Abstract
Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi:10.1186/s12974-015-0419-0). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.
Similar content being viewed by others
References
Aguzzi, A., Barres, B. A., & Bennett, M. L. (2013). Microglia: Scapegoat, saboteur, or something else? [Research Support, Non-US. Gov’t Review]. Science, 339(6116), 156–161. doi:10.1126/science.1227901.
Annapurna, A., Ansari, M. A., & Manjunath, P. M. (2013). Partial role of multiple pathways in infarct size limiting effect of quercetin and rutin against cerebral ischemia–reperfusion injury in rats. European Review for Medical and Pharmacological Sciences, 17(4), 491–500.
Biedler, J. L., Roffler-Tarlov, S., Schachner, M., & Freedman, L. S. (1978). Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Research, 38(11 Pt 1), 3751–3757.
Block, M. L., & Hong, J. S. (2005). Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology, 76(2), 77–98. doi:10.1016/j.pneurobio.2005.06.004.
Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8(1), 57–69. doi:10.1038/nrn2038.
Burke, J. E., & Dennis, E. A. (2009). Phospholipase A2 structure/function, mechanism, and signaling [Research Support, N.I.H., Extramural Review]. Journal of Lipid Research, 50(Suppl), S237–S242. doi:10.1194/jlr.R800033-JLR200.
Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., Calabrese, E. J., & Mattson, M. P. (2010). Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants & Redox Signaling, 13(11), 1763–1811. doi:10.1089/ars.2009.3074.
Calder, P. C. (2008). The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukotrienes and Essential Fatty Acids, 79(3–5), 101–108. doi:10.1016/j.plefa.2008.09.016.
Chang-Mu, C., Jen-Kun, L., Shing-Hwa, L., & Shoei-Yn, L. S. (2010). Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice [Research Support, Non-U.S. Gov’t]. Behavioral Neuroscience, 124(4), 541–553. doi:10.1037/a0020050.
Chen, J. C., Ho, F. M., Pei-Dawn Lee, C., Chen, C. P., Jeng, K. C., Hsu, H. B., et al. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. European Journal of Pharmacology, 521(1–3), 9–20. doi:10.1016/j.ejphar.2005.08.005.
Chen, H. H., Lin, S. C., & Chan, M. H. (2011). Protective and restorative effects of magnolol on neurotoxicity in mice with 6-hydroxydopamine-induced hemiparkinsonism. Neurodegener Disease, 8(5), 364–374. doi:10.1159/000323872.
Chuang, D. Y., Chan, M. H., Zong, Y., Sheng, W., He, Y., Jiang, J. H., et al. (2013). Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Neuroinflammation, 10, 15. doi:10.1186/1742-2094-10-15.
Chuang, D. Y., Simonyi, A., Kotzbauer, P. T., Gu, Z., & Sun, G. Y. (2015). Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. Journal of Neuroinflammation, 12(1), 199. doi:10.1186/s12974-015-0419-0.
Colton, C. A., & Gilbert, D. L. (1987). Production of superoxide anions by a CNS macrophage, the microglia. FEBS Letters, 223(2), 284–288.
Galli, R. L., Shukitt-Hale, B., Youdim, K. A., & Joseph, J. A. (2002). Fruit polyphenolics and brain aging: Nutritional interventions targeting age-related neuronal and behavioral deficits [Review]. Annals of the New York Academy of Sciences, 959, 128–132.
Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., & Gage, F. H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6), 918–934. doi:10.1016/j.cell.2010.02.016.
Gonzalez-Scarano, F., & Martin-Garcia, J. (2005). The neuropathogenesis of AIDS. Nature Reviews Immunology, 5(1), 69–81. doi:10.1038/nri1527.
Huang, W., Bhavsar, A., Ward, R. E., Hall, J. C., Priestley, J. V., & Michael-Titus, A. T. (2009). Arachidonyl trifluoromethyl ketone is neuroprotective after spinal cord injury [Research Support, Non-U.S. Gov’t]. Journal of Neurotrauma, 26(8), 1429–1434. doi:10.1089/neu.2008-0835.
Hwang, I. K., Lee, C. H., Yoo, K. Y., Choi, J. H., Park, O. K., Lim, S. S., et al. (2009). Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus. Journal of Medicinal Food, 12(5), 990–995. doi:10.1089/jmf.2008.1400.
Jiang, J., Chuang, D. Y., Zong, Y., Patel, J., Brownstein, K., Lei, W., et al. (2014). Sutherlandia frutescens ethanol extracts inhibit oxidative stress and inflammatory responses in neurons and microglial cells [Research Support, N.I.H., Extramural]. PLoS ONE, 9(2), e89748. doi:10.1371/journal.pone.0089748.
Kang, C. H., Choi, Y. H., Moon, S. K., Kim, W. J., & Kim, G. Y. (2013). Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-kappaB pathway and activating the Nrf2-dependent HO-1 pathway. International Immunopharmacology, 17(3), 808–813. doi:10.1016/j.intimp.2013.09.009.
Kao, T. K., Ou, Y. C., Raung, S. L., Lai, C. Y., Liao, S. L., & Chen, C. J. (2010). Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sciences, 86(9–10), 315–321. doi:10.1016/j.lfs.2009.12.014.
Kaushik, D. K., Mukhopadhyay, R., Kumawat, K. L., Gupta, M., & Basu, A. (2012). Therapeutic targeting of Kruppel-like factor 4 abrogates microglial activation. Journal of Neuroinflammation, 9, 57. doi:10.1186/1742-2094-9-57.
Kuo, D. H., Lai, Y. S., Lo, C. Y., Cheng, A. C., Wu, H., & Pan, M. H. (2010). Inhibitory effect of magnolol on TPA-induced skin inflammation and tumor promotion in mice. Journal of Agriculture and Food Chemistry, 58(9), 5777–5783. doi:10.1021/jf100601r.
La Quaglia, M. P., & Manchester, K. M. (1996). A comparative analysis of neuroblastic and substrate-adherent human neuroblastoma cell lines. Journal of Pediatric Surgery, 31(2), 315–318.
Lee, J., Jo, D. G., Park, D., Chung, H. Y., & Mattson, M. P. (2014). Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacological Reviews, 66(3), 815–868. doi:10.1124/pr.113.007757.
Lee, Y. J., Lee, Y. M., Lee, C. K., Jung, J. K., Han, S. B., & Hong, J. T. (2011). Therapeutic applications of compounds in the Magnolia family [Research Support, Non-U.S. Gov’t Review]. Pharmacology & Therapeutics, 130(2), 157–176. doi:10.1016/j.pharmthera.2011.01.010.
Lee, S. C., Liu, W., Dickson, D. W., Brosnan, C. F., & Berman, J. W. (1993). Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. Journal of Immunol, 150(7), 2659–2667.
Leslie, C. C. (2015). Cytosolic phospholipase A2: Physiological function and role in disease. Journal of Lipid Research,. doi:10.1194/jlr.R057588.
Liu, N. K., Deng, L. X., Zhang, Y. P., Lu, Q. B., Wang, X. F., Hu, J. G., et al. (2014). Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Annals of Neurology, 75(5), 644–658. doi:10.1002/ana.24134.
Liu, B., Gao, H. M., & Hong, J. S. (2003). Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: Role of neuroinflammation. Environmental Health Perspectives, 111(8), 1065–1073.
Liu, B., Gao, H. M., Wang, J. Y., Jeohn, G. H., Cooper, C. L., & Hong, J. S. (2002). Role of nitric oxide in inflammation-mediated neurodegeneration. Annals of the New York Academy of Sciences, 962, 318–331.
Liu, B., Hattori, N., Zhang, N. Y., Wu, B., Yang, L., Kitagawa, K., et al. (2005). Anxiolytic agent, dihydrohonokiol-B, recovers amyloid beta protein-induced neurotoxicity in cultured rat hippocampal neurons. Neuroscience Letters, 384(1–2), 44–47.
Lull, M. E., & Block, M. L. (2010). Microglial activation and chronic neurodegeneration. Neurotherapeutics, 7(4), 354–365. doi:10.1016/j.nurt.2010.05.014.
Maruyama, Y., Kuribara, H., Morita, M., Yuzurihara, M., & Weintraub, S. T. (1998). Identification of magnolol and honokiol as anxiolytic agents in extracts of saiboku-to, an oriental herbal medicine. Journal of Natural Products, 61(1), 135–138.
Oh, J. H., Kang, L. L., Ban, J. O., Kim, Y. H., Kim, K. H., Han, S. B., et al. (2009). Anti-inflammatory effect of 4-O-methylhonokiol, compound isolated from magnolia officinalis through inhibition of NF-kappaB [corrected]. Chemico-Biological Interactions, 180(3), 506–514. doi:10.1016/j.cbi.2009.03.014.
Pan, X. D., Chen, X. C., Zhu, Y. G., Zhang, J., Huang, T. W., Chen, L. M., et al. (2008). Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochemical Pharmacology, 76(3), 362–372. doi:10.1016/j.bcp.2008.05.018.
Ribeiro, R., Wen, J., Li, S., & Zhang, Y. (2013). Involvement of ERK1/2, cPLA2 and NF-kappaB in microglia suppression by cannabinoid receptor agonists and antagonists [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Prostaglandins & Other Lipid Mediators, 100–101, 1–14. doi:10.1016/j.prostaglandins.2012.11.003.
