NeuroMolecular Medicine

, Volume 20, Issue 1, pp 1–17 | Cite as

Genetics and Treatment Response in Parkinson’s Disease: An Update on Pharmacogenetic Studies

  • Cristina Politi
  • Cinzia CiccacciEmail author
  • Giuseppe Novelli
  • Paola Borgiani
Review Paper


Parkinson’s disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients’ quality of life.


Parkinson’s disease Pharmacogenetics Polymorphisms Levodopa Dopamine receptor agonists COMT inhibitors Monoamine oxidase inhibitors 


Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. Acuña, G., Foernzler, D., Leong, D., Rabbia, M., Smit, R., Dorflinger, E., et al. (2002). Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. The Pharmacogenomics Journal, 2(5), 327–334.PubMedCrossRefGoogle Scholar
  2. Agúndez, J. A., García-Martín, E., Alonso-Navarro, H., & Jiménez-Jiménez, F. J. (2013). Anti-Parkinson’s disease drugs and pharmacogenetic considerations. Expert Opinion on Drug Metabolism & Toxicology, 9(7), 859–874.CrossRefGoogle Scholar
  3. Ahlskog, J. E., & Muenter, M. D. (2001). Frequency of levodopa related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement Disorders Journal, 16(3), 448–458.CrossRefGoogle Scholar
  4. Alonso-Navarro, H., Jimenez-Jimenez, F. J., Garcia-Martin, E., & Agundez, J. A. (2014). Genomic and pharmacogenomic biomarkers of Parkinson’s disease. Current Drug Metabolism, 15(2), 129–181.PubMedCrossRefGoogle Scholar
  5. Altmann, V., Schumacher-Schuh, A. F., Rieck, M., Callegari-Jacques, S. M., Rieder, C. R., & Hutz, M. H. (2016). Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson’s disease. Pharmacogenomics, 17(5), 481–488.PubMedCrossRefGoogle Scholar
  6. Arbouw, M. E., Movig, K. L., Egberts, T. C., Poels, P. J., van Vugt, J. P., Wessels, J. A., et al. (2009). Clinical and pharmacogenetic determinants for the discontinuation of non-ergoline dopamine agonists in Parkinson’s disease. European Journal of Clinical Pharmacology, 65(12), 1245–1251.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arbouw, M. E., Movig, K. L., Guchelaar, H. J., Poels, P. J., van Vugt, J. P., Neef, C., et al. (2008). Discontinuation of ropinirole and pramipexole in patients with Parkinson’s disease: Clinical practice versus clinical trials. European Journal of Clinical Pharmacology, 64(10), 1021–1026.PubMedCrossRefGoogle Scholar
  8. Baik, J. H. (2013). Dopamine signaling in food addiction: Role of dopamine D2 receptors. BMB Reports, 46(11), 519–526.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Becker, M. L., Visser, L. E., van Schaik, R. H., Hofman, A., Uitterlinden, A. G., & Stricker, B. H. (2011). OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics, 12(1), 79–82.PubMedCrossRefGoogle Scholar
  10. Beinfeld, M. C. (2001). An introduction to neuronal cholecystokinin. Peptides, 22(8), 1197–1200.PubMedCrossRefGoogle Scholar
  11. Berry, M. D., Juorio, A. V., Li, X. M., & Boulton, A. A. (1996). Aromatic l-amino acid decarboxylase: A neglected and misunderstood enzyme. Neurochemical Research, 21(9), 1075–1087.PubMedCrossRefGoogle Scholar
  12. Besch, R., Giovannangeli, C., & Degitz, K. (2004). Triplex-forming oligonucleotides—Sequence-specific DNA ligands as tools for gene inhibition and for modulation of DNA-associated functions. Current Drug Targets, 5(8), 691–703.PubMedCrossRefGoogle Scholar
  13. Bezard, E., Brotchie, J. M., & Gross, C. E. (2001). Pathophysiology of levodopa induced dyskinesia: Potential for new therapies. Nature Reviews Neuroscience, 2(8), 577–588.PubMedCrossRefGoogle Scholar
  14. Białecka, M., Droździk, M., Kłodowska-Duda, G., Honczarenko, K., Gawrońska-Szklarz, B., Opala, G., et al. (2004). The effect of monoamine oxidase B (MAOB) and catechol-Omethyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurologica Scandinavica, 110(4), 260–266.PubMedCrossRefGoogle Scholar
  15. Bialecka, M., Klodowska-Duda, G., Honczarenko, K., Gawrońska-Szklarz, B., Opala, G., Safranow, K., et al. (2007). Polymorphisms of catechol-O-methyltransferase (COMT), monoamine oxidase B (MAOB), N-acetyltransferase 2 (NAT2) and cytochrome P450 2D6 (CYP2D6) gene in patients with early onset of Parkinson’s disease. Parkinsonism & Related Disorders, 13(4), 224–229.CrossRefGoogle Scholar
