Advertisement

NeuroMolecular Medicine

, Volume 19, Issue 4, pp 480–492 | Cite as

Isorhynchophylline Attenuates MPP+-Induced Apoptosis Through Endoplasmic Reticulum Stress- and Mitochondria-Dependent Pathways in PC12 Cells: Involvement of Antioxidant Activity

  • Xiao-Ming Li
  • Xiao-Jie Zhang
  • Miao-Xian DongEmail author
Original Paper

Abstract

Endoplasmic reticulum stress (ERS) and mitochondrial dysfunctions are thought to be involved in the dopaminergic neuronal death in Parkinson’s disease (PD). In this study, we found that isorhynchophylline (IRN) significantly attenuated 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death and oxidative stress in PC12 cells. IRN markedly reduced MPP+-induced-ERS responses, indicative of inositol-requiring enzyme 1 (IRE1) phosphorylation and caspase-12 activation. Furthermore, IRN inhibits MPP+-triggered apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal Kinase (JNK) signaling-mediated mitochondria-dependent apoptosis pathway. IRN-mediated attenuation of endoplasmic reticulum modulator caspase-12 activation was abolished by diphenyleneiodonium (DPI) or IRE-1α shRNA, but not by SP600125 or pifithrin-α in MPP+-treated PC12 cells. Inhibitions of MPP+-induced both cytochrome c release and caspase-9 activation by IRN were blocked by pre-treatment with DPI or pifithrin-α, but not by IRE-1α shRNA. IRN blocks the generation of reactive oxygen species upstream of both ASK1/JNK pathway and IRE1/caspase-12 pathway. Altogether, our in vitro findings suggest that IRN possesses potent neuroprotective activity and may be a potential candidate for the treatment of PD.

