Role of dietary phenols in mitigating microglia-mediated neuroinflammation

Abstract

Chronic neuroinflammation is a pathological feature of a number of central nervous system (CNS) diseases and is mediated by sustained activation of microglial cells, the innate immune cells of the CNS. Studies have mainly focused on identifying the molecular and epigenetic mechanisms of microglial activation. This is crucial in designing therapeutic strategies for neuropathologies in which prolonged microglial activation is known to exacerbate disease condition. In recent years, increasing evidence show that naturally occurring compounds present in regular diet could function as “nutraceuticals,” arresting microglial activation, and thus conferring neuroprotection. This review summarizes our understanding of the role of dietary phenolic nutraceuticals in mitigating microglia-mediated neuroinflammation. Studies show that these natural phenols inhibit key signaling pathways in activated microglia such as the NFκB, MAPK and JAK-STAT that trigger microglia-mediated inflammation in various neuropathological conditions such as injury, infection, stroke, autism and neurodegenerative diseases, i.e., Alzheimer’s disease and Parkinson’s disease. The anti-inflammatory and antioxidant effect exerted by these natural phenols have shown considerable success in improving disease condition in animal models of neuropathologies, and thus seem to be suitable candidates for developing therapeutic strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahmad, A., Khan, M. M., Hoda, M. N., Raza, S. S., Khan, M. B., Javed, H., et al. (2011). Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochemical Research, 36(8), 1360–1371.

    CAS  PubMed  Article  Google Scholar 

  2. Albright, A. V., & González-Scarano, F. (2004). Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. Journal of Neuroimmunology, 157(1), 27–38.

    CAS  PubMed  Article  Google Scholar 

  3. Amri, A., Chaumeil, J. C., Sfar, S., & Charrueau, C. (2012). Administration of resveratrol: what formulation solutions to bioavailability limitations? Journal of Controlled Release, 158(2), 182–193.

    CAS  PubMed  Article  Google Scholar 

  4. Bagli, E., Stefaniotou, M., Morbidelli, L., Ziche, M., Psillas, K., Murphy, C., et al. (2004). Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Research, 64(21), 7936–7946.

    CAS  PubMed  Article  Google Scholar 

  5. Bambini-Junior, V., Zanatta, G., Nunes, G. D. F., de Melo, G. M., Michels, M., Fontes-Dutra, M., et al. (2014). Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neuroscience Letters, 583, 176–181.

    CAS  PubMed  Article  Google Scholar 

  6. Bhandari, R., & Kuhad, A. (2015). Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sciences, 141, 156–169.

    CAS  PubMed  Article  Google Scholar 

  7. Bisht, K., Wagner, K.-H., & Bulmer, A. C. (2010). Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto-and DNA-protective dietary compounds. Toxicology, 278(1), 88–100.

    CAS  PubMed  Article  Google Scholar 

  8. Bournival, J., Plouffe, M., Renaud, J., Provencher, C., & Martinoli, M.-G. (2012). Quercetin and Sesamin Protect Dopaminergic Cells from MPP < sup > . Oxidative medicine and cellular longevity, 2012.

  9. Burton, M. D., Rytych, J. L., Amin, R., & Johnson, R. W. (2015). Dietary luteolin reduces pro-inflammatory microglia in the brain of senescent mice. Rejuvenation Research(ja).

  10. Busch, C., Burkard, M., Leischner, C., Lauer, U. M., Frank, J., & Venturelli, S. (2015). Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clinical epigenetics, 7(1), 1.

    Article  Google Scholar 

  11. Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A. E., Pluchino, S., et al. (2006). Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Molecular and Cellular Neuroscience, 31(1), 149–160.

    CAS  PubMed  Article  Google Scholar 

  12. Capiralla, H., Vingtdeux, V., Zhao, H., Sankowski, R., Al-Abed, Y., Davies, P., et al. (2012). Resveratrol mitigates lipopolysaccharide-and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. Journal of Neurochemistry, 120(3), 461–472.

