar 

  • Sudhof, T. C., & Rothman, J. E. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science, 323, 474–477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Titulaer, M. J., Lang, B., & Verschuuren, J. (2011). Lambert–Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurology, 10, 1098–1107.

    Article  PubMed  Google Scholar 

  • Whittaker, R. G., Herrmann, D. N., Bansagi, B., et al. (2015). Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology, 85, 1964–1971.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo José Lorenzoni.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzoni, P.J., Scola, R.H., Kay, C.S.K. et al. How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features. Neuromol Med 20, 205–214 (2018). https://doi.org/10.1007/s12017-018-8490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-018-8490-1

Keywords

Navigation