Keywords

Isorhynchophylline Parkinson’s disease Apoptosis Mitochondria dysfunction Endoplasmic reticulum stress 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China grant (Grant Number 81373629) awarded to Miao-Xian Dong. We thank Zhi Pan for valuable scientific discussion.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahn, J., Won, M., Choi, J. H., Kim, Y. S., Jung, C. R., et al. (2013). Reactive oxygen species-mediated activation of the Akt/ASK1/p38 signaling cascade and p21(Cip1) downregulation are required for shikonin-induced apoptosis. Apoptosis, 18(7), 870–881.CrossRefPubMedGoogle Scholar
  2. Arenas, E., Denham, M., & Villaescusa, J. C. (2015). How to make a midbrain dopaminergic neuron. Development, 142(11), 1918–1936.CrossRefPubMedGoogle Scholar
  3. Bensaid, M., Michel, P. P., Clark, S. D., Hirsch, E. C., & François, C. (2016). Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson’s disease. Experimental Neurology, 275(1), 209–219.CrossRefPubMedGoogle Scholar
  4. Cai, H., Liu, G., Sun, L., & Ding, J. (2014). Aldehyde Dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson’s disease. Translational Neurodegeneration, 3, 27. doi: 10.1186/2047-9158-3-27.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Camilleri, A., & Vassallo, N. (2014). The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease. CNS Neuroscience & Therapeutics, 20(7), 591–602.CrossRefGoogle Scholar
  6. Cargnoni, A., Ceconi, C., Bernocchi, P., Parrinello, G., Benigno, M., Boraso, A., et al. (1999). Changes in oxidative stress and cellular redox potential during myocardial storage for transplantation: experimental studies. Journal of Heart and Lung Transplantation, 18(5), 478–487.CrossRefPubMedGoogle Scholar
  7. Chen, F., Qi, W., Sun, J., Simpkins, J. W., & Yuan, D. (2014). Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay. Fitoterapia, 97, 156–163.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dong, H., Li, R., Yu, C., Xu, T., Zhang, X., & Dong, M. (2015). Paeoniflorin inhibition of 6-hydroxydopamine-induced apoptosis in PC12 cells via suppressing reactive oxygen species-mediated PKCδ/NF-κB pathway. Neuroscience, 285, 70–80.CrossRefPubMedGoogle Scholar
  9. Gaki, G. S., & Papavassiliou, A. G. (2014). Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. Neuromolecular Medicine, 16(2), 217–230.CrossRefPubMedGoogle Scholar
  10. Garrido, C., Galluzzi, L., Brunet, M., Puig, P. E., Didelot, C., & Kroemer, G. (2006). Mechanisms of cytochrome c release from mitochondria. Cell Death and Differentiation, 13(9), 1423–1433.CrossRefPubMedGoogle Scholar
  11. Hashimoto, Y., Inagaki, H., & Hoshino, S. (2015). Calpain mediates processing of the translation termination factor eRF3 into the IAP-binding isoform p-eRF3. FEBS Letters, 589(17), 2241–2247.CrossRefPubMedGoogle Scholar
  12. Heusinkveld, H. J., van den Berg, M., & Westerink, R. H. (2014). In vitro dopaminergic neurotoxicity of pesticides: a link with neurodegeneration? Veterinary Quarterly, 34(3), 120–131.CrossRefPubMedGoogle Scholar
  13. Jalmi, S. K., & Sinha, A. K. (2015). ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Frontiers in Plant Science, 6, 769.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Khalil, M. F., Valenzuela, C., Sisniega, D., Skouta, R., & Narayan, M. (2016). ER protein processing under oxidative stress: Implications and prevention. Cell Biochemistry and Biophysics, 74(2), 213–220.CrossRefPubMedGoogle Scholar
  15. Kim, J. K., Kang, K. A., Ryu, Y. S., Piao, M. J., Han, X., Oh, M. C., et al. (2016). Induction of endoplasmic reticulum stress via reactive oxygen species mediated by Luteolin in melanoma cells. Anticancer Research, 36(5), 2281–2289.PubMedGoogle Scholar
  16. Lee, J. E., Park, J. H., Shin, I. C., & Koh, H. C. (2012). Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicology and Applied Pharmacology, 263(2), 148–162.CrossRefPubMedGoogle Scholar
  17. LeWitt, P. A., Hauser, R. A., Grosset, D. G., Stocchi, F., Saint-Hilaire, M. H., Ellenbogen, A., et al. (2016). A randomized trial of inhaled levodopa (CVT-301) for motor fluctuations in Parkinson’s disease. Movement Disorders, 31(9), 1356–1365.CrossRefPubMedGoogle Scholar
  18. Li, C., Pan, Z., Xu, T., Zhang, C., Wu, Q., & Niu, Y. (2014). Puerarin induces the upregulation of glutathione levels and nuclear translocation of Nrf2 through PI3 K/Akt/GSK-3β signaling events in PC12 cells exposed to lead. Neurotoxicology and Teratology, 46, 1–9.CrossRefPubMedGoogle Scholar
  19. Liu, Z., Lv, Y., Zhao, N., Guan, G., & Wang, J. (2015). Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death and Disease, 6, e1822.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu, H., Wang, Z., & Nowicki, M. J. (2014). Caspase-12 mediates carbon tetrachloride-induced hepatocyte apoptosis in mice. World Journal of Gastroenterology, 20(48), 18189–18198.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lu, J. H., Tan, J. Q., Durairajan, S. S., Liu, L. F., Zhang, Z. H., Ma, L., et al. (2012). Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy, 8(1), 98–108.CrossRefPubMedGoogle Scholar
  22. Mantzaris, M. D., Bellou, S., Skiada, V., Kitsati, N., Fotsis, T., & Galaris, D. (2016). Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis. Free Radical Biology and Medicine, 97, 454–465.CrossRefPubMedGoogle Scholar
  23. Minunni, M., & Bilia, A. R. (2009). SPR in drug discovery: searching bioactive compounds in plant extracts. Methods in Molecular Biology, 572, 203–218.CrossRefPubMedGoogle Scholar
  24. Muroyama, A. (2013). An alternative medical approach for the neuroprotective therapy to slow the progression of Parkinson’s disease. Yakugaku Zasshi, 133(8), 849–856.CrossRefPubMedGoogle Scholar