    CAS  PubMed  Article  Google Scholar 

  13. Chakraborty, J., Singh, R., Dutta, D., Naskar, A., Rajamma, U., & Mohanakumar, K. P. (2014). Quercetin Improves Behavioral Deficiencies, Restores Astrocytes and Microglia, and Reduces Serotonin Metabolism in 3-Nitropropionic Acid-Induced Rat Model of Huntington’s Disease. CNS Neuroscience & Therapeutics, 20(1), 10–19.

    CAS  Article  Google Scholar 

  14. Chan, A., Seguin, R., Magnus, T., Papadimitriou, C., Toyka, K. V., Antel, J. P., et al. (2003). Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia, 43(3), 231–242.

    PubMed  Article  Google Scholar 

  15. Chang, C. Y., Choi, D.-K., Lee, D. K., Hong, Y. J., & Park, E. J. (2013). Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells. PLoS ONE, 8(4), e60654.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Chen, J.-C., Ho, F.-M., Chao, P.-D. L., Chen, C.-P., Jeng, K.-C. G., Hsu, H.-B., et al. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. European Journal of Pharmacology, 521(1), 9–20.

    CAS  PubMed  Article  Google Scholar 

  17. Cheng, A.-C., Huang, T.-C., Lai, C.-S., & Pan, M.-H. (2005). Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells. European Journal of Pharmacology, 509(1), 1–10.

    CAS  PubMed  Article  Google Scholar 

  18. Cheng, K. K., Yeung, C. F., Ho, S. W., Chow, S. F., Chow, A. H., & Baum, L. (2013). Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. The AAPS journal, 15(2), 324–336.

    CAS  PubMed  Article  Google Scholar 

  19. Cherry, J. D., Olschowka, J. A., & O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation, 11(1), 98.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Choi, D. K., Koppula, S., & Suk, K. (2011). Inhibitors of microglial neurotoxicity: focus on natural products. Molecules, 16(2), 1021–1043.

    CAS  PubMed  Article  Google Scholar 

  21. Chun-Fu, W., Jing-Yu, Y., Fang, W., & Xiao-Xiao, W. (2013). Resveratrol: botanical origin, pharmacological activity and applications. Chinese Journal of Natural Medicines, 11(1), 1–15.

    Google Scholar 

  22. Chung, S. Y., & Han, S. H. (2003). Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. Journal of Pineal Research, 34(2), 95–102.

    CAS  PubMed  Article  Google Scholar 

  23. Cianciulli, A., Dragone, T., Calvello, R., Porro, C., Trotta, T., Lofrumento, D. D., et al. (2015). IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. International Immunopharmacology, 24(2), 369–376.

    CAS  PubMed  Article  Google Scholar 

  24. Clark, D., Tuor, U. I., Thompson, R., Institoris, A., Kulynych, A., Zhang, X., et al. (2012). Protection against recurrent stroke with resveratrol: endothelial protection. PLoS ONE, 7(10), e47792.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Crain, J. M., Nikodemova, M., & Watters, J. J. (2013). Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. Journal of Neuroscience Research, 91(9), 1143–1151.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Cullheim, S., & Thams, S. (2007). The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Research Reviews, 55(1), 89–96.

    CAS  PubMed  Article  Google Scholar 

  27. Dhawan, S., Kapil, R., & Singh, B. (2011). Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. Journal of Pharmacy and Pharmacology, 63(3), 342–351.

    CAS  PubMed  Article  Google Scholar 

  28. Dheen, S. T., Jun, Y., Yan, Z., Tay, S. S., & Ang Ling, E. (2005). Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. Glia, 50(1), 21–31.

    PubMed  Article  Google Scholar 

  29. Dirscherl, K., Karlstetter, M., Ebert, S., Kraus, D., Hlawatsch, J., Walczak, Y., et al. (2010). Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation, 7(3), 1742–2094.

    Google Scholar 

  30. Dohare, P., Garg, P., Jain, V., Nath, C., & Ray, M. (2008). Dose dependence and therapeutic window for the neuroprotective effects of curcumin in thromboembolic model of rat. Behavioural Brain Research, 193(2), 289–297.

    CAS  PubMed  Article  Google Scholar 

  31. Dohi, K., Ohtaki, H., Nakamachi, T., Yofu, S., Satoh, K., Miyamoto, K., et al. (2010). Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation, 7(1), 41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Dragone, T., Cianciulli, A., Calvello, R., Porro, C., Trotta, T., & Panaro, M. A. (2014). Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicology in Vitro, 28(6), 1126–1135.

    CAS  PubMed  Article  Google Scholar 

  33. Frémont, L. (2000). Biological effects of resveratrol. Life Sciences, 66(8), 663–673.

    PubMed  Article  Google Scholar 

  34. Garcia-Alloza, M., Borrelli, L., Rozkalne, A., Hyman, B., & Bacskai, B. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry, 102(4), 1095–1104.

    CAS  PubMed  Article  Google Scholar 

  35. Gómez-Nicola, D., Fransen, N. L., Suzzi, S., & Perry, V. H. (2013). Regulation of microglial proliferation during chronic neurodegeneration. The Journal of Neuroscience, 33(6), 2481–2493.

    PubMed  Article  CAS  Google Scholar 

  36. Graeber, M. B., Scheithauer, B. W., & Kreutzberg, G. W. (2002). Microglia in brain tumors. Glia, 40(2), 252–259.

    PubMed  Article  Google Scholar 

  37. Guardia, T., Rotelli, A. E., Juarez, A. O., & Pelzer, L. E. (2001). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il farmaco, 56(9), 683–687.

    CAS  PubMed  Article  Google Scholar 

  38. Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15(1), 195–218.

    CAS  PubMed  Article  Google Scholar 

  39. Gupta, S. C., Prasad, S., Kim, J. H., Patchva, S., Webb, L. J., Priyadarsini, I. K., et al. (2011). Multitargeting by curcumin as revealed by molecular interaction studies. Natural product reports, 28(12), 1937–1955.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Hanisch, U. K. (2002). Microglia as a source and target of cytokines. Glia, 40(2), 140–155.

    PubMed  Article  Google Scholar 

  41. Hanisch, U.-K., & Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10(11), 1387–1394.

    CAS  PubMed  Article  Google Scholar 

  42. He, L.-F., Chen, H.-J., Qian, L.-H., Chen, G.-Y., & Buzby, J. S. (2010). Curcumin protects pre-oligodendrocytes from activated microglia in vitro and in vivo. Brain Research, 1339, 60–69.

    CAS  PubMed  Article  Google Scholar 

  43. Hickman, S. E., Kingery, N. D., Ohsumi, T. K., Borowsky, M. L., Wang, L.-C., Means, T. K., et al. (2013). The microglial sensome revealed by direct RNA sequencing. Nature Neuroscience, 16(12), 1896–1905.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Ho, L., Ferruzzi, M. G., Janle, E. M., Wang, J., Gong, B., Chen, T.-Y., et al. (2013). Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. The FASEB Journal, 27(2), 769–781.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Huo, Y., Rangarajan, P., Ling, E.-A., & Dheen, S. T. (2011). Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC neuroscience, 12(1), 49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Ishisaka, A., Ichikawa, S., Sakakibara, H., Piskula, M. K., Nakamura, T., Kato, Y., et al. (2011). Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology and Medicine, 51(7), 1329–1336.

    CAS  PubMed  Article  Google Scholar 

  47. Jang, S., Dilger, R. N., & Johnson, R. W. (2010). Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice. The Journal of nutrition, 140(10), 1892–1898.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Jang, S., Kelley, K. W., & Johnson, R. W. (2008). Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proceedings of the National Academy of Sciences, 105(21), 7534–7539.

    CAS  Article  Google Scholar 

  49. Jasiński, M., Jasińska, L., & Ogrodowczyk, M. (2013). Resveratrol in prostate diseases-a short review. Central European journal of 0075rology, 66(2)

  50. Jin, C.-Y., Lee, J.-D., Park, C., Choi, Y-h, & Kim, G.-Y. (2007). Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacologica Sinica, 28(10), 1645–1651.

    CAS  PubMed  Article  Google Scholar 

  51. Jin, F., Wu, Q., Lu, Y.-F., Gong, Q.-H., & Shi, J.-S. (2008). Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. European Journal of Pharmacology, 600(1), 78–82.

    CAS  PubMed  Article  Google Scholar 

  52. Joseph, J. A., Fisher, D. R., Cheng, V., Rimando, A. M., & Shukitt-Hale, B. (2008). Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. Journal of Agricultural and Food Chemistry, 56(22), 10544–10551.

    CAS  PubMed  Article  Google Scholar 

  53. Jung, K. K., Lee, H. S., Cho, J. Y., Shin, W. C., Rhee, M. H., Kim, T. G., et al. (2006). Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sciences, 79(21), 2022–2031.

    CAS  PubMed  Article  Google Scholar 

  54. Kao, T.-K., Ou, Y.-C., Lin, S.-Y., Pan, H.-C., Song, P.-J., Raung, S.-L., et al. (2011). Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. The Journal of nutritional biochemistry, 22(7), 612–624.

    CAS  PubMed  Article  Google Scholar 

  55. Kao, T.-K., Ou, Y.-C., Raung, S.-L., Lai, C.-Y., Liao, S.-L., & Chen, C.-J. (2010). Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sciences, 86(9), 315–321.

    CAS  PubMed  Article  Google Scholar 

  56. Karlstetter, M., Lippe, E., Walczak, Y., Moehle, C., Aslanidis, A., Mirza, M., et al. (2011). Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation, 8, 125.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H.-L., Beal, M. F., & Gibson, G. E. (2009). Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochemistry International, 54(2), 111–118.

    CAS  PubMed  Article  Google Scholar 

  58. Kaushal, V., & Schlichter, L. C. (2008). Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. The Journal of Neuroscience, 28(9), 2221–2230.

    CAS  PubMed  Article  Google Scholar 

  59. Kelso, M. L., Scheff, N. N., Scheff, S. W., & Pauly, J. R. (2011). Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury. Neuroscience Letters, 488(1), 60–64.

    CAS  PubMed  Article  Google Scholar 

  60. Kettenmann, H., Kirchhoff, F., & Verkhratsky, A. (2013). Microglia: new roles for the synaptic stripper. Neuron, 77(1), 10–18.

    CAS  PubMed  Article  Google Scholar 

  61. Kim, H. J., Lee, W., & Yun, J. M. (2014). Luteolin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production and Its Epigenetic Mechanism in Human Monocytes. Phytotherapy Research, 28(9), 1383–1391.

    CAS  PubMed  Article  Google Scholar 

  62. Kim, H. Y., Park, E. J., Joe, E.-H., & Jou, I. (2003). Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. The Journal of Immunology, 171(11), 6072–6079.

    CAS  PubMed  Article  Google Scholar 

  63. Koedel, U., & Pfister, H. W. (1999). Oxidative stress in bacterial meningitis. Brain Pathology, 9(1), 57–67.

    CAS  PubMed  Article  Google Scholar 

  64. Kumar, A., Alvarez-Croda, D.-M., Stoica, B. A., Faden, A. I., & Loane, D. J. (2015). Microglial/macrophage polarization dynamics following traumatic brain injury. Journal of neurotrauma.

  65. Labinskyy, N., Csiszar, A., Veress, G., Stef, G., Pacher, P., Oroszi, G., et al. (2006). Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Current Medicinal Chemistry, 13(9), 989.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y. C., & Kriz, J. (2007). Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. The Journal of Neuroscience, 27(10), 2596–2605.

    PubMed  Article  CAS  Google Scholar 

  67. Lee, K.-H., Park, E., Lee, H.-J., Kim, M.-O., Cha, Y.-J., Kim, J.-M., et al. (2011). Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers. Nutrition research and practice, 5(1), 28–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Li, W., & Graeber, M. B. (2012). The molecular profile of microglia under the influence of glioma. Neuro-oncology, nos116.

  69. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of Neuroscience, 21(21), 8370–8377.

    CAS  PubMed  Google Scholar 

  70. Lin, L.-F., Chiu, S.-P., Wu, M.-J., Chen, P.-Y., & Yen, J.-H. (2012). Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells. PLoS ONE, 7(8), e43304.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Liu, Z.-J., Liu, W., Liu, L., Xiao, C., Wang, Y., & Jiao, J.-S. (2013). Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evidence-Based Complementary and Alternative Medicine, 2013.