  16. Bialecka, M., Kurzawski, M., Klodowska-Duda, G., Opala, G., Tan, E. K., & Drozdzik, M. (2008). The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenetics and Genomics, 18(9), 815–821.PubMedCrossRefGoogle Scholar
  17. Bond, C., LaForge, K. S., Tian, M., Melia, D., Zhang, S., Borg, L., et al. (1998). Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: Possible implications for opiate addiction. Proceedings of the National Academy of Sciences USA, 95(16), 9608–9613.CrossRefGoogle Scholar
  18. Borges, N. (2005). Tolcapone in Parkinson’s disease: Liver toxicity and clinical efficacy. Expert Opinion in Drug Safety, 4(1), 69–73.CrossRefGoogle Scholar
  19. Børglum, A. D., Kirov, G., Craddock, N., Mors, O., Muir, W., Murray, V., et al. (2003). Possible parent-of-origin effect of Dopa decarboxylase in susceptibility to bipolar affective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 117B(1), 18–22.CrossRefGoogle Scholar
  20. Brotchie, J. M., Lee, J., & Venderova, K. (2005). Levodopa-induced dyskinesia in Parkinson’s disease. Journal of Neural Transmission, 112(3), 359–391.PubMedCrossRefGoogle Scholar
  21. Camicioli, R., Rajput, A., Rajput, M., Reece, C., Payami, H., & Hao, C. (2005). Apolipoprotein E epsilon4 and catechol-O-methyltransferase alleles in autopsyproven Parkinson’s disease: Relationship to dementia and hallucinations. Movement Disorders, 20(8), 989–994.PubMedCrossRefGoogle Scholar
  22. Cargnin, S., Jommi, C., Canonico, P. L., Genazzani, A. A., & Terrazzino, S. (2014). Diagnostic accuracy of HLA-B*57:01 screening for the prediction of abacavir hypersensitivity and clinical utility of the test: A meta-analytic review. Pharmacogenomics, 15(7), 963–976.PubMedCrossRefGoogle Scholar
  23. Chapman, J., Korczyn, A. D., Karussis, D. M., & Michaelson, D. M. (2001). The effects of APOE genotype on age at onset and progression of neurodegenerative diseases. Neurology, 57(8), 1482–1485.PubMedCrossRefGoogle Scholar
  24. Chaudhuri, R., & Schapira, A. (2009). Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. The Lancet Neurology, 8(5), 464–474.PubMedCrossRefGoogle Scholar
  25. Cheshire, P., Bertram, K., Ling, H., O’Sullivan, S. S., Halliday, G., McLean, C., et al. (2014). Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease. Neurodegenerative Disease, 13(1), 24–28.Google Scholar
  26. Clarke, C. E., & Guttman, M. (2002). Dopamine agonist monotherapy in Parkinson’s disease. Lancet, 360(9347), 1767–1769.PubMedCrossRefGoogle Scholar
  27. Conde, L., Vaquerizas, J. M., Dopazo, H., Arbiza, L., Reumers, J., Rousseau, F., et al. (2006). PupaSuite: Finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Research, 34(Web Server issue), W621-5.PubMedGoogle Scholar
  28. Contin, M., Martinelli, P., Mochi, M., Riva, R., Albani, F., & Baruzzi, A. (2005). Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic–pharmacodynamic pattern in patients with Parkinson’s disease. Movement Disorders, 20(6), 734–739.PubMedCrossRefGoogle Scholar
  29. Corvol, J. C., Bonnet, C., Charbonnier-Beaupel, F., Bonnet, A. M., Fiévet, M. H., Bellanger, A., et al. (2011). The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: A randomized crossover clinical trial. Annals of Neurology, 69(1), 111–118.PubMedCrossRefGoogle Scholar
  30. Cummings, J. L. (1991). Behavioral complications of drug treatment of Parkinson’s disease. Journal of the American Geriatrics Society, 39(7), 708–716.PubMedCrossRefGoogle Scholar
  31. Dardou, D., Dassesse, D., Cuvelier, L., Deprez, T., De Ryck, M., & Schiffmann, S. N. (2011). Distribution of SV2C mRNA and protein expression in the mouse brain with a particular emphasis on the basal ganglia system. Brain Research, 1367, 130–145.PubMedCrossRefGoogle Scholar
  32. De Lau, L., & Breteler, M. (2006). Epidemiology of Parkinson’s disease. The Lancet Neurology, 5(6), 525–535.PubMedCrossRefGoogle Scholar
  33. De Lau, L. M., Verbaan, D., Marinus, J., Heutink, P., & van Hilten, J. J. (2012). Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Movement Disorders, 27(1), 132–135.PubMedCrossRefGoogle Scholar
