Secretome of Differentiated PC12 Cells Restores the Monocrotophos-Induced Damages in Human Mesenchymal Stem Cells and SHSY-5Y Cells: Role of Autophagy and Mitochondrial Dynamics

  • A. Srivastava
  • S. Singh
  • C. S. Rajpurohit
  • P. Srivastava
  • A. Pandey
  • D. Kumar
  • V. K. Khanna
  • A. B. Pant
Original Paper

Abstract

A perturbed cellular homeostasis is a key factor associated with xenobiotic exposure resulting in various ailments. The local cellular microenvironment enriched with secretory components aids in cell–cell communication that restores this homeostasis. Deciphering the underlying mechanism behind this restorative potential of secretome could serve as a possible solution to many health hazards. We, therefore, explored the protective efficacy of the secretome of differentiated PC12 cells with emphasis on induction of autophagy and mitochondrial biogenesis. Monocrotophos (MCP), a widely used neurotoxic organophosphate, was used as the test compound at sublethal concentration. The conditioned medium (CM) of differentiated PC12 cells comprising of their secretome restored the cell viability, oxidative stress and apoptotic cell death in MCP-challenged human mesenchymal stem cells and SHSY-5Y, a human neuroblastoma cell line. Delving further to identify the underlying mechanism of this restorative effect we observed a marked increase in the expression of autophagy markers LC3, Beclin-1, Atg5 and Atg7. Exposure to autophagy inhibitor, 3-methyladenine, led to a reduced expression of these markers with a concomitant increase in the expression of pro-apoptotic caspase-3. Besides that, the increased mitochondrial fission in MCP-exposed cells was balanced with increased fusion in the presence of CM facilitated by AMPK/SIRT1/PGC-1α signaling cascade. Mitochondrial dysfunctions are strongly associated with autophagy activation and as per our findings, cellular secretome too induces autophagy. Therefore, connecting these three potential apices can be a major breakthrough in repair and rescue of xenobiotic-damaged tissues and cells.

Keywords

Secretome Conditioned medium PC12 cells Mesenchymal stem cells Autophagy Mitochondrial dynamics 