Shen, S., Yu, S., Binek, J., Chalimoniuk, M., Zhang, X., Lo, S. C., et al. (2005). Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochemistry International, 47(4), 298–307. doi:10.1016/j.neuint.2005.03.007.
Sheng, W., Zong, Y., Mohammad, A., Ajit, D., Cui, J., Han, D., et al. (2011). Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural]. Journal of Neuroinflammation, 8, 121. doi:10.1186/1742-2094-8-121.
Simonyi, A., Chen, Z., Jiang, J., Zong, Y., Chuang, D. Y., Gu, Z., et al. (2015). Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sciences, 128, 30–38. doi:10.1016/j.lfs.2015.01.037.
Sun, G. Y., Chen, Z., Jasmer, K. J., Chuang, D. Y., Gu, Z., Hannink, M., et al. (2015). Quercetin attenuates inflammatory responses in BV-2 microglial cells: Role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS ONE, 10(10), e0141509. doi:10.1371/journal.pone.0141509.
Sun, A. Y., Wang, Q., Simonyi, A., & Sun, G. Y. (2008). Botanical phenolics and brain health. Neuromolecular Medicine, 10(4), 259–274. doi:10.1007/s12017-008-8052-z.
Sun, A. Y., Wang, Q., Simonyi, A., & Sun, G. Y. (2011). Botanical phenolics and neurodegeneration. In I. F. F. Benzie & S. Wachtel-Galor (Eds.), Herbal medicine: Biomolecular and clinical aspects (2nd ed.). Boca Raton, FL: CRC Press.
Vana, A. C., Li, S., Ribeiro, R., Tchantchou, F., & Zhang, Y. (2011). Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter [Research Support, Non-U.S. Gov’t]. Experimental Neurology, 231(1), 45–55. doi:10.1016/j.expneurol.2011.05.014.
Wang, T., Pei, Z., Zhang, W., Liu, B., Langenbach, R., Lee, C., et al. (2005). MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB J, 19(9), 1134–1136. doi:10.1096/fj.04-2457fje.
Wang, S., Wang, H., Guo, H., Kang, L., Gao, X., & Hu, L. (2011). Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation. Neuroscience, 185, 150–160. doi:10.1016/j.neuroscience.2011.04.005.
Watanabe, K., Watanabe, H., Goto, Y., Yamaguchi, M., Yamamoto, N., & Hagino, K. (1983). Pharmacological properties of magnolol and honokiol extracted from Magnolia officinalis: Central depressant effects. Planta Medica, 49(2), 103–108.
Wu, F., Zhang, W., Li, L., Zheng, F., Shao, X., Zhou, J., et al. (2011). Inhibitory effects of honokiol on lipopolysaccharide-induced cellular responses and signaling events in human renal mesangial cells [Research Support, Non-U.S. Gov’t]. European Journal of Pharmacology, 654(1), 117–121. doi:10.1016/j.ejphar.2010.11.022.
Xu, Q., Yi, L. T., Pan, Y., Wang, X., Li, Y. C., Li, J. M., et al. (2008). Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents [Research Support, Non-U.S. Gov’t]. Progress in Neuropsychopharmacology and Biological Psychiatry, 32(3), 715–725. doi:10.1016/j.pnpbp.2007.11.020.
Yang, X., Sheng, W., Ridgley, D. M., Haidekker, M. A., Sun, G. Y., & Lee, J. C. (2015). Astrocytes regulate alpha-secretase-cleaved soluble amyloid precursor protein secretion in neuronal cells: Involvement of group IIA secretory phospholipase A2. Neuroscience, 300, 508–517. doi:10.1016/j.neuroscience.2015.05.052.
Zhang, J., Barasch, N., Li, R. C., & Sapirstein, A. (2012). Inhibition of cytosolic phospholipase A(2) alpha protects against focal ischemic brain damage in mice [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Brain Research, 1471, 129–137. doi:10.1016/j.brainres.2012.06.031.
Acknowledgments
This publication was made possible by NIH Grants 2P01 AG08357 from NIA and P50AT006273 from the National Center for Complementary and Alternative Medicines (NCCAM), the Office of Dietary Supplements (ODS), and the National Cancer Institute (NCI). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIA, NCCAM, ODS, NCI, or the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have declared that there are no competing interests.
Rights and permissions
About this article
Cite this article
Chuang, D.Y., Simonyi, A., Cui, J. et al. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2 . Neuromol Med 18, 415–425 (2016). https://doi.org/10.1007/s12017-016-8419-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12017-016-8419-5