  34. De Luca, V., Annesi, G., De Marco, E. V., de Bartolomeis, A., Nicoletti, G., Pugliese, P., et al. (2009). HOMER1 promoter analysis in Parkinson’s disease: Association study with psychotic symptoms. Neuropsychobiology, 59(4), 239–245.PubMedCrossRefGoogle Scholar
  35. Devos, D., Lejeune, S., Cormier-Dequaire, F., Tahiri, K., Charbonnier-Beaupel, F., Rouaix, N., et al. (2014). Dopa-decarboxylase gene polymorphisms affect the motor response to L-dopa in Parkinson’s disease. Parkinsonism & Related Disorders, 20(2), 170–175.CrossRefGoogle Scholar
  36. Džoljić, E., Novaković, I., Krajinovic, M., Grbatinić, I., & Kostić, V. (2015). Pharmacogenetics of drug response in Parkinson’s disease. The International Journal of Neuroscience, 125(9), 635–644.PubMedCrossRefGoogle Scholar
  37. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–269.PubMedCrossRefGoogle Scholar
  38. Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., et al. (2004). Levodopa and the progression of Parkinson’s disease. The New England Journal of Medicine, 351(24), 2498–2508.PubMedCrossRefGoogle Scholar
  39. Feldman, B., Chapman, J., & Korczyn, A. D. (2006). Apolipoprotein epsilon4 advances appearance of psychosis in patients with Parkinson’s disease. Acta Neurologica Scandinavica, 113(1), 14–17.PubMedCrossRefGoogle Scholar
  40. Fénelon, G., & Alves, G. (2010). Epidemiology of psychosis in Parkinson’s disease. Journal of the Neurological Sciences, 289(1–2), 12–17.PubMedCrossRefGoogle Scholar
  41. Ferrari, M., Martignoni, E., Blandini, F., Riboldazzi, G., Bono, G., Marino, F., et al. (2012). Association of UDP-glucuronosyltransferase 1A9 polymorphisms with adverse reactions to catechol-O-methyltransferase inhibitors in Parkinson’s disease patients. European Journal of Clinical Pharmacology, 68(11), 1493–1499.PubMedCrossRefGoogle Scholar
  42. Fisher, A., Croft-Baker, J., Davis, M., Purcell, P., & McLean, A. J. (2002). Entacapone-induced hepatotoxicity and hepatic dysfunction. Movement Disorders, 17(6), 1362–1365.PubMedCrossRefGoogle Scholar
  43. Foltynie, T., Cheeran, B., Williams-Gray, C. H., Edwards, M. J., Schneider, S. A., Weinberger, D., et al. (2009). BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 80(2), 141–144.PubMedCrossRefGoogle Scholar
  44. Fox, S. H., Katzenschlager, R., Lim, S. Y., Ravina, B., Seppi, K., Coelho, M., et al. (2011). The movement disorder society evidence-based medicine review update: Treatments for the motor symptoms of Parkinson’s disease. Movement Disorders, 26(Suppl 3), S2–S41.PubMedCrossRefGoogle Scholar
  45. Fox, S. H., & Lang, A. E. (2008). Levodopa-related motor complications—Phenomenology. Movement Disorders, 23(Suppl. 3), S509–S514.PubMedCrossRefGoogle Scholar
  46. Frauscher, B., Högl, B., Maret, S., Wolf, E., Brandauer, E., Wenning, G. K., et al. (2004). Association of daytime sleepiness with COMT polymorphism in patients with Parkinson disease: A pilot study. Sleep, 27(4), 733–736.PubMedCrossRefGoogle Scholar
  47. Fujii, C., Harada, S., Ohkoshi, N., Hayashi, A., Yoshizawa, K., Ishizuka, C., et al. (1999). Association between polymorphism of the cholecystokinin gene and idiopathic Parkinson’s disease. Clinical Genetics, 56(5), 394–399.PubMedCrossRefGoogle Scholar
  48. Garcia-Borreguero, D., Schwarz, C., Larrosa, O., de la Llave, Y., & Garcia de Yébenes, J. (2003). L-DOPA-induced excessive daytime sleepiness in PD: A placebo-controlled case with MSLT assessment. Neurology, 61(7), 1008–1010.PubMedCrossRefGoogle Scholar
  49. Garcia-Ruiz, P. J., Martinez Castrillo, J. C., Alonso-Canovas, A., Herranz Barcenas, A., Vela, L., Sanchez Alonso, P., et al. (2014). Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: A multicentre study. Journal of Neurology, Neurosurgery and Psychiatry, 85(8), 840–844.PubMedCrossRefGoogle Scholar
  50. Goetz, C. G., Burke, P. F., Leurgans, S., Berry-Kravis, E., Blasucci, L. M., Raman, R., et al. (2001). Genetic variation analysis in Parkinson disease patients with and without hallucinations: Case–control study. Archives of Neurology, 58(2), 209–213.PubMedCrossRefGoogle Scholar