  25. Nakka, V. P., Prakash-babu, P., & Vemuganti, R. (2016). Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Molecular Neurobiology, 53(1), 532–544.CrossRefPubMedGoogle Scholar
  26. Olson, K. E., & Gendelman, H. E. (2016). Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson’s disease. Current Opinion in Pharmacology, 26, 87–95.CrossRefPubMedGoogle Scholar
  27. Penke, B., Bogár, F., & Fülöp, L. (2016). Protein folding and misfolding, endoplasmic reticulum stress in neurodegenerative diseases: In trace of novel drug targets. Current Protein and Peptide Science, 17(2), 169–182.CrossRefPubMedGoogle Scholar
  28. Rodríguez-Blanco, J., Martín, V., García-Santos, G., Herrera, F., Casado-Zapico, S., Antolín, I., et al. (2012). Cooperative action of JNK and AKT/mTOR in 1-methyl-4-phenylpyridinium-induced autophagy of neuronal PC12 cells. Journal of Neuroscience Research, 90(9), 1850–1860.CrossRefPubMedGoogle Scholar
  29. Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O. V., Ron, D., & Greene, L. A. (2002). Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. Journal of Neuroscience, 22(24), 10690–10698.PubMedGoogle Scholar
  30. Shim, J. S., Kim, H. G., Ju, M. S., Choi, J. G., Jeong, S. Y., & Oh, M. S. (2009). Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease. Journal of Ethnopharmacology, 126(2), 361–365.CrossRefPubMedGoogle Scholar
  31. Shindo, Y., Yamanaka, R., Suzuki, K., Hotta, K., & Oka, K. (2016). Altered expression of Mg(2+) transport proteins during Parkinson’s disease-like dopaminergic cell degeneration in PC12 cells. Biochimica et Biophysica Acta, 1863(8), 1979–1984.CrossRefPubMedGoogle Scholar
  32. Smulders, K., Dale, M. L., Carlson-Kuhta, P., Nutt, J. G., & Horak, F. B. (2016). Pharmacological treatment in Parkinson’s disease: Effects on gait. Parkinsonism & Related Disorders, 31, 3–13.CrossRefGoogle Scholar
  33. Su, M., Shi, J. J., Yang, Y. P., Li, J., Zhang, Y. L., Chen, J., et al. (2011). HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress. Journal of Neurochemistry, 117(1), 112–120.CrossRefPubMedGoogle Scholar
  34. Tabakman, R., Jiang, H., Shahar, I., Arien-Zakay, H., Levine, R. A., & Lazarovici, P. (2005). Neuroprotection by NGF in the PC12 in vitro OGD model: involvement of mitogen-activated protein kinases and gene expression. Annals of the New York Academy of Sciences, 1053, 84–96.CrossRefPubMedGoogle Scholar
  35. Tattini, M., Loreto, F., Fini, A., Guidi, L., Brunetti, C., Velikova, V., et al. (2015). Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. New Phytologist, 207(3), 613–626.CrossRefPubMedGoogle Scholar
  36. Tsujii, S., Ishisaka, M., & Hara, H. (2015). Modulation of endoplasmic reticulum stress in Parkinson’s disease. European Journal of Pharmacology, 765, 154–156.CrossRefPubMedGoogle Scholar
  37. Ueda, S., Masutani, H., Nakamura, H., Tanaka, T., Ueno, M., & Yodoi, J. (2002). Redox control of cell death. Antioxidants & Redox Signaling, 4(3), 405–414.CrossRefGoogle Scholar
  38. Wang, G., Zhou, L., Zhang, Y., Dong, M., Li, X., Liu, J., et al. (2011). Implication of the c-Jun-NH2-terminal kinase pathway in the neuroprotective effect of puerarin against 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in PC-12 cells. Neuroscience Letters, 487(1), 88–93.CrossRefPubMedGoogle Scholar
  39. Xian, Y. F., Mao, Q. Q., Wu, J. C., Su, Z. R., Chen, J. N., Lai, X. P., et al. (2014a). Isorhynchophylline treatment improves the amyloid-β-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation. Journal of Alzheimer’s Disease, 39(2), 331–346.PubMedGoogle Scholar
  40. Xian, Y. F., Su, Z. R., Chen, J. N., Lai, X. P., Mao, Q. Q., Cheng, C. H., et al. (2014b). Isorhynchophylline improves learning and memory impairments induced by d-galactose in mice. Neurochemistry International, 76, 42–49.CrossRefPubMedGoogle Scholar
  41. Xu, T., Pan, Z., Dong, M., Yu, C., & Niu, Y. (2015). Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochemical Pharmacology, 93(1), 49–58.CrossRefPubMedGoogle Scholar
  42. Xu, B., Wang, F., Wu, S. W., Deng, Y., Liu, W., Feng, S., et al. (2014). α-Synuclein is involved in manganese-induced ER stress via PERK signal pathway in organotypic brain slice cultures. Molecular Neurobiology, 49(1), 399–412.CrossRefPubMedGoogle Scholar
  43. Yen, Y. P., Tsai, K. S., Chen, Y. W., Huang, C. F., Yang, R. S., & Liu, S. H. (2012). Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Archives of Toxicology, 86(6), 923–933.CrossRefPubMedGoogle Scholar
  44. Zhang, Q., Liu, J., Chen, S., Liu, J., Liu, L., Liu, G., et al. (2016). Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress. Apoptosis, 21(4), 432–442.CrossRefPubMedGoogle Scholar
  45. Zhang, F., Sun, A. S., Yu, L. M., Wu, Q., & Gong, Q. H. (2008). Effects of isorhynchophylline on angiotensin II-induced proliferation in rat vascular smooth muscle cells. Journal of Pharmacy and Pharmacology, 60(12), 1673–1678.CrossRefPubMedGoogle Scholar
  46. Zhu, X., Zhang, J., Sun, H., Jiang, C., Dong, Y., Shan, Q., et al. (2014). Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway. Journal of Biological Chemistry, 289(44), 30567–30577.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zou, Y., Wang, R., Guo, H., & Dong, M. (2015). Phytoestrogen β-Ecdysterone Protects PC12 Cells Against MPP+-Induced Neurotoxicity In Vitro: Involvement of PI3 K-Nrf2-Regulated Pathway. Toxicological Sciences, 147(1), 28–38.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.The Institute of MedicineQiqihar Medical UniversityQiqiharChina

Personalised recommendations