Notes

Acknowledgements

Financial support from Council of Scientific & Industrial Research, Government of India, New Delhi, India [Grant No. BSC0111/INDEPTH/CSIR Network Project] and Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi, India [Grant No. SR/SO/Z 36/2007/91/10] is acknowledged.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. Adamowicz, J., Pokrywczyńska, M., & Drewa, T. (2014). Conditioned medium derived from mesenchymal stem cells culture as a intravesical therapy for cystitis interstitials. Medical Hypotheses, 82(6), 670–673.CrossRefPubMedGoogle Scholar
  2. Arien-Zakay, H., Lecht, S., Nagler, A., & Lazarovici, P. (2011). Neuroprotection by human umbilical cord blood-derived progenitors in ischemic brain injuries. Archives Italiennes de Biologie, 149(2), 233–245.PubMedGoogle Scholar
  3. Baglio, S. R., Pegtel, D. M., & Baldini, N. (2012). Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Frontiers in Physiology, 3, 359.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Basu, J., & Ludlow, J. W. (2016). Exosomes for repair, regeneration and rejuvenation. Expert Opinion on Biological Therapy, 16(4), 489–506.CrossRefPubMedGoogle Scholar
  5. Beer, L., Zimmermann, M., Mitterbauer, A., Ellinger, A., Gruber, F., Narzt, M.-S., et al. (2015). Analysis of the secretome of apoptotic peripheral blood mononuclear cells: Impact of released proteins and exosomes for tissue regeneration. Scientific reports, 5, 16662.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bhang, S. H., Lee, S., Shin, J.-Y., Lee, T.-J., Jang, H.-K., & Kim, B.-S. (2014). Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Molecular Therapy, 22(4), 862.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bhattacharya, A., Prakash, Y., & Eissa, N. T. (2014). Secretory function of autophagy in innate immune cells. Cellular Microbiology, 16(11), 1637–1645.CrossRefPubMedGoogle Scholar
  8. Birkenfeld, A. L., Lee, H.-Y., Guebre-Egziabher, F., Alves, T. C., Jurczak, M. J., Jornayvaz, F. R., et al. (2011). Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metabolism, 14(2), 184–195.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Cannon, J. R., & Greenamyre, J. T. (2011). The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicological Sciences, 124(2), 225–250.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Cantó, C., & Auwerx, J. (2010). AMP-activated protein kinase and its downstream transcriptional pathways. Cellular and Molecular Life Sciences, 67(20), 3407–3423.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Chaabane, W., User, S. D., El-Gazzah, M., Jaksik, R., Sajjadi, E., Rzeszowska-Wolny, J., et al. (2013). Autophagy, apoptosis, mitoptosis and necrosis: Interdependence between those pathways and effects on cancer. Archivum Immunologiae et Therapiae Experimentalis, 61(1), 43–58.CrossRefPubMedGoogle Scholar
  12. Chen, R., Wang, Q., Song, S., Liu, F., He, B., & Gao, X. (2016). Protective role of autophagy in methionine–choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. European Journal of Pharmacology, 770, 126–133.CrossRefPubMedGoogle Scholar
  13. Cheng, N.-T., Guo, A., & Meng, H. (2016). The protective role of autophagy in experimental osteoarthritis, and the therapeutic effects of Torin 1 on osteoarthritis by activating autophagy. BMC Musculoskeletal Disorders, 17(1), 150.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Dhandapani, K. M., Hadman, M., De Sevilla, L., Wade, M. F., Mahesh, V. B., & Brann, D. W. (2003). Astrocyte protection of neurons role of transforming growth factor-β signaling via a c-Jun-AP-1 protective pathway. Journal of Biological Chemistry, 278(44), 43329–43339.CrossRefPubMedGoogle Scholar
  15. Doeppner, T. R., Traut, V., Heidenreich, A., Kaltwasser, B., Bosche, B., Bähr, M., et al. (2016). Conditioned medium derived from neural progenitor cells induces long-term post-ischemic neuroprotection, sustained neurological recovery, neurogenesis, and angiogenesis. Molecular neurobiology, 1-10.Google Scholar
  16. Dominy, J. E., & Puigserver, P. (2013). Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harbor Perspectives in Biology, 5(7), a015008.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Drakulić, D., Veličković, N., Stanojlović, M., Grković, I., Mitrović, N., Lavrnja, I., et al. (2013). Low-dose dexamethasone treatment promotes the pro-survival signalling pathway in the adult rat prefrontal cortex. Journal of Neuroendocrinology, 25(7), 605–616.CrossRefPubMedGoogle Scholar
  18. Duan, Z., Qu, Y., Zhao, F., Tang, B., Li, J., & Mu, D. (2010). Protective effect of conditioned medium from astrocytes transfected with telomerase reverse transcriptase on hypoxia-ischemia neurons. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi=. Chinese Journal of Reparative and Reconstructive Surgery, 24(10), 1217–1223.PubMedGoogle Scholar