  51. Goldman, J. G., Goetz, C. G., Berry-Kravis, E., Leurgans, S., & Zhou, L. (2004). Genetic polymorphisms in Parkinson disease subjects with and without hallucinations: An analysis of the cholecystokinin system. Archives Neurology, 61(8), 1280–1284.CrossRefGoogle Scholar
  52. Goldman, J. G., Marr, D., Zhou, L., Ouyang, B., Leurgans, S. E., Berry-Kravis, E., et al. (2011). Racial differences may influence the role of cholecystokinin polymorphisms in Parkinson’s disease hallucinations. Movement Disorders, 26(9), 1781–1782.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Goudreau, J. L., Maraganore, D. M., Farrer, M. J., Lesnick, T. G., Singleton, A. B., Bower, J. H., et al. (2002). Case-control study of dopamine transporter-1, monoamine oxidase-B, and catechol-O-methyl transferase polymorphisms in Parkinson’s disease. Movement Disorders, 17(6), 1305–1311.PubMedCrossRefGoogle Scholar
  54. Guay, D. R. (2006). Rasagiline (TVP-1012): A new selective monoamine oxidase inhibitor for Parkinson’s disease. The American Journal of Geriatric Pharmacotherapy, 4, 330–346.PubMedCrossRefGoogle Scholar
  55. Guerini, F. R., Beghi, E., Riboldazzi, G., Zangaglia, R., Pianezzola, C., Bono, G., et al. (2009). BDNF Val66Met polymorphism is associated with cognitive impairment in Italian patients with Parkinson’s disease. European Journal of Neurology, 16(11), 1240–1245.PubMedCrossRefGoogle Scholar
  56. Guntaka, R. V., Varma, B. R., & Weber, K. T. (2003). Triplex-forming oligonucleotides as modulators of gene expression. The International Journal of Biochemistry & Cell Biology, 35(1), 22–31.CrossRefGoogle Scholar
  57. Hardoff, R., Sula, M., Tamir, A., Soil, A., Front, A., Badarna, S., et al. (2001). Gastric emptying time and gastric motility in patients with Parkinson’s disease. Movement Disorder, 16(6), 1041–1047.CrossRefGoogle Scholar
  58. Harhangi, B. S., de Rijk, N. C., Van Duijn, C. M., Van Broeckhoven, C., Hofman, A., & Breteler, M. M. B. (2000). APOE and the risk of PD with or without dementia in a population based study. Neurology, 54(6), 1272–1276.PubMedCrossRefGoogle Scholar
  59. Hill-Burns, E. M., Singh, N., Ganguly, P., Hamza, T. H., Montimurro, J., Kay, D. M., et al. (2013). A genetic basis for the variable effect of smoking/nicotine on Parkinson’s disease. Pharmacogenomics Journal, 13(6), 530–537.PubMedCrossRefGoogle Scholar
  60. Högl, B., Seppi, K., Brandauer, E., Glatzlm, S., Frauscher, B., Niedermüller, U., et al. (2003). Increased daytime sleepiness in Parkinson’s disease: A questionnaire survey. Movement Disorders, 8(3), 319–323.CrossRefGoogle Scholar
  61. Hungs, M., & Mignot, E. (2001). Hypocretin/orexin, sleep and narcolepsy. BioEssays, 23(5), 397–408.PubMedCrossRefGoogle Scholar
  62. Ivanova, S. A., Loonen, A. J., Pechlivanoglou, P., Freidin, M. B., Al Hadithy, A. F., Rudikov, E. V., et al. (2012). NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Translational. Psychiatry, 2, e67.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.PubMedCrossRefGoogle Scholar
  64. Jeanneteau, F., Funalot, B., Jankovic, J., Deng, H., Lagarde, J. P., Lucotte, G., et al. (2006). A functional variant of the dopamine D (3) receptor is associated with risk and age-at-onset of essential tremor. Proceedings of the National Academy of Sciences USA, 103(28), 10753–10758.CrossRefGoogle Scholar
  65. Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E., & Agúndez, J. A. (2016). Advances in understanding genomic markers and pharmacogenetics of Parkinson’s disease. Expert Opinion on Drug Metabolism & Toxicology, 12(4), 433–448.CrossRefGoogle Scholar
  66. Kaiser, R., Hofer, A., Grapengiesser, A., Gasser, T., Kupsch, A., Roots, I., et al. (2003). L-dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology, 60(11), 1750–1755.PubMedCrossRefGoogle Scholar
  67. Kalinderi, K., Fidani, L., Katsarou, Z., & Bostantjopoulou, S. (2011). Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. International Journal of Clinical Practice, 65(12), 1289–1294.PubMedCrossRefGoogle Scholar
  68. Kaplan, N., Vituri, A., Korczyn, A. D., Cohen, O. S., Inzelberg, R., Yahalom, G., et al. (2014). Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson’s disease. Journal of Molecular Neuroscience, 53(2), 183–188.PubMedCrossRefGoogle Scholar