  72. Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini reviews in medicinal chemistry, 9(1), 31–59.

    CAS  PubMed  Article  Google Scholar 

  73. Lorenz, P., Roychowdhury, S., Engelmann, M., Wolf, G., & Horn, T. F. (2003). Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide, 9(2), 64–76.

    CAS  PubMed  Article  Google Scholar 

  74. Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: a short review. Life Sciences, 78(18), 2081–2087.

    CAS  PubMed  Article  Google Scholar 

  75. Majumdar, A., Cruz, D., Asamoah, N., Buxbaum, A., Sohar, I., Lobel, P., et al. (2007). Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Molecular Biology of the Cell, 18(4), 1490–1496.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Mokni, M., Elkahoui, S., Limam, F., Amri, M., & Aouani, E. (2007). Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochemical Research, 32(6), 981–987.

    CAS  PubMed  Article  Google Scholar 

  77. Moran, L., Duke, D., Turkheimer, F., Banati, R., & Graeber, M. (2004). Towards a transcriptome definition of microglial cells. Neurogenetics, 5(2), 95–108.

    CAS  PubMed  Article  Google Scholar 

  78. Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269(2), 315–325.

    CAS  PubMed  Article  Google Scholar 

  79. Muthian, G., & Bright, J. J. (2004). Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. Journal of Clinical Immunology, 24(5), 542–552.

    CAS  PubMed  Article  Google Scholar 

  80. Nayak, D., Huo, Y., Kwang, W., Pushparaj, P., Kumar, S., Ling, E.-A., et al. (2010). Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience, 166(1), 132–144.

    CAS  PubMed  Article  Google Scholar 

  81. Nazari, Q. A., Takada-Takatori, Y., Hashimoto, T., Imaizumi, A., Izumi, Y., Akaike, A., et al. (2014). Potential protective effect of highly bioavailable curcumin on an oxidative stress model induced by microinjection of sodium nitroprusside in mice brain. Food & function, 5(5), 984–989.

    CAS  Article  Google Scholar 

  82. Nichols, J. A., & Katiyar, S. K. (2010). Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Archives of Dermatological Research, 302(2), 71–83.

    CAS  PubMed  Article  Google Scholar 

  83. Parakalan, R., Jiang, B., Nimmi, B., Janani, M., Jayapal, M., Lu, J., et al. (2012). Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC neuroscience, 13(1), 1.

    Article  CAS  Google Scholar 

  84. Park, E., Kim, D. K., & Chun, H. S. (2012). Resveratrol inhibits lipopolysaccharide-induced phagocytotic activity in BV2 cells. Journal of the Korean Society for Applied Biological Chemistry, 55(6), 803–807.

    CAS  Article  Google Scholar 

  85. Perry, M. C., Demeule, M., Regina, A., Moumdjian, R., & Beliveau, R. (2010a). Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Molecular Nutrition & Food Research, 54(8), 1192–1201.

    CAS  Google Scholar 

  86. Perry, V. H., Nicoll, J. A., & Holmes, C. (2010b). Microglia in neurodegenerative disease. Nature Reviews Neurology, 6(4), 193–201.

    PubMed  Article  Google Scholar 

  87. Persidsky, Y., & Gendelman, H. E. (2003). Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. Journal of Leukocyte Biology, 74(5), 691–701.

    CAS  PubMed  Article  Google Scholar 

  88. Piantadosi, C. A., Withers, C. M., Bartz, R. R., MacGarvey, N. C., Fu, P., Sweeney, T. E., et al. (2011). Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. Journal of Biological Chemistry, 286(18), 16374–16385.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. Annals of neurology, 70(3), 374–383.

    PubMed  Article  Google Scholar 

  90. Rangarajan, P., Eng-Ang, L., & Thameem Dheen, S. (2013). Potential drugs targeting microglia: current knowledge and future prospects. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 12(6), 799-806.

  91. Rayan, N., Baby, N., Pitchai, D., Indraswari, F., Ling, E., Lu, J., et al. (2010). Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia. Frontiers in bioscience (Elite edition), 3, 1079–1091.

    Google Scholar 

  92. Reichard, J. F., Motz, G. T., & Puga, A. (2007). Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Research, 35(21), 7074–7086.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Rezai-Zadeh, K., Ehrhart, J., Bai, Y., Sanberg, P. R., Bickford, P., Tan, J., et al. (2008). Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation, 5, 41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Rinwa, P., & Kumar, A. (2013). Quercetin suppress microglial neuroinflammatory response and induce antidepressent-like effect in olfactory bulbectomized rats. Neuroscience, 255, 86–98.

    CAS  PubMed  Article  Google Scholar 

  95. Sabogal-Guáqueta, A. M., Muñoz-Manco, J. I., Ramírez-Pineda, J. R., Lamprea-Rodriguez, M., Osorio, E., & Cardona-Gómez, G. P. (2015). The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 93, 134–145.

    PubMed  Article  CAS  Google Scholar 

  96. Saijo, K., & Glass, C. K. (2011). Microglial cell origin and phenotypes in health and disease. Nature Reviews Immunology, 11(11), 775–787.

    CAS  PubMed  Article  Google Scholar 

  97. Samini, F., Samarghandian, S., Borji, A., & Mohammadi, G. (2013). Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacology, Biochemistry and Behavior, 110, 238–244.

    CAS  PubMed  Article  Google Scholar 

  98. Satoh, J.-I., Asahina, N., Kitano, S., & Kino, Y. (2014). A comprehensive profile of ChIP-Seq-Based PU. 1/Spi1 target genes in microglia. Gene regulation and systems biology, 8, 127.

  99. Sawmiller, D., Li, S., Shahaduzzaman, M., Smith, A. J., Obregon, D., Giunta, B., et al. (2014). Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. International Journal of Molecular Sciences, 15(1), 895–904.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. Schmitt, E., Hoehn, P., Huels, C., Goedert, S., Palm, N., Rüde, E., et al. (1994). T helper type 1 development of naive CD4 + T cells requires the coordinate action of interleukin-12 and interferon-γ and is inhibited by transforming growth factor-β. European Journal of Immunology, 24(4), 793–798.

    CAS  PubMed  Article  Google Scholar 

  101. Schraufstätter, E., & Bernt, H. (1949). Antibacterial action of curcumin and related compounds. Nature, 164, 456–457.

    PubMed  Article  Google Scholar 

  102. Sönmez, Ü., Sönmez, A., Erbil, G., Tekmen, I., & Baykara, B. (2007). Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neuroscience Letters, 420(2), 133–137.

    PubMed  Article  CAS  Google Scholar 

  103. Soriano, F. X., Léveillé, F., Papadia, S., Higgins, L. G., Varley, J., Baxter, P., et al. (2008). Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H–1, 2-dithiole-3-thione. Journal of Neurochemistry, 107(2), 533–543.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Stence, N., Waite, M., & Dailey, M. E. (2001). Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia, 33(3), 256–266.

    CAS  PubMed  Article  Google Scholar 

  105. Streit, W. J. (2006). Microglial senescence: does the brain’s immune system have an expiration date? Trends in Neurosciences, 29(9), 506–510.

    CAS  PubMed  Article  Google Scholar 

  106. Sun, G. Y., Chen, Z., Jasmer, K. J., Chuang, D. Y., Gu, Z., Hannink, M., et al. (2015). Quercetin attenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS ONE, 10(10), e0141509.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., et al. (2010). A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 18(9), 1606–1614.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., et al. (2013). Microglial activation in young adults with autism spectrum disorder. JAMA psychiatry, 70(1), 49–58.

    PubMed  Article  Google Scholar 

  109. Takano, T. (2015). Role of microglia in autism: recent advances. Developmental Neuroscience, 37(3), 195–202.

    CAS  PubMed  Article  Google Scholar 

  110. Taliou, A., Zintzaras, E., Lykouras, L., & Francis, K. (2013). An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clinical Therapeutics, 35(5), 592–602.

    CAS  PubMed  Article  Google Scholar 

  111. Taylor, R. A., & Sansing, L. H. (2013). Microglial responses after ischemic stroke and intracerebral hemorrhage. Clinical and Developmental Immunology, 2013.

  112. Tchantchou, F., Lacor, P. N., Cao, Z., Lao, L., Hou, Y., Cui, C., et al. (2009). Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. Journal of Alzheimer’s Disease, 18(4), 787–798.

    CAS  PubMed  Google Scholar 

  113. Teiten, M. H., Dicato, M., & Diederich, M. (2013). Curcumin as a regulator of epigenetic events. Molecular Nutrition & Food Research, 57(9), 1619–1629.

    CAS  Article  Google Scholar 

  114. Thameem Dheen, S., Kaur, C., & Ling, E.-A. (2007). Microglial activation and its implications in the brain diseases. Current Medicinal Chemistry, 14(11), 1189–1197.

    PubMed  Article  Google Scholar 

  115. Thored, P., Heldmann, U., Gomes-Leal, W., Gisler, R., Darsalia, V., Taneera, J., et al. (2009). Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia, 57(8), 835–849.

    PubMed  Article  Google Scholar 

  116. Tsilioni, I., Taliou, A., & FrancisK, Theoharides T. (2015). Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Translational Psychiatry, 5(9), e647.

    CAS  PubMed  Article  Google Scholar 

  117. Venturelli, S., Berger, A., Böcker, A., Busch, C., Weiland, T., Noor, S., et al. (2013). Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone proteins in human-derived hepatoblastoma cells. PLoS ONE, 8(8), e73097.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Vidak, M., Rozman, D., & Komel, R. (2015). Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells. Molecules, 20(10), 19406–19432.

    CAS  PubMed  Article  Google Scholar 

  119. Walker, D. G., & Lue, L.-F. (2015). Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimer’s Research & Therapy, 7(1), 1–9.

    Article  Google Scholar 

  120. Wang, G., Zhang, J., Hu, X., Zhang, L., Mao, L., Jiang, X., et al. (2013). Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 33(12), 1864–1874.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Wilkinson, B. L., & Landreth, G. E. (2006). The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation, 3(1), 30.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. Wu, A., Ying, Z., & Gomez-Pinilla, F. (2006). Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Experimental Neurology, 197(2), 309–317.

    CAS  PubMed  Article  Google Scholar 

  123. Xu, J., & Drew, P. D. (2006). 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. Journal of Neuroimmunology, 171(1), 135–144.

    CAS  PubMed  Article  Google Scholar 

  124. Youdim, K. A., Qaiser, M. Z., Begley, D. J., Rice-Evans, C. A., & Abbott, N. J. (2004). Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radical Biology and Medicine, 36(5), 592–604.

    CAS  PubMed  Article  Google Scholar 

  125. Zhang, Y., Yi, B., Ma, J., Zhang, L., Zhang, H., Yang, Y., et al. (2015). Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochemical Research, 40(1), 195–203.

    PubMed  Article  CAS  Google Scholar 

  126. Zhao, J., Yu, S., Zheng, W., Feng, G., Luo, G., Wang, L., et al. (2010). Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochemical Research, 35(3), 374–379.

    CAS  PubMed  Article  Google Scholar 

  127. Zhu, L.-H., Bi, W., Qi, R.-B., Wang, H.-D., & Lu, D.-X. (2011). Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. International Journal of Neuroscience, 121(6), 329–336.

    CAS  PubMed  Article  Google Scholar 

  128. Zhu, H., Bian, C., Yuan, J., Chu, W., Xiang, X., Chen, F., et al. (2014). Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation, 11(59), 1186.

    Google Scholar 

  129. Zou, L., Liu, W., Liu, C., Xiao, H., & McClements, D. J. (2015). Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions. Journal of Agricultural and Food Chemistry, 63(7), 2052–2062.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. T. Dheen.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rangarajan, P., Karthikeyan, A. & Dheen, S.T. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromol Med 18, 453–464 (2016). https://doi.org/10.1007/s12017-016-8430-x

Download citation

Keywords

  • Microglia
  • CNS
  • Luteolin
  • Quercetin
  • Resveratrol
  • Curcumin
  • Neuroinflammation