NeuroMolecular Medicine

, Volume 18, Issue 3, pp 465–473 | Cite as

Preserving Brain Function in Aging: The Anti-glycative Potential of Berry Fruit

  • Nopporn Thangthaeng
  • Shibu M. Poulose
  • Marshall G. Miller
  • Barbara Shukitt-HaleEmail author
Review Paper


Advanced glycation end products (AGEs) are naturally occurring macromolecules that are formed in vivo by the non-enzymatic modification of proteins, lipids, or nucleic acids by sugar, even in the absence of hyperglycemia. In the diet, AGEs are found in animal products, and additional AGEs are produced when those foods are cooked at high temperatures. Studies have linked AGEs to various age-related physiological changes, including wrinkles, diabetic complications, and neurodegenerative disease, including Alzheimer’s disease. Dietary berry fruits have been shown to reduce the severity or slow the progression of many physiological changes and disease pathologies that accompany aging. Emerging evidence has shown that the phytochemicals found in berry fruits exhibit anti-glycative activity. In this review, we briefly summarize the current evidence supporting the neuroprotective anti-glycative activity of berry fruits and their potential to preserve cognitive function during aging.


Advanced glycation end products AGEs Aging Berry Cognition Glycation 



Advanced glycation end product


Dietary AGE


Alzheimer’s disease


Reactive oxygen species





TCA cycle

Tricarboxylic acid cycle


Type 2 diabetes mellitus


Serum methylglyoxal


Receptor for AGE


Bovine skin collagen type I


Bovine serum albumin


Human serum albumin


Long-term potentiation




Compliance with Ethical Standards

Conflicts of interest

The authors declare no financial or other conflicts of interest in the writing of this paper.


  1. Bair, W. B, 3rd, Cabello, C. M., Uchida, K., Bause, A. S., & Wondrak, G. T. (2010). GLO1 overexpression in human malignant melanoma. Melanoma Research, 20, 85–96. doi: 10.1097/CMR.0b013e3283364903.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bakala, H., Delaval, E., Hamelin, M., Bismuth, J., Borot-Laloi, C., Corman, B., & Friguet, B. (2003). Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. European Journal of Biochemistry, 270, 2295–2302.CrossRefPubMedGoogle Scholar
  3. Basta, G., Lazzerini, G., Del Turco, S., Ratto, G. M., Schmidt, A. M., & De Caterina, R. (2005). At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1401–1407. doi: 10.1161/01.ATV.0000167522.48370.5e.CrossRefPubMedGoogle Scholar
  4. Baynes, J. W., & Thorpe, S. R. (2000). Glycoxidation and lipoxidation in atherogenesis. Free Radical Biology and Medicine, 28, 1708–1716.CrossRefPubMedGoogle Scholar
  5. Beaulieu, L. P., Harris, C. S., Saleem, A., Cuerrier, A., Haddad, P. S., Martineau, L. C., et al. (2010). Inhibitory effect of the Cree traditional medicine wiishichimanaanh (Vaccinium vitis-idaea) on advanced glycation endproduct formation: Identification of active principles. Phytother Res, 24, 741–747. doi: 10.1002/ptr.3025.PubMedGoogle Scholar
  6. Bengmark, S. (2006). Impact of nutrition on ageing and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 2–7.CrossRefPubMedGoogle Scholar
  7. Bengmark, S. (2007). Advanced glycation and lipoxidation end products–amplifiers of inflammation: The role of food. JPEN Journal of Parenteral and Enteral Nutrition, 31, 430–440.CrossRefPubMedGoogle Scholar
  8. Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C., & Scheltens, P. (2006). Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurology, 5, 64–74.CrossRefPubMedGoogle Scholar
  9. Brands, A. M., Van den Berg, E., Manschot, S. M., Biessels, G. J., Kappelle, L. J., De Haan, E. H., & Kessels, R. P. (2007). A detailed profile of cognitive dysfunction and its relation to psychological distress in patients with type 2 diabetes mellitus. Journal of the International Neuropsychological Society, 13, 288–297.CrossRefPubMedGoogle Scholar
  10. Brownlee, M. (1995). Advanced protein glycosylation in diabetes and aging. Annual Review of Medicine, 46, 223–234. doi: 10.1146/ Scholar
  11. Cai, W., Gao, Q. D., Zhu, L., Peppa, M., He, C., & Vlassara, H. (2002). Oxidative stress-inducing carbonyl compounds from common foods: Novel mediators of cellular dysfunction. Molecular Medicine, 8, 337–346.PubMedPubMedCentralGoogle Scholar
  12. Cai, W., He, J. C., Zhu, L., Chen, X., Wallenstein, S., Striker, G. E., & Vlassara, H. (2007). Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet. Association with Increased AGER1 Expression. American Journal of Pathology, 170, 1893–1902. doi: 10.2353/ajpath.2007.061281.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cai, W., He, J. C., Zhu, L., Lu, C., & Vlassara, H. (2006). Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proceedings of the National Academy of Sciences USA, 103, 13801–13806. doi: 10.1073/pnas.0600362103.CrossRefGoogle Scholar
  14. Cai, W., Uribarri, J., Zhu, L., Chen, X., Swamy, S., Zhao, Z., et al. (2014). Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proceedings of the National Academy of Sciences USA, 111, 4940–4945. doi: 10.1073/pnas.1316013111.CrossRefGoogle Scholar
  15. Cerami, C., Founds, H., Nicholl, I., Mitsuhashi, T., Giordano, D., Vanpatten, S., et al. (1997). Tobacco smoke is a source of toxic reactive glycation products. Proceedings of the National Academy of Sciences USA, 94, 13915–13920.CrossRefGoogle Scholar
  16. Chen, C., Li, X. H., Tu, Y., Sun, H. T., Liang, H. Q., Cheng, S. X., & Zhang, S. (2014). Abeta-AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience, 257, 1–10. doi: 10.1016/j.neuroscience.2013.10.056.CrossRefPubMedGoogle Scholar
  17. Ciddi, V., & Dodda, D. (2014). Therapeutic potential of resveratrol in diabetic complications: In vitro and in vivo studies. Pharmacol Reports, 66, 799–803. doi: 10.1016/j.pharep.2014.04.006.CrossRefGoogle Scholar
  18. Crane, P. K., Walker, R., Hubbard, R. A., Li, G., Nathan, D. M., Zheng, H., et al. (2013). Glucose levels and risk of dementia. New England Journal of Medicine, 369, 540–548. doi: 10.1056/NEJMoa1215740.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Currais, A., Goldberg, J., Farrokhi, C., Chang, M., Prior, M., Dargusch, R., et al. (2015). A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging (Albany NY), 7, 937–955.CrossRefGoogle Scholar
  20. Eble, A. S., Thorpe, S. R., & Baynes, J. W. (1983). Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. Journal of Biological Chemistry, 258, 9406–9412.PubMedGoogle Scholar
  21. Finot, P. A. (2005). Historical perspective of the Maillard reaction in food science. Annals of the New York Academy of Sciences, 1043, 1–8. doi: 10.1196/annals.1333.001.CrossRefPubMedGoogle Scholar
  22. Frye, E. B., Degenhardt, T. P., Thorpe, S. R., & Baynes, J. W. (1998). Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. Journal of Biological Chemistry, 273, 18714–18719.CrossRefPubMedGoogle Scholar
  23. Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B. S., Uribarri, J., & Vlassara, H. (2004). Advanced glycoxidation end products in commonly consumed foods. Journal of the American Dietetic Association, 104, 1287–1291.CrossRefPubMedGoogle Scholar
  24. Guh, J. Y., Huang, J. S., Chen, H. C., Hung, W. C., Lai, Y. H., & Chuang, L. Y. (2001). Advanced glycation end product-induced proliferation in NRK-49F cells is dependent on the JAK2/STAT5 pathway and cyclin D1. American Journal of Kidney Diseases, 38, 1096–1104.CrossRefPubMedGoogle Scholar
  25. Harris, C. S., Beaulieu, L. P., Fraser, M. H., McIntyre, K. L., Owen, P. L., Martineau, L. C., et al. (2011). Inhibition of advanced glycation end product formation by medicinal plant extracts correlates with phenolic metabolites and antioxidant activity. Planta Medica, 77, 196–204. doi: 10.1055/s-0030-1250161.CrossRefPubMedGoogle Scholar
  26. Harris, C. S., Cuerrier, A., Lamont, E., Haddad, P. S., Arnason, J. T., Bennett, S. A., & Johns, T. (2014). Investigating wild berries as a dietary approach to reducing the formation of advanced glycation endproducts: Chemical correlates of in vitro antiglycation activity. Plant Foods for Human Nutrition, 69, 71–77. doi: 10.1007/s11130-014-0403-3.CrossRefPubMedPubMedCentralGoogle Scholar
  27. He, C., Sabol, J., Mitsuhashi, T., & Vlassara, H. (1999). Dietary glycotoxins: Inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes, 48, 1308–1315.CrossRefPubMedGoogle Scholar
  28. Heidland, A., Sebekova, K., & Schinzel, R. (2001). Advanced glycation end products and the progressive course of renal disease. American Journal of Kidney Diseases, 38, S100–S106.CrossRefPubMedGoogle Scholar
  29. Henle, T. (2005). Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids, 29, 313–322. doi: 10.1007/s00726-005-0200-2.CrossRefPubMedGoogle Scholar
  30. Huang, J. S., Guh, J. Y., Hung, W. C., Yang, M. L., Lai, Y. H., Chen, H. C., & Chuang, L. Y. (1999). Role of the Janus kinase (JAK)/signal transducters and activators of transcription (STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NRK-49F cells. Biochemical Journal, 342(Pt 1), 231–238.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kikuchi, S., Shinpo, K., Takeuchi, M., Yamagishi, S., Makita, Z., Sasaki, N., & Tashiro, K. (2003). Glycation–a sweet tempter for neuronal death. Brain Research. Brain Research Reviews, 41, 306–323.CrossRefPubMedGoogle Scholar
  32. Knopman, D., Boland, L. L., Mosley, T., Howard, G., Liao, D., Szklo, M., et al. (2001). Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology, 56, 42–48.CrossRefPubMedGoogle Scholar
  33. Ko, S. Y., Ko, H. A., Chu, K. H., Shieh, T. M., Chi, T. C., Chen, H. I., et al. (2015). The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS One, 10, e0143345. doi: 10.1371/journal.pone.0143345.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Koschinsky, T., He, C. J., Mitsuhashi, T., Bucala, R., Liu, C., Buenting, C., et al. (1997). Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proceedings of the National Academy of Sciences USA, 94, 6474–6479.CrossRefGoogle Scholar
  35. Krikorian, R., Shidler, M. D., Nash, T. A., Kalt, W., Vinqvist-Tymchuk, M. R., Shukitt-Hale, B., & Joseph, J. A. (2010). Blueberry supplementation improves memory in older adults. Journal of Agriculture and Food Chemistry, 58, 3996–4000.CrossRefGoogle Scholar
  36. Lander, H. M., Tauras, J. M., Ogiste, J. S., Hori, O., Moss, R. A., & Schmidt, A. M. (1997). Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. Journal of Biological Chemistry, 272, 17810–17814.CrossRefPubMedGoogle Scholar
  37. Ledesma, M. D., Bonay, P., Colaco, C., & Avila, J. (1994). Analysis of microtubule-associated protein tau glycation in paired helical filaments. Journal of Biological Chemistry, 269, 21614–21619.PubMedGoogle Scholar
  38. Lee, C., Yim, M. B., Chock, P. B., Yim, H. S., & Kang, S. O. (1998). Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation. Journal of Biological Chemistry, 273, 25272–25278.CrossRefPubMedGoogle Scholar
  39. Li, X. H., Du, L. L., Cheng, X. S., Jiang, X., Zhang, Y., Lv, B. L., et al. (2013). Glycation exacerbates the neuronal toxicity of beta-amyloid. Cell Death and Disease, 4, e673. doi: 10.1038/cddis.2013.180.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lin, L. (2006). RAGE on the Toll Road? Cellular and Molecular Immunology, 3, 351–358.PubMedGoogle Scholar
  41. Lin, R. Y., Choudhury, R. P., Cai, W., Lu, M., Fallon, J. T., Fisher, E. A., & Vlassara, H. (2003). Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis, 168, 213–220.CrossRefPubMedGoogle Scholar
  42. Liu, H., Liu, H., Wang, W., Khoo, C., Taylor, J., & Gu, L. (2011). Cranberry phytochemicals inhibit glycation of human hemoglobin and serum albumin by scavenging reactive carbonyls. Food Funct, 2, 475–482. doi: 10.1039/c1fo10087d.CrossRefPubMedGoogle Scholar
  43. Maher, P., Dargusch, R., Ehren, J. L., Okada, S., Sharma, K., & Schubert, D. (2011). Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One, 6, e21226. doi: 10.1371/journal.pone.0021226.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Malin, D. H., Lee, D. R., Goyarzu, P., Chang, Y. H., Ennis, L. J., Beckett, E., et al. (2011). Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats. Nutrition, 27, 338–342. doi: 10.1016/j.nut.2010.05.001.CrossRefPubMedGoogle Scholar
  45. Matsuda, H., Wang, T., Managi, H., & Yoshikawa, M. (2003). Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem, 11, 5317–5323.CrossRefPubMedGoogle Scholar
  46. McLean, W. G., Pekiner, C., Cullum, N. A., & Casson, I. F. (1992). Posttranslational modifications of nerve cytoskeletal proteins in experimental diabetes. Molecular Neurobiology, 6, 225–237.CrossRefPubMedGoogle Scholar
  47. McPherson, J. D., Shilton, B. H., & Walton, D. J. (1988). Role of fructose in glycation and cross-linking of proteins. Biochemistry, 27, 1901–1907.CrossRefPubMedGoogle Scholar
  48. Miller, M. G., & Shukitt-Hale, B. (2012). Berry fruit enhances beneficial signaling in the brain. Journal of Agriculture and Food Chemistry, 60, 5709–5715. doi: 10.1021/jf2036033.CrossRefGoogle Scholar
  49. Mullarkey, C. J., Edelstein, D., & Brownlee, M. (1990). Free radical generation by early glycation products: A mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun, 173, 932–939.CrossRefPubMedGoogle Scholar
  50. Nicholl, I. D., & Bucala, R. (1998). Advanced glycation endproducts and cigarette smoking. Cellular and Molecular Biology, 44, 1025–1033.PubMedGoogle Scholar
  51. Nitti, M., d’Abramo, C., Traverso, N., Verzola, D., Garibotto, G., Poggi, A., et al. (2005). Central role of PKCdelta in glycoxidation-dependent apoptosis of human neurons. Free Radical Biology and Medicine, 38, 846–856. doi: 10.1016/j.freeradbiomed.2004.12.002.CrossRefPubMedGoogle Scholar
  52. Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biology, 2, 411–429. doi: 10.1016/j.redox.2013.12.016.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Parengkuan, L., Yagi, M., Matsushima, M., Ogura, M., Hamada, U., & Yonei, Y. (2013). Anti-glycation activity of various fruits. J. Anti-Aging Med, 10(3), 70–76.Google Scholar
  54. Pem, D., & Jeewon, R. (2015). Fruit and vegetable intake: Benefits and progress of nutrition education interventions- narrative review article. Iranian Journal of Public Health, 44, 1309–1321.PubMedPubMedCentralGoogle Scholar
  55. Perrone, L., & Grant, W. B. (2015). Observational and ecological studies of dietary advanced glycation end products in national diets and Alzheimer’s disease incidence and prevalence. Journal of Alzheimer’s Disease, 45, 965–979. doi: 10.3233/JAD-140720.PubMedGoogle Scholar
  56. Poulose, S. M., Bielinski, D. F., Carrihill-Knoll, K. L., Rabin, B. M., & Shukitt-Hale, B. (2014). Protective effects of blueberry- and strawberry diets on neuronal stress following exposure to (56) Fe particles. Brain Research, 1593, 9–18. doi: 10.1016/j.brainres.2014.10.028.CrossRefPubMedGoogle Scholar
  57. Poulose, S. M., Carey, A. N., & Shukitt-Hale, B. (2012). Improving brain signaling in aging: Could berries be the answer? Expert Review of Neurotherapeutics, 12, 887–889. doi: 10.1586/ern.12.86.CrossRefPubMedGoogle Scholar
  58. Poulose, S. M., Thangthaeng, N., Miller, M. G., & Shukitt-Hale, B. (2015). Effects of pterostilbene and resveratrol on brain and behavior. Neurochemistry International, 89, 227–233. doi: 10.1016/j.neuint.2015.07.017.CrossRefPubMedGoogle Scholar
  59. Poulsen, M. W., Hedegaard, R. V., Andersen, J. M., de Courten, B., Bugel, S., Nielsen, J., et al. (2013). Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology, 60, 10–37. doi: 10.1016/j.fct.2013.06.052.CrossRefPubMedGoogle Scholar
  60. Qian, M., Liu, M., & Eaton, J. W. (1998). Transition metals bind to glycated proteins forming redox active “glycochelates”: Implications for the pathogenesis of certain diabetic complications. Biochem Biophys Res Commun, 250, 385–389. doi: 10.1006/bbrc.1998.9326.CrossRefPubMedGoogle Scholar
  61. Ray, S., Dutta, S., Halder, J., & Ray, M. (1994). Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochemical Journal, 303(Pt 1), 69–72.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rosca, M. G., Monnier, V. M., Szweda, L. I., & Weiss, M. F. (2002). Alterations in renal mitochondrial respiration in response to the reactive oxoaldehyde methylglyoxal. American Journal of Physiology-Renal Physiology, 283, F52–F59. doi: 10.1152/ajprenal.00302.2001.CrossRefPubMedGoogle Scholar
  63. Rosca, M. G., Mustata, T. G., Kinter, M. T., Ozdemir, A. M., Kern, T. S., Szweda, L. I., et al. (2005). Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. American Journal of Physiology-Renal Physiology, 289, F420–F430. doi: 10.1152/ajprenal.00415.2004.CrossRefPubMedGoogle Scholar
  64. Sadowska-Bartosz, I., & Bartosz, G. (2015). Prevention of protein glycation by natural compounds. Molecules, 20, 3309–3334. doi: 10.3390/molecules20023309.CrossRefPubMedGoogle Scholar
  65. Sadowska-Bartosz, I., Galiniak, S., & Bartosz, G. (2014). Polyphenols protect against protein glycoxidation. Free Radical Biology and Medicine, 75(Suppl 1), S47. doi: 10.1016/j.freeradbiomed.2014.10.810.CrossRefPubMedGoogle Scholar
  66. Sargeant, L. A., Khaw, K. T., Bingham, S., Day, N. E., Luben, R. N., Oakes, S., et al. (2001). Fruit and vegetable intake and population glycosylated haemoglobin levels: The EPIC-Norfolk Study. European Journal of Clinical Nutrition, 55, 342–348. doi: 10.1038/sj.ejcn.1601162.CrossRefPubMedGoogle Scholar
  67. Sasaki, N., Fukatsu, R., Tsuzuki, K., Hayashi, Y., Yoshida, T., Fujii, N., et al. (1998). Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. American Journal of Pathology, 153, 1149–1155.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sayegh, M., Miglio, C., & Ray, S. (2014). Potential cardiovascular implications of Sea Buckthorn berry consumption in humans. International Journal of Food Sciences and Nutrition, 65, 521–528. doi: 10.3109/09637486.2014.880672.CrossRefPubMedGoogle Scholar
  69. Schmidt, A. M., Hori, O., Brett, J., Yan, S. D., Wautier, J. L., & Stern, D. (1994). Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arteriosclerosis and Thrombosis, 14, 1521–1528.CrossRefPubMedGoogle Scholar
  70. Shukitt-Hale, B., Bielinski, D. F., Lau, F. C., Willis, L. M., Carey, A. N., & Joseph, J. A. (2015). The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. British Journal of Nutrition, 114(10), 1542–1549. doi: 10.1017/S0007114515003451.CrossRefPubMedGoogle Scholar
  71. Shukitt-Hale, B., Lau, F. C., Cheng, V., Luskin, K., Carey, A. N., Carrihill-Knoll, K., et al. (2013). Changes in gene expression in the rat hippocampus following exposure to 56Fe particles and protection by berry diets. Central Nervous System Agents in Medicinal Chemistry, 13(1), 36–42.CrossRefPubMedGoogle Scholar
  72. Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: A review. Diabetologia, 44, 129–146.CrossRefPubMedGoogle Scholar
  73. Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16, 24673–24706. doi: 10.3390/ijms161024673.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition, 3, 506–516. doi: 10.3945/an.112.002154.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sobal, G., Menzel, J., & Sinzinger, H. (2000). Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study. Prostaglandins Leukotrienes and Essential Fatty Acids, 63, 177–186. doi: 10.1054/plef.2000.0204.CrossRefGoogle Scholar
  76. Speer, O., Morkunaite-Haimi, S., Liobikas, J., Franck, M., Hensbo, L., Linder, M. D., et al. (2003). Rapid suppression of mitochondrial permeability transition by methylglyoxal. Role of reversible arginine modification. Journal of Biological Chemistry, 278, 34757–34763. doi: 10.1074/jbc.M301990200.CrossRefPubMedGoogle Scholar
  77. Stirban, A., Gawlowski, T., & Roden, M. (2013). Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab, 3, 94–108. doi: 10.1016/j.molmet.2013.11.006.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Thangthaeng, N., Sumien, N., & Forster, M. J. (2008). Dissociation of functional status from accrual of CML and RAGE in the aged mouse brain. Experimental Gerontology, 43, 1077–1085. doi: 10.1016/j.exger.2008.08.045.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., et al. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(911–16), e12. doi: 10.1016/j.jada.2010.03.018.PubMedGoogle Scholar
  80. van Boekel, M. A. (1991). The role of glycation in aging and diabetes mellitus. Molecular Biology Reports, 15, 57–64.CrossRefPubMedGoogle Scholar
  81. Vlassara, H., & Uribarri, J. (2004). Glycoxidation and diabetic complications: Modern lessons and a warning? Rev Endocr Metab Disord, 5, 181–188. doi: 10.1023/B:REMD.0000032406.84813.f6.CrossRefPubMedGoogle Scholar
  82. Wang, W., Yagiz, Y., Buran, T., do Nascimento Nunes, C., & Gu, L. (2011). Phytochemicals from berries and grapes inhibited the formation of advanced glycation end-products by scavenging reactive carbonyls. Food Research International, 44, 2666–2673.CrossRefGoogle Scholar
  83. Wautier, J. L., Wautier, M. P., Schmidt, A. M., Anderson, G. M., Hori, O., Zoukourian, C., et al. (1994). Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: A link between surface-associated AGEs and diabetic complications. Proceedings of the National Academy of Sciences USA, 91, 7742–7746.CrossRefGoogle Scholar
  84. Wells-Knecht, K. J., Zyzak, D. V., Litchfield, J. E., Thorpe, S. R., & Baynes, J. W. (1995). Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry, 34, 3702–3709.CrossRefPubMedGoogle Scholar
  85. Wightman, J. D., & Heuberger, R. A. (2015). Effect of grape and other berries on cardiovascular health. Journal of the Science of Food and Agriculture, 95, 1584–1597. doi: 10.1002/jsfa.6890.CrossRefPubMedGoogle Scholar
  86. Willis, L. M., Shukitt-Hale, B., & Joseph, J. A. (2009). Recent advances in berry supplementation and age-related cognitive decline. Current Opinion in Clinical Nutrition and Metabolic Care, 12, 91–94. doi: 10.1097/MCO.0b013e32831b9c6e.CrossRefPubMedGoogle Scholar
  87. Yaffe, K., Falvey, C., Hamilton, N., Schwartz, A. V., Simonsick, E. M., Satterfield, S., et al. (2012). Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Archives of Neurology, 69, 1170–1175. doi: 10.1001/archneurol.2012.1117.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yaffe, K., Lindquist, K., Schwartz, A. V., Vitartas, C., Vittinghoff, E., Satterfield, S., et al. (2011). Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology, 77, 1351–1356. doi: 10.1212/WNL.0b013e3182315a56.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yan, H., & Harding, J. J. (1997). Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochemical Journal, 328(Pt 2), 599–605.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yan, S. D., Schmidt, A. M., Anderson, G. M., Zhang, J., Brett, J., Zou, Y. S., et al. (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. Journal of Biological Chemistry, 269, 9889–9897.PubMedGoogle Scholar
  91. Yim, M. B., Yim, H. S., Lee, C., Kang, S. O., & Chock, P. B. (2001). Protein glycation: Creation of catalytic sites for free radical generation. Annals of the New York Academy of Sciences, 928, 48–53.CrossRefPubMedGoogle Scholar
  92. Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J. A., & Bagchi, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition and Food Research, 51, 675–683. doi: 10.1002/mnfr.200700002.CrossRefPubMedGoogle Scholar
  93. Zheng, F., He, C., Cai, W., Hattori, M., Steffes, M., & Vlassara, H. (2002). Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes/Metabolism Research and Reviews, 18, 224–237. doi: 10.1002/dmrr.283.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • Nopporn Thangthaeng
    • 1
  • Shibu M. Poulose
    • 1
  • Marshall G. Miller
    • 1
  • Barbara Shukitt-Hale
    • 1
    Email author
  1. 1.USDA-ARSHuman Nutrition Research Center on Aging at Tufts UniversityBostonUSA

Personalised recommendations