  69. Kaplowitz, N. (2005). Idiosyncratic drug hepatotoxicity. Nature Reviews Drug Discovery, 4(6), 489–499.PubMedCrossRefGoogle Scholar
  70. Kempster, P. A., O’Sullivan, S. S., Holton, J. L., Revesz, T., & Lees, A. J. (2010). Relationships between age and late progression of Parkinson’s disease: A clinico-pathological study. Brain, 133(Pt 6), 1755–1762.PubMedCrossRefGoogle Scholar
  71. Kilduff, T. S., & Peyron, C. (2000). The hypocretin/orexin ligand-receptor system: Implications for sleep and sleep disorders. Trends in Neurosciences, 23(8), 359–365.PubMedCrossRefGoogle Scholar
  72. Koepsell, H., Lips, K., & Volk, C. (2007). Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharmaceutical Research, 24(7), 1227–1251.PubMedCrossRefGoogle Scholar
  73. Krishnamoorthy, S., Rajan, R., Banerjee, M., Kumar, H., Sarma, G., Krishnan, S., et al. (2016). Dopamine D3 receptor Ser9Gly variant is associated with impulse control disorders in Parkinson’s disease patients. Parkinsonism & Related Disorders, 30, 13–17.CrossRefGoogle Scholar
  74. Kurzawski, M., Białecka, M., & Droździk, M. (2015). Pharmacogenetic considerations in the treatment of Parkinson’s disease. Neurodegenerative Disease Management, 5(1), 27–35.PubMedCrossRefGoogle Scholar
  75. Labandeira-Garcia, J. L., Rodriguez-Pallares, J., Dominguez- Meijide, A., Valenzuela, R., Villar-Cheda, B., et al. (2013). Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease. Movement Disorders, 28(10), 1337–1342.PubMedCrossRefGoogle Scholar
  76. Lee, J. Y., Cho, J., Lee, E. K., Park, S. S., & Jeon, B. S. (2011). Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Movement Disorders, 26(1), 73–79.PubMedCrossRefGoogle Scholar
  77. Lee, M. S., Lyoo, C. H., Ulmanen, I., Syvänen, A. C., & Rinne, J. O. (2001). Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson’s disease. Neuroscience Letters, 298(2), 131–134.PubMedCrossRefGoogle Scholar
  78. Li, Y. J., Scott, W. K., Hedges, D. J., Zhang, F., Gaskell, P. C., Nance, M. A., et al. (2002). Age at onset in two common neurodegenerative diseases is genetically controlled. American Journal of Human Genetics, 70(4), 985–993.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lin, J. J., Yueh, K. C., Lin, S. Z., Harn, H. J., & Liu, J. T. (2007). Genetic polymorphism of the angiotensin converting enzyme and L-dopa-induced adverse effects in Parkinson’s disease. Journal of the Neurological Science, 252(2), 130–134.CrossRefGoogle Scholar
  80. Linazasoro, G. (2005). New ideas on the origin of L-dopa-induced dyskinesias: Age, genes and neural plasticity. Trends in Pharmacological Science, 26(8), 391–397.CrossRefGoogle Scholar
  81. Liu, Y. Z., Tang, B. S., Yan, X. X., Liu, J., Ouyang, D. S., Nie, L. N., et al. (2009). Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson’s disease patients. European Journal of Clinical Pharmacology, 65(7), 679–683.PubMedCrossRefGoogle Scholar
  82. Luo, P., Li, X., Fei, Z., & Poon, W. (2012). Scaffold protein Homer 1: Implications for neurological diseases. Neurochemistry International, 61(5), 731–738.PubMedCrossRefGoogle Scholar
  83. Makoff, A. J., Graham, J. M., Arranz, M. J., Forsyth, J., Li, T., Aitchison, K. J., et al. (2000). Association study of dopamine receptor gene polymorphisms with drug-induced hallucinations in patients with idiopathic Parkinson’s disease. Pharmacogenetics, 10(1), 43–48.PubMedCrossRefGoogle Scholar
  84. Martignoni, E., Cosentino, M., Ferrari, M., Porta, G., Mattarucchi, E., Marino, F., et al. (2005). Two patients with COMT inhibitor-induced hepatic dysfunction and UGT1A9 genetic polymorphism. Neurology, 65(11), 1820–1822.PubMedCrossRefGoogle Scholar
  85. Masellis, M., Collinson, S., Freeman, N., Tampakeras, M., Levy, J., Tchelet, A., et al. (2016). Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson’s disease: A pharmacogenetic study. Brain, 139(Pt 7), 2050–2062.PubMedCrossRefGoogle Scholar
