Advertisement

NeuroMolecular Medicine

, Volume 18, Issue 3, pp 253–263 | Cite as

Neuro-protective Mechanisms of Lycium barbarum

  • Xiwen Xing
  • Fenyong Liu
  • Jia XiaoEmail author
  • Kwok Fai SoEmail author
Review Paper

Abstract

Neuronal diseases, including retinal disorders, stroke, Alzheimer’s disease, Parkinson’s disease and spinal cord injury, affect a large number of people worldwide and cause heavy social and economic burdens. Although many efforts have been made by scientists and clinicians to develop novel drug and healthcare strategies, few of them received satisfactory outcomes to date. Lycium barbarum is a traditional homology of medicine and food in Chinese medicine, with the capability to nourish the eyes, liver and kidneys. Recent studies have also explored its powerful neuro-protective effects on a number of neuronal diseases. In the current review, we collected key recent findings regarding the neuro-protective effects and mechanisms of L. barbarum derivatives, primarily its polysaccharide (LBP) , in some common diseases of the nervous system. A comprehensive comparison with currently available drugs has also been discussed. In general, LBP is a promising neuronal protector with potent ameliorative effects on key pathological events, such as oxidative stress, inflammation, apoptosis and cell death with minimal side effects.

Keywords

Lycium barbarum LBP Neuro-protective Mechanisms 

Notes

Acknowledgments

J. X. and K. F. S. are the guarantors of this work and, as such, take responsibility for the integrity of the perspective provided. X. W. X. and F. Y. L. wrote the manuscript. J. X. and K. F. S. did the review/edit works.

Compliance with Ethical Standards

Conflict of interest

There are no potential conflicts of interests relevant to this article.

References

  1. Allen, C. L., & Bayraktutan, U. (2009). Oxidative stress and its role in the pathogenesis of ischaemic stroke. International Journal of Stroke, 4(6), 461–470. doi: 10.1111/j.1747-4949.2009.00387.x.CrossRefPubMedGoogle Scholar
  2. Almeida, S., Alves, M. G., Sousa, M., Oliveira, P. F., & Silva, B. M. (2016). Are polyphenols strong dietary agents against neurotoxicity and neurodegeneration? Neurotoxicity Research. doi: 10.1007/s12640-015-9590-4.PubMedGoogle Scholar
  3. Amagase, H., & Nance, D. M. (2008). A randomized, double-blind, placebo-controlled, clinical study of the general effects of a standardized Lycium barbarum (Goji) Juice, GoChi. Journal of Alternative and Complementary Medicine, 14(4), 403–412. doi: 10.1089/acm.2008.0004.CrossRefPubMedGoogle Scholar
  4. Avagyan, H., Goldenson, B., Tse, E., Masoumi, A., Porter, V., Wiedau-Pazos, M., et al. (2009). Immune blood biomarkers of Alzheimer disease patients. Journal of Neuroimmunology, 210(1–2), 67–72. doi: 10.1016/j.jneuroim.2009.02.015.CrossRefPubMedGoogle Scholar
  5. Behl, T., Kaur, I., & Kotwani, A. (2015). Role of leukotrienes in diabetic retinopathy. Prostaglandins and Other Lipid Mediators, 122, 1–9. doi: 10.1016/j.prostaglandins.2015.12.001.CrossRefPubMedGoogle Scholar
  6. Bennett, J., Tanabe, T., Sun, D., Zeng, Y., Kjeldbye, H., Gouras, P., et al. (1996). Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nature Medicine, 2(6), 649–654.CrossRefPubMedGoogle Scholar
  7. Bie, M., Lv, Y., Ren, C., Xing, F., Cui, Q., Xiao, J., et al. (2015). Lycium barbarum polysaccharide improves bipolar pulse current-induced microglia cell injury through modulating autophagy. Cell Transplantation, 24(3), 419–428. doi: 10.3727/096368915x687453.CrossRefPubMedGoogle Scholar
  8. Bucheli, P., Vidal, K., Shen, L., Gu, Z., Zhang, C., Miller, L. E., et al. (2011). Goji berry effects on macular characteristics and plasma antioxidant levels. Optometry and Vision Science, 88(2), 257–262. doi: 10.1097/OPX.0b013e318205a18f.CrossRefPubMedGoogle Scholar
  9. Burns, A., & Iliffe, S. (2009). Alzheimer’s disease. BMJ, 338, b158. doi: 10.1136/bmj.b158.CrossRefPubMedGoogle Scholar
  10. Caplan, L. R. (1989). Intracranial branch atheromatous disease: A neglected, understudied, and underused concept. Neurology, 39(9), 1246–1250.CrossRefPubMedGoogle Scholar
  11. Carpentier, S., Knaus, M., & Suh, M. (2009). Associations between lutein, zeaxanthin, and age-related macular degeneration: An overview. Critical Reviews in Food Science and Nutrition, 49(4), 313–326. doi: 10.1080/10408390802066979.CrossRefPubMedGoogle Scholar
  12. Castrillo, J. I., & Oliver, S. G. (2016). Alzheimer’s as a systems-level disease involving the interplay of multiple cellular networks. Methods in Molecular Biology, 1303, 3–48. doi: 10.1007/978-1-4939-2627-5_1.CrossRefPubMedGoogle Scholar
  13. Cavallucci, V., D’Amelio, M., & Cecconi, F. (2012). Abeta toxicity in Alzheimer’s disease. Molecular Neurobiology, 45(2), 366–378. doi: 10.1007/s12035-012-8251-3.CrossRefPubMedGoogle Scholar
  14. Chan, H. C., Chang, R. C., Koon-Ching Ip, A., Chiu, K., Yuen, W. H., Zee, S. Y., et al. (2007). Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Experimental Neurology, 203(1), 269–273. doi: 10.1016/j.expneurol.2006.05.031.CrossRefPubMedGoogle Scholar
  15. Chan, J. Y., Koon, J. C., Leung, P. C., Che, C. T., & Fung, K. P. (2011). Suppression of low-density lipoprotein oxidation, vascular smooth muscle cell proliferation and migration by a herbal extract of Radix Astragali, Radix Codonopsis and Cortex Lycii. BMC Complementary and Alternative Medicine, 11, 32. doi: 10.1186/1472-6882-11-32.CrossRefPubMedCentralGoogle Scholar
  16. Chen, W., Cheng, X., Chen, J., Yi, X., Nie, D., Sun, X., et al. (2014). Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. Plos One, 9(2), e88076. doi: 10.1371/journal.pone.0088076.CrossRefPubMedPubMedCentralGoogle Scholar
  17. de Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson’s disease. Lancet Neurology, 5(6), 525–535. doi: 10.1016/s1474-4422(06)70471-9.CrossRefPubMedGoogle Scholar
  18. Douaud, G., Refsum, H., de Jager, C. A., Jacoby, R., Nichols, T. E., Smith, S. M., et al. (2013). Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proceedings of the National Academy of Sciences of the United States of America, 110(23), 9523–9528. doi: 10.1073/pnas.1301816110.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dunaief, J. L., Dentchev, T., Ying, G. S., & Milam, A. H. (2002). The role of apoptosis in age-related macular degeneration. Archives of Ophthalmology, 120(11), 1435–1442.CrossRefPubMedGoogle Scholar
  20. Elbaz, A., Carcaillon, L., Kab, S., & Moisan, F. (2015). Epidemiology of Parkinson’s disease. Revue Neurologique (Paris). doi: 10.1016/j.neurol.2015.09.012.Google Scholar
  21. Fatrai, A., Uhrig, S., Engelhardt, U., Han, C., Hempen, C., Hummelsberger, J., et al. (2015). Chinese ophthalmology: Acupuncture, herbal therapy, dietary therapy, tuina and qigong. Wiesbaden: Tipani-Verlag.Google Scholar
  22. Fernandez, H. H. (2015). 2015 update on Parkinson disease. Cleveland Clinic Journal of Medicine, 82(9), 563–568. doi: 10.3949/ccjm.82gr.15004.PubMedGoogle Scholar
  23. Gamez, C., Marchan, E., Miguel, L., Sanz, V., & del Pozo, V. (2013). Goji berry: A potential new player in latex-food syndrome. Annals of Allergy, Asthma and Immunology, 110(3), 206–207. doi: 10.1016/j.anai.2012.12.012.CrossRefPubMedGoogle Scholar
  24. Gao, K., Liu, M., Cao, J., Yao, M., Lu, Y., Li, J., et al. (2015). Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. Molecules, 20(1), 293–308. doi: 10.3390/molecules20010293.CrossRefGoogle Scholar
  25. González, E. (2013). Evaluación clínica y electrofisiológica de una asociación de suplementos dietéticos con luteína y zeaxantiana en la progesión de la degeneración macular y la calidad de vida en pacientes con Degeneración Macular Asociada a la Edad Atrófica (in Spanish). Thesis universidad católica de valencia. Valencia.Google Scholar
  26. Guo, J., Xu, G. X., Hou, Z. J., Xu, J. B., & Huang, L. Y. (2013). Effect of Lycium barbarum polysaccharides on the retinal ultrastructure of streptozocin-induced diabetic rats (in Chinese). Zhongguo Zhong Xi Yi Jie He Za Zhi, 33(10), 1404–1407.PubMedGoogle Scholar
  27. Hebert, L. E., Beckett, L. A., Scherr, P. A., & Evans, D. A. (2001). Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Disease and Associated Disorders, 15(4), 169–173.CrossRefPubMedGoogle Scholar
  28. Ho, Y. S., Yang, X., Lau, J. C., Hung, C. H., Wuwongse, S., Zhang, Q., et al. (2012). Endoplasmic reticulum stress induces tau pathology and forms a vicious cycle: Implication in Alzheimer’s disease pathogenesis. Journal of Alzheimer’s Disease, 28(4), 839–854. doi: 10.3233/jad-2011-111037.PubMedGoogle Scholar
  29. Ho, Y. S., Yu, M. S., Lai, C. S., So, K. F., Yuen, W. H., & Chang, R. C. (2007). Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity. Brain Research, 1158, 123–134. doi: 10.1016/j.brainres.2007.04.075.CrossRefPubMedGoogle Scholar
  30. Ho, Y. S., Yu, M. S., Yang, X. F., So, K. F., Yuen, W. H., & Chang, R. C. (2010). Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. Journal of Alzheimer’s Disease, 19(3), 813–827. doi: 10.3233/jad-2010-1280.PubMedGoogle Scholar
  31. Ho, Y. S., Yu, M. S., Yik, S. Y., So, K. F., Yuen, W. H., & Chang, R. C. (2009). Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cellular and Molecular Neurobiology, 29(8), 1233–1244. doi: 10.1007/s10571-009-9419-x.CrossRefPubMedGoogle Scholar
  32. Hu, W. D., Moster, M. R., Zheng, C. X., Sabherwal, N., Pequignot, E., Cvintal, V., et al. (2015). Outcomes of sequential glaucoma drainage implants in refractory glaucoma. Journal of Glaucoma. doi: 10.1097/IJG.0000000000000362.Google Scholar
  33. Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45(5), 583–595. doi: 10.1016/j.neuint.2004.03.007.CrossRefPubMedGoogle Scholar
  34. Im, A. R., Kim, Y. H., Uddin, M. R., Chae, S., Lee, H. W., Kim, Y. S., et al. (2013). Neuroprotective effects of Lycium chinense Miller against rotenone-induced neurotoxicity in PC12 cells. American Journal of Chinese Medicine, 41(6), 1343–1359. doi: 10.1142/s0192415x13500900.CrossRefPubMedGoogle Scholar
  35. Jarrett, S. G., & Boulton, M. E. (2012). Consequences of oxidative stress in age-related macular degeneration. Molecular Aspects of Medicine, 33(4), 399–417. doi: 10.1016/j.mam.2012.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jellinger, K. A. (2003). General aspects of neurodegeneration. Journal of Neural Transmission. Supplementum, 65, 101–144.CrossRefPubMedGoogle Scholar
  37. Johnson, M. E., Lim, Y., Senthilkumaran, M., Zhou, X. F., & Bobrovskaya, L. (2015). Investigation of tyrosine hydroxylase and BDNF in a low-dose rotenone model of Parkinson’s disease. Journal of Chemical Neuroanatomy, 70, 33–41. doi: 10.1016/j.jchemneu.2015.11.002.CrossRefPubMedGoogle Scholar
  38. Kang, M. H., Park, W. J., & Choi, M. K. (2010). Anti-obesity and hypolipidemic effects of Lycium chinense leaf powder in obese rats. Journal of Medicinal Food, 13(4), 801–807. doi: 10.1089/jmf.2010.1032.CrossRefPubMedGoogle Scholar
  39. Komeima, K., Rogers, B. S., Lu, L., & Campochiaro, P. A. (2006). Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11300–11305. doi: 10.1073/pnas.0604056103.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lamb, T. D., Collin, S. P., & Pugh, E. N, Jr. (2007). Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup. Nature Reviews Neuroscience, 8(12), 960–976. doi: 10.1038/nrn2283.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Levine, B., & Kroemer, G. (2009). Autophagy in aging, disease and death: The true identity of a cell death impostor. Cell Death and Differentiation, 16(1), 1–2. doi: 10.1038/cdd.2008.139.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li, X. M., Ma, Y. L., & Liu, X. J. (2007). Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. Journal of Ethnopharmacology, 111(3), 504–511. doi: 10.1016/j.jep.2006.12.024.CrossRefPubMedGoogle Scholar
  43. Lin, N. C., Lin, J. C., Chen, S. H., Ho, C. T., & Yeh, A. I. (2011). Effect of Goji (Lycium barbarum) on expression of genes related to cell survival. Journal of Agriculture and Food Chemistry, 59(18), 10088–10096. doi: 10.1021/jf2021754.CrossRefGoogle Scholar
  44. Liu, L., Lao, W., Ji, Q. S., Yang, Z. H., Yu, G. C., & Zhong, J. X. (2015). Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis. International Journal of Ophthalmology, 8(1), 11–16. doi: 10.3980/j.issn.2222-3959.2015.01.02.PubMedPubMedCentralGoogle Scholar
  45. Liu, G., Wang, X., Shao, G., & Liu, Q. (2014). Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury. Molecular Medicine Reports, 9(4), 1305–1312. doi: 10.3892/mmr.2014.1963.PubMedGoogle Scholar
  46. Lo, E. H., Dalkara, T., & Moskowitz, M. A. (2003). Mechanisms, challenges and opportunities in stroke. Nature Reviews Neuroscience, 4(5), 399–415. doi: 10.1038/nrn1106.CrossRefPubMedGoogle Scholar
  47. Mi, X. S., Chiu, K., Van, G., Leung, J. W., Lo, A. C., Chung, S. K., et al. (2012). Effect of Lycium barbarum Polysaccharides on the expression of endothelin-1 and its receptors in an ocular hypertension model of rat glaucoma. Neural Regeneration Research, 7(9), 645–651. doi: 10.3969/j.issn.1673-5374.2012.09.001.PubMedPubMedCentralGoogle Scholar
  48. Miranda, M., Arnal, E., Ahuja, S., Alvarez-Nolting, R., Lopez-Pedrajas, R., Ekstrom, P., et al. (2010). Antioxidants rescue photoreceptors in rd1 mice: Relationship with thiol metabolism. Free Radical Biology and Medicine, 48(2), 216–222. doi: 10.1016/j.freeradbiomed.2009.10.042.CrossRefPubMedGoogle Scholar
  49. Moeller, S. M., Parekh, N., Tinker, L., Ritenbaugh, C., Blodi, B., Wallace, R. B., et al. (2006). Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the carotenoids in age-related eye disease study (CAREDS): Ancillary study of the women’s health initiative. Archives of Ophthalmology, 124(8), 1151–1162. doi: 10.1001/archopht.124.8.1151.CrossRefPubMedGoogle Scholar
  50. Morris, M. S. (2003). Homocysteine and Alzheimer’s disease. Lancet Neurology, 2(7), 425–428.CrossRefPubMedGoogle Scholar
  51. Murphy, T. H., Schnaar, R. L., & Coyle, J. T. (1990). Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. Faseb Journal, 4(6), 1624–1633.PubMedGoogle Scholar
  52. Olatunji, O. J., Chen, H., & Zhou, Y. (2015). Lycium chinensis Mill attenuates glutamate induced oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating ROS and Ca generation. Neuroscience Letters. doi: 10.1016/j.neulet.2015.10.070.PubMedGoogle Scholar
  53. Otani, A., Dorrell, M. I., Kinder, K., Moreno, S. K., Nusinowitz, S., Banin, E., et al. (2004). Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. Journal of Clinical Investigation, 114(6), 765–774. doi: 10.1172/jci21686.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pang, J. J., Boye, S. L., Kumar, A., Dinculescu, A., Deng, W., Li, J., et al. (2008). AAV-mediated gene therapy for retinal degeneration in the rd10 mouse containing a recessive PDEbeta mutation. Investigative Ophthalmology and Visual Science, 49(10), 4278–4283. doi: 10.1167/iovs.07-1622.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pavan, B., Capuzzo, A., & Forlani, G. (2014). High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels. Experimental Eye Research, 120, 50–54. doi: 10.1016/j.exer.2013.12.006.CrossRefPubMedGoogle Scholar
  56. Popp, J., Lewczuk, P., Linnebank, M., Cvetanovska, G., Smulders, Y., Kolsch, H., et al. (2009). Homocysteine metabolism and cerebrospinal fluid markers for Alzheimer’s disease. Journal of Alzheimer’s Disease, 18(4), 819–828. doi: 10.3233/jad-2009-1187.PubMedGoogle Scholar
  57. Puyal, J., Vaslin, A., Mottier, V., & Clarke, P. G. (2009). Postischemic treatment of neonatal cerebral ischemia should target autophagy. Annals of Neurology, 66(3), 378–389. doi: 10.1002/ana.21714.CrossRefPubMedGoogle Scholar
  58. Quigley, H. A., & Broman, A. T. (2006). The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology, 90(3), 262–267. doi: 10.1136/bjo.2005.081224.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rema, M., Premkumar, S., Anitha, B., Deepa, R., Pradeepa, R., & Mohan, V. (2005). Prevalence of diabetic retinopathy in urban India: The Chennai urban rural epidemiology study (CURES) eye study, I. Investigative Ophthalmology and Visual Science, 46(7), 2328–2333. doi: 10.1167/iovs.05-0019.CrossRefPubMedGoogle Scholar
  60. Romano, A. D., Serviddio, G., de Matthaeis, A., Bellanti, F., & Vendemiale, G. (2010). Oxidative stress and aging. Journal of Nephrology, 23(Suppl 15), S29–S36.PubMedGoogle Scholar
  61. Seeram, N. P. (2008). Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. Journal of Agriculture and Food Chemistry, 56(3), 627–629. doi: 10.1021/jf071988k.CrossRefGoogle Scholar
  62. Seitz, R. J., & Donnan, G. A. (2015). Recovery potential after acute stroke. Frontiers of Neurology, 6, 238. doi: 10.3389/fneur.2015.00238.CrossRefGoogle Scholar
  63. So, K. F., & Chang, R. C. C. (2015). Lycium barbarum and human health. New York: Springer.Google Scholar
  64. Somjen, G. G. (2001). Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiological Reviews, 81(3), 1065–1096.PubMedGoogle Scholar
  65. Song, M. K., Roufogalis, B. D., & Huang, T. H. (2012). Reversal of the caspase-dependent apoptotic cytotoxicity pathway by taurine from Lycium barbarum (Goji Berry) in human retinal pigment epithelial cells: Potential benefit in diabetic retinopathy. Evidence-Based Complementary and Alternative Medicine, 2012, 323784. doi: 10.1155/2012/323784.PubMedPubMedCentralGoogle Scholar
  66. Sun, X., Jin, L., & Ling, P. (2012). Review of drugs for Alzheimer’s disease. Drug Discovery and Therapeutics, 6(6), 285–290.Google Scholar
  67. Tan, J. S., Wang, J. J., Flood, V., Rochtchina, E., Smith, W., & Mitchell, P. (2008). Dietary antioxidants and the long-term incidence of age-related macular degeneration: The Blue Mountains Eye Study. Ophthalmology, 115(2), 334–341. doi: 10.1016/j.ophtha.2007.03.083.CrossRefPubMedGoogle Scholar
  68. Tang, T., & He, B. (2013). Treatment of d-galactose induced mouse aging with Lycium barbarum polysaccharides and its mechanism study. African Journal of Traditional, Complementary and Alternative Medicines, 10(4), 12–17.Google Scholar
  69. Tang, L., Zhang, Y., Jiang, Y., Willard, L., Ortiz, E., Wark, L., et al. (2011). Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Experimental Biology and Medicine, 236(9), 1051–1063. doi: 10.1258/ebm.2011.010400.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Telander, D. G. (2011). Inflammation and age-related macular degeneration (AMD). Seminars in Ophthalmology, 26(3), 192–197. doi: 10.3109/08820538.2011.570849.CrossRefPubMedGoogle Scholar
  71. van Lookeren Campagne, M., LeCouter, J., Yaspan, B. L., & Ye, W. (2014). Mechanisms of age-related macular degeneration and therapeutic opportunities. Journal of Pathology, 232(2), 151–164. doi: 10.1002/path.4266.CrossRefPubMedGoogle Scholar
  72. Wang, T., Li, Y., Wang, Y., Zhou, R., Ma, L., Hao, Y., et al. (2014a). Lycium barbarum polysaccharide prevents focal cerebral ischemic injury by inhibiting neuronal apoptosis in mice. Plos One, 9(3), e90780. doi: 10.1371/journal.pone.0090780.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wang, K., Xiao, J., Peng, B., Xing, F., So, K. F., Tipoe, G. L., et al. (2014b). Retinal structure and function preservation by polysaccharides of wolfberry in a mouse model of retinal degeneration. Scientific Reports, 4, 7601. doi: 10.1038/srep07601.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Cedarbaum, J., et al. (2015). Impact of the Alzheimer’s disease neuroimaging initiative, 2004 to 2014. Alzheimer’s and Dementia, 11(7), 865–884. doi: 10.1016/j.jalz.2015.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wilsey, L. J., & Fortune, B. (2015). Electroretinography in glaucoma diagnosis. Current Opinion in Ophthalmology. doi: 10.1097/icu.0000000000000241.Google Scholar
  76. Wong, Y. T., Dommel, N., Preston, P. J., Lehmann, T., Lovell, N. H., & Suaning, G. J. (2006). Microelectronic retinal prosthesis: I. A neurostimulator for the concurrent activation of multiple electrodes. Conference Proceedings IEEE Engineering in Medicine and Biology Society, 1, 4647–4650. doi: 10.1109/iembs.2006.259606.CrossRefGoogle Scholar
  77. Xia, L. P., Fan, F., Tang, A. L., & Ye, W. Q. (2014). Effects of electroacupuncture combined with bladder training on the bladder function of patients with neurogenic bladder after spinal cord injury. International Journal of Clinical and Experimental Medicine, 7(5), 1344–1348.PubMedPubMedCentralGoogle Scholar
  78. Xiao, J., Fai So, K., Liong, E. C., & Tipoe, G. L. (2013). Recent advances in the