  19. Duarte, D. A., Papadimitriou, A., Gilbert, R. E., Thai, K., Zhang, Y., Rosales, M. A., et al. (2016). Conditioned medium from early-outgrowth bone marrow cells is retinal protective in experimental model of diabetes. PLoS ONE, 11(2), e0147978.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Enciu, A. M., Nicolescu, M. I., Manole, C. G., Mureşanu, D. F., Popescu, L. M., & Popescu, B. O. (2011). Neuroregeneration in neurodegenerative disorders. BMC Neurology, 11(1), 75.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Ernst, A., & Frisén, J. (2015). Adult neurogenesis in humans-common and unique traits in mammals. PLoS Biology, 13(1), e1002045.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Fortini, P., Iorio, E., Dogliotti, E., & Isidoro, C. (2016). Coordinated metabolic changes and modulation of autophagy during myogenesis. Frontiers in Physiology, 7, 237.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Gerencser, A. A., Chinopoulos, C., Birket, M. J., Jastroch, M., Vitelli, C., Nicholls, D. G., et al. (2012). Quantitative measurement of mitochondrial membrane potential in cultured cells: Calcium-induced de-and hyperpolarization of neuronal mitochondria. The Journal of Physiology, 590(12), 2845–2871.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13(4), 251–262.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Hathout, Y. (2007). Approaches to the study of the cell secretome. Expert Review of Proteomics, 4(2), 239–248.CrossRefPubMedGoogle Scholar
  26. Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology, 13(4), 225–238.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Jornayvaz, F. R., & Shulman, G. I. (2010). Regulation of mitochondrial biogenesis. Essays in Biochemistry, 47, 69–84.CrossRefPubMedGoogle Scholar
  28. Kashyap, M., Singh, A., Siddiqui, M., Kumar, V., Tripathi, V., Khanna, V., et al. (2010). Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells. Chemical Research in Toxicology, 23(11), 1663–1672.CrossRefPubMedGoogle Scholar
  29. Kaufmann, A., Beier, V., Franquelim, H. G., & Wollert, T. (2014). Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell, 156(3), 469–481.CrossRefPubMedGoogle Scholar
  30. Kazi, A. I., & Oommen, A. (2012). Monocrotophos induced oxidative damage associates with severe acetylcholinesterase inhibition in rat brain. NeuroToxicology, 33(2), 156–161.CrossRefPubMedGoogle Scholar
  31. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J., & Kroemer, G. (2011). Cell death assays for drug discovery. Nature Reviews Drug Discovery, 10(3), 221–237.CrossRefPubMedGoogle Scholar
  32. Krause, K.-H., van Thriel, C., De Sousa, P. A., Leist, M., & Hengstler, J. G. (2013). Monocrotophos in Gandaman village: India school lunch deaths and need for improved toxicity testing. Archives of Toxicology, 87(10), 1877–1881.CrossRefPubMedGoogle Scholar
  33. Kumar, V., Pandey, A., Jahan, S., Shukla, R. K., Kumar, D., Srivastava, A., et al. (2016). Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Scientific reports, 6, 28142.CrossRefPubMedCentralPubMedGoogle Scholar
  34. Kumar, V., & Prakash, C. (2015). Arsenic induced oxidative stress and mitochondrial dysfunction in rat brain. SpringerPlus, 4(S1), 1–32.Google Scholar
  35. Kumar, V., Tripathi, V. K., Singh, A. K., Lohani, M., & Kuddus, M. (2013). Trans-resveratrol restores the damages induced by organophosphate pesticide-monocrotophos in neuronal cells. Toxicology International, 20(1), 48.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Lahiani, A., Zahavi, E., Netzer, N., Ofir, R., Pinzur, L., Raveh, S., et al. (2015). Human placental expanded (PLX) mesenchymal-like adherent stromal cells confer neuroprotection to nerve growth factor (NGF)-differentiated PC12 cells exposed to ischemia by secretion of IL-6 and VEGF. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Research, 1853(2), 422–430.Google Scholar
  37. Lee, S. T., Chu, K., Jung, K. H., Im, W. S., Park, J. E., Lim, H. C., et al. (2009). Slowed progression in models of Huntington disease by adipose stem cell transplantation. Annals of Neurology, 66(5), 671–681.CrossRefPubMedGoogle Scholar
  38. Lee, S. K., Lee, S. C., & Kim, S.-J. (2015). A novel cell-free strategy for promoting mouse liver regeneration: Utilization of a conditioned medium from adipose-derived stem cells. Hepatology International, 9(2), 310–320.CrossRefPubMedGoogle Scholar
  39. Liao, T.-L., Chen, S.-C., Tzeng, C.-R., & Kao, S.-H. (2014). TCDD induces the hypoxia-inducible factor (HIF)-1α regulatory pathway in human trophoblastic JAR cells. International Journal of Molecular Sciences, 15(10), 17733–17750.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Liu, S., Sarkar, C., Dinizo, M., Faden, A., Koh, E., Lipinski, M., et al. (2015). Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death and Disease, 6(1), e1582.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Lu, X., Al-Aref, R., Zhao, D., Shen, J., Yan, Y., & Gao, Y. (2015). Astrocyte-conditioned medium attenuates glutamate-induced apoptotic cell death in primary cultured spinal cord neurons of rats. Neurological Research, 37(9), 803–808.CrossRefPubMedGoogle Scholar
  42. Mariño, G., Pietrocola, F., Madeo, F., & Kroemer, G. (2014). Caloric restriction mimetics: Natural/physiological pharmacological autophagy inducers. Autophagy, 10(11), 1879–1882.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Meyer, J. N., Leung, M. C., Rooney, J. P., Sendoel, A., Hengartner, M. O., Kisby, G. E., et al. (2013). Mitochondria as a target of environmental toxicants. Toxicological Sciences, 134(1), 1–17.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Nixon, R. A., & Yang, D.-S. (2012). Autophagy and neuronal cell death in neurological disorders. Cold Spring Harbor Perspectives in Biology, 4(10), a008839.CrossRefPubMedCentralPubMedGoogle Scholar
  45. Noble, W., & Burns, M. P. (2010). Challenges in neurodegeneration research. Frontiers in Psychiatry, 1, 7.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Palikaras, K., Lionaki, E., & Tavernarakis, N. (2015). Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death and Differentiation, 22(9), 1399.CrossRefPubMedCentralPubMedGoogle Scholar
  47. Pamanji, R., Bethu, M., Yashwanth, B., Leelavathi, S., & Rao, J. V. (2015). Developmental toxic effects of monocrotophos, an organophosphorous pesticide, on zebrafish (Danio rerio) embryos. Environmental Science and Pollution Research, 22(10), 7744–7753.CrossRefPubMedGoogle Scholar
  48. Perucho, J., Casarejos, M. J., Gómez, A., Ruíz, C., Fernández-Estevez, M. Á., Muñoz, M. P., et al. (2013). Striatal infusion of glial conditioned medium diminishes huntingtin pathology in r6/1 mice. PLoS ONE, 8(9), e73120.CrossRefPubMedCentralPubMedGoogle Scholar
  49. Phadwal, K., Watson, A. S., & Simon, A. K. (2013). Tightrope act: Autophagy in stem cell renewal, differentiation, proliferation, and aging. Cellular and Molecular Life Sciences, 70(1), 89–103.CrossRefPubMedGoogle Scholar
  50. Qiang, L., Wu, C., Ming, M., Viollet, B., & He, Y.-Y. (2013). Autophagy controls p38 activation to promote cell survival under genotoxic stress. Journal of Biological Chemistry, 288(3), 1603–1611.CrossRefPubMedGoogle Scholar
  51. Scuteri, A., Ravasi, M., Monfrini, M., Milano, A., D’amico, G., Miloso, M., et al. (2015). Human mesenchymal stem cells protect dorsal root ganglia from the neurotoxic effect of cisplatin. Anticancer Research, 35(10), 5383–5389.PubMedGoogle Scholar
  52. Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Molecular Cell, 48(2), 158–167.CrossRefPubMedCentralPubMedGoogle Scholar
  53. Srivastava, A., Kumar, V., Pandey, A., Jahan, S., Kumar, D., Rajpurohit, C. S., et al. (2016). Adoptive autophagy activation: A much-needed remedy against chemical induced neurotoxicity/developmental neurotoxicity. Molecular Neurobiology.  https://doi.org/10.1007/s12035-016-9778-5.Google Scholar
  54. Stastna, M., & Van Eyk, J. E. (2012). Investigating the secretome lessons about the cells that comprise the heart. Circulation: Cardiovascular Genetics, 5(1), o8–o18.PubMedCentralGoogle Scholar
  55. Sun, H., Bénardais, K., Stanslowsky, N., Thau-Habermann, N., Hensel, N., Huang, D., et al. (2013). Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in amyotrophic lateral sclerosis (ALS)-in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia. PLoS ONE, 8(9), e72926.CrossRefPubMedCentralPubMedGoogle Scholar
  56. Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: Outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology, 11(9), 621–632.CrossRefPubMedGoogle Scholar
  57. Teixeira, F. G., Carvalho, M. M., Panchalingam, K. M., Rodrigues, A. J., Mendes-Pinheiro, B., Anjo, S., et al. (2016). Impact of the Secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson’s disease. Stem Cells Translational, 6, 634–646.CrossRefGoogle Scholar
  58. Tfilin, M., Sudai, E., Merenlender, A., Gispan, I., Yadid, G., & Turgeman, G. (2010). Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Molecular Psychiatry, 15(12), 1164–1175.CrossRefPubMedGoogle Scholar
  59. Troiano, L., Ferraresi, R., Lugli, E., Nemes, E., Roat, E., Nasi, M., et al. (2007). Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nature Protocols, 2(11), 2719–2727.CrossRefPubMedGoogle Scholar
  60. Watanabe, H., Abe, H., Takeuchi, S., & Tanaka, R. (2000). Protective effect of microglial conditioning medium on neuronal damage induced by glutamate. Neuroscience Letters, 289(1), 53–56.CrossRefPubMedGoogle Scholar
  61. Zhu, J., Gusdon, A., Cimen, H., Van Houten, B., Koc, E., & Chu, C. (2012). Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: Dual roles for ERK1/2. Cell Death and Disease, 3(5), e312.CrossRefPubMedCentralPubMedGoogle Scholar
  62. Zorzano, A., & Claret, M. (2015). Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Frontiers in Aging Neuroscience, 7, 101.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Srivastava
    • 1
  • S. Singh
    • 1
    • 2
  • C. S. Rajpurohit
    • 1
    • 2
  • P. Srivastava
    • 1
  • A. Pandey
    • 1
  • D. Kumar
    • 1
    • 2
  • V. K. Khanna
    • 1
    • 2
  • A. B. Pant
    • 1
    • 2
  1. 1.System Toxicology and Health Risk Assessment GroupCSIR-Indian Institute of Toxicology Research (CSIR-IITR)LucknowIndia
  2. 2.Academy of Scientific and Innovative ResearchLucknowIndia

Personalised recommendations