  86. Mhyre, T. R., Boyd, J. T., Hamill, R. W., & Maguire-Zeiss, K. A. (2012). Parkinson’s disease. SubCellular Biochemistry, 65, 389–455.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mishina, M., Ishiwata, K., Naganawa, M., Kimura, Y., Kitamura, S., & Suzuki, M. (2011). Adenosine A(2A) receptors measured with [C]TMSX PET in the striata of Parkinson’s disease patients. PLoS ONE, 6(2), e17338.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Momose, Y., Murata, M., Kobayashi, K., Tachikawa, M., Nakabayashi, Y., & Kanazawa, I. (2002). Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Annals of Neurology, 51(1), 133–136.PubMedCrossRefGoogle Scholar
  89. Moore, T. J., Glenmullen, J., & Mattison, D. R. (2014). Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Internal Medicine, 174(12), 1930–1933.PubMedCrossRefGoogle Scholar
  90. Moreau, C., Meguig, S., Corvol, J. C., Labreuche, J., Vasseur, F., Duhamel, A., et al. (2015). Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson’s disease. Brain, 138(Pt 5), 1271–1283.PubMedCrossRefGoogle Scholar
  91. Morgante, F., Espay, A. J., Gunraj, C., Lang, A. E., & Chen, R. (2006). Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain, 129(Pt 4), 1059–1069.PubMedCrossRefGoogle Scholar
  92. Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63(1), 71–124.PubMedCrossRefGoogle Scholar
  93. Obeso, J. A., Rodriguez-Oroz, M. C., Goetz, C. G., Marin, C., Kordower, J. H., Rodriguez, M., et al. (2010). Missing pieces in the Parkinson’s disease puzzle. Nature Medicine, 16(6), 653–661.PubMedCrossRefGoogle Scholar
  94. Olanow, C. W. (2000). Tolcapone and hepatotoxic effects. Tasmar Advisory Panel. Archives of Neurology, 57(2), 263–267.PubMedCrossRefGoogle Scholar
  95. Olanow, C., Stern, M., & Sethi, K. (2009). The scientific and clinical basis for the treatment of Parkinson disease. Neurology, 72(Suppl 4), S1–S136.PubMedCrossRefGoogle Scholar
  96. Oliveri, R. L., Annesi, G., Zappia, M., Civitelli, D., Montesanti, R., Branca, D., et al. (1999). Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology, 53(7), 1425–1430.PubMedCrossRefGoogle Scholar
  97. Overeem, S., van Hilten, J. J., Ripley, B., Mignot, E., Nishino, S., & Lammers, G. J. (2002). Normal hypocretin-1 levels in Parkinson’s disease patients with excessive daytime sleepiness. Neurology, 58(3), 498–499.PubMedCrossRefGoogle Scholar
  98. Pascale, E., Purcaro, C., Passarelli, E., Guglielmi, R., Vestri, A. R., Passarelli, F., et al. (2009). Genetic polymorphism of angiotensin-converting enzyme is not associated with the development of Parkinson’s disease and of l-dopa-induced adverse effects. Journal of the Neurological Sciences, 276(1–2), 18–21.PubMedCrossRefGoogle Scholar
  99. Paus, S., Gadow, F., Knapp, M., Klein, C., Klockgether, T., & Wüllner, U. (2009). Motor complications in patients form the German Competence Network on Parkinson’s disease and the DRD3 Ser9Gly polymorphism. Movement Disorders, 24(7), 1080–1084.PubMedCrossRefGoogle Scholar
  100. Paus, S., Grünewald, A., Klein, C., Knapp, M., Zimprich, A., Janetzky, B., et al. (2008). The DRD2 TaqIA polymorphism and demand of dopaminergic medication in Parkinson’s disease. Movement Disorders, 23(4), 599–602.PubMedCrossRefGoogle Scholar
  101. Paus, S., Seeger, G., Brecht, H. M., Köster, J., El-Faddagh, M., Nöthen, M. M., et al. (2004). Association study of dopamine D2, D3, D4 receptor and serotonin transporter gene polymorphisms with sleep attacks in Parkinson’s disease. Movement Disorders, 19(6), 705–707.PubMedCrossRefGoogle Scholar
  102. Payami, H., & Factor, S. A. (2014). Promise of pharmacogenomics for drug discovery, treatment and prevention of Parkinson’s disease. A perspective. Neurotherapeutics, 11(1), 111–116.PubMedCrossRefGoogle Scholar
  103. Picconi, B., Paillé, V., Ghiglieri, V., Bagetta, V., Barone, I., Lindgren, H. S., et al. (2008). L-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiology of Disease, 29(2), 327–335.PubMedCrossRefGoogle Scholar
  104. Ramlackhansingh, A. F., Bose, S. K., Ahmed, I., Turkheimer, F. E., Pavese, N., & Brooks, D. J. (2011). Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology, 76(21), 1811–1816.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Rieck, M., Schumacher-Schuh, A. F., Altmann, V., Callegari-Jacques, S. M., Rieder, C. R., & Hutz, M. H. (2016). Association between DRD2 and DRD3 gene polymorphisms and gastrointestinal symptoms induced by levodopa therapy in Parkinson’s disease. The Pharmacogenomics Journal. Scholar
  106. Rieck, M., Schumacher-Schuh, A. F., Altmann, V., Francisconi, C. L., Fagundes, P. T., Monte, T. L., et al. (2012). DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics, 13(15), 1701–1710.PubMedCrossRefGoogle Scholar
  107. Rieck, M., Schumacher-Schuh, A. F., Callegari-Jacques, S. M., Altmann, V., Schneider Medeiros, M., Rieder, C. R., et al. (2015). Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson’s disease patients? Pharmacogenomics, 16(6), 573–582.PubMedCrossRefGoogle Scholar
  108. Rissling, I., Geller, F., Bandmann, O., Stiasny-Kolster, K., Körner, Y., Meindorfner, C., et al. (2004). Dopamine receptor gene polymorphisms in Parkinson’s disease patients reporting “sleep attacks”. Movement Disorders, 19(11), 1279–1284.PubMedCrossRefGoogle Scholar
  109. Rissling, I., Korner, Y., Geller, F., Stiasny-Kolster, K., Oertel, W. H., & Moller, J. C. (2005). Preprohypocretin polymorphisms in Parkinson disease patients reporting “sleep attacks”. Sleep, 28(7), 871–875.PubMedCrossRefGoogle Scholar
  110. Rotzinger, S., Bush, D. E., & Vaccarino, F. J. (2002). Cholecystokinin modulation of mesolimbic dopamine function: Regulation of motivated behaviour. Pharmacology and Toxicology, 91(6), 404–413.PubMedCrossRefGoogle Scholar
  111. Rye, D. B., & Jankovic, J. (2002). Emerging views of dopamine in modulating sleep/wake state from an unlikely source: PD. Neurology, 58(3), 341–346.PubMedCrossRefGoogle Scholar
  112. Schiffmann, S. N., Fisone, G., Moresco, R., Cunha, R. A., & Ferre, S. (2007). Adenosine A2A receptors and basal ganglia physiology. Progress in Neurobiology, 83(5), 277–292.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Schumacher-Schuh, A. F., Altmann, V., Rieck, M., Tovo-Rodrigues, L., Monte, T. L., Callegari-Jacques, S. M., et al. (2014a). Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients. The Pharmacogenomics Journal, 14(3), 289–294.PubMedCrossRefGoogle Scholar
  114. Schumacher-Schuh, A. F., Francisconi, C., Altmann, V., Monte, T. L., Callegari-Jacques, S. M., Rieder, C. R., et al. (2013). Polymorphisms in the dopamine transporter gene are associated with visual hallucinations and levodopa equivalent dose in Brazilians with Parkinson’s disease. Internal Journal of Neuropsychopharmacology, 16(6), 1251–1258.CrossRefGoogle Scholar
  115. Schumacher-Schuh, A. F., Rieder, C. R., & Hutz, M. H. (2014b). Parkinson’s disease pharmacogenomics: New findings and perspectives. Pharmacogenomics, 15(9), 1253–1271.PubMedCrossRefGoogle Scholar
  116. Stavitsky, K., & Cronin-Golomb, A. (2011). Sleep quality in Parkinson disease: An examination of clinical variables. Cognitive and Behavioral Neurology, 24(2), 43–49.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Strong, J. A., Dalvi, A., Revilla, F. J., Sahay, A., Samaha, F. J., Welge, J. A., et al. (2006). Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s Disease. Movement Disorders, 21(5), 654–659.PubMedCrossRefGoogle Scholar
  118. Studler, J. M., Javoy-Agid, F., Cesselin, F., Legrand, J. C., & Agid, Y. (1982). CCK-8- Immunoreactivity distribution in human brain: Selective decrease in the substantia nigra from parkinsonian patients. Brain Research, 243(1), 176–179.PubMedCrossRefGoogle Scholar
  119. Tao-Cheng, J. H. (2007). Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience, 150, 575–584.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Thanvi, B., Lo, N., & Robinson, T. (2007). Levodopa-induced dyskinesia in parkinson’s disease: Clinical features, pathogenesis, prevention and treatment. Postgraduate Medical Journal, 83(980), 384–388.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Thomas, U. (2002). Modulation of synaptic signalling complexes by Homer proteins. Journal of Neurochemistry, 81(3), 407–413.PubMedCrossRefGoogle Scholar
  122. Vallelunga, A., Flaibani, R., Formento-Dojot, P., Biundo, R., Facchini, S., & Antonini, A. (2012). Role of genetic polymorphisms of the dopaminergic system in Parkinson’s disease patients with impulse control disorders. Parkinsonism & Related Disorders, 18(4), 397–399.CrossRefGoogle Scholar
  123. Van de Giessen, E., de Win, M. M., Tanck, M. W., van den Brink, W., Baas, F., & Booij, J. (2009). Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. Journal of Nuclear Medicine, 50(1), 45–52.PubMedCrossRefGoogle Scholar
  124. Villeneuve, L., Girard, H., Fortier, L. C., Gagné, J. F., & Guillemette, C. (2003). Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. The Journal of Pharmacology and Experimental Therapeutics, 307(1), 117–128.PubMedCrossRefGoogle Scholar
  125. Wang, J., Liu, Z. L., & Chen, B. (2001). Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology, 56(12), 1757–1759.PubMedCrossRefGoogle Scholar
  126. Wang, J., Si, Y. M., Liu, Z. L., & Yu, L. (2003). Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson’s disease. Pharmacogenetics, 13(6), 365–369.PubMedCrossRefGoogle Scholar
  127. Watanabe, M., Harada, S., Nakamura, T., Ohkoshi, N., Yoshizawa, K., Hayashi, A., et al. (2003). Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology, 48(4), 190–193.PubMedCrossRefGoogle Scholar
  128. Wickremaratchi, M. M., Knipe, M. D., Sastry, B. S., Morgan, E., Jones, A., Salmon, R., et al. (2011). The motor phenotype of Parkinson’s disease in relation to age at onset. Movement Disorders, 26(3), 457–463.PubMedCrossRefGoogle Scholar
  129. Wilkins, R. C., & Lis, J. T. (1998). GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Research, 26(11), 2672e8.CrossRefGoogle Scholar
  130. Woo, N. H., Teng, H. K., Siao, C. J., Chiaruttini, C., Pang, P. T., Milner, T. A., et al. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8(8), 1069–1077.PubMedCrossRefGoogle Scholar
  131. Wood, L. D. (2010). Clinical review and treatment of select adverse effects of dopamine receptor agonists in Parkinson’s disease. Drugs and Aging, 27(4), 295–310.PubMedCrossRefGoogle Scholar
  132. Xu, S., Liu, J., Yang, X., Qian, Y., & Xiao, Q. (2017). Association of the DRD2 CAn-STR and DRD3 Ser9Gly polymorphisms with Parkinson’s disease and response to dopamine agonists. Journal of the Neurological Sciences, 372, 433–438.PubMedCrossRefGoogle Scholar
  133. Yamada, H., Kuroki, T., Nakahara, T., Hashimoto, K., Tsutsumi, T., Hirano, M., et al. (2007). The dopamine D1 receptor agonist, but not the D2 receptor agonist, induces gene expression of Homer 1a in rat striatum and nucleus accumbens. Brain Research, 1131(1), 88–96.PubMedCrossRefGoogle Scholar
  134. Yamanaka, H., Nakajima, M., Katoh, M., Hara, Y., Tachibana, O., Yamashita, J., et al. (2004). A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics, 14(5), 329–332.PubMedCrossRefGoogle Scholar
  135. Yin, B., Chen, Y., & Zhang, L. (2013). Association between catechol-O-methyltransferase (COMT) gene polymorphisms, Parkinson’s disease, and levodopa efficacy. Molecular Diagnosis and Therapy. Scholar
  136. Yu, L., Frith, M. C., Suzuki, Y., Peterfreund, R. A., Gearan, T., & Sugano, S. (2004). Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. Brain Research, 1000(1–2), 156–173.PubMedCrossRefGoogle Scholar
  137. Zahodne, L. B., & Fernandez, H. H. (2008). Pathophysiology and treatment of psychosis in Parkinson’s disease: A review. Drugs and Aging, 25(8), 665–682.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zappia, M., Annesi, G., Nicoletti, G., Arabia, G., Annesi, F., Messina, D., et al. (2005). Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: An exploratory study. Archives of Neurology, 62(4), 601–605.PubMedCrossRefGoogle Scholar
  139. Zareparsi, S., Camicioli, R., Sexton, G., Bird, T., Swanson, P., Kaye, J., et al. (2002). Age at onset of Parkinson disease and Apolipoprotein E genotypes. American Journal of Medical Genetics, 107(2), 156–161.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Politi
    • 1
  • Cinzia Ciccacci
    • 1
    Email author
  • Giuseppe Novelli
    • 1
  • Paola Borgiani
    • 1
  1. 1.Department of Biomedicine and Prevention, Genetics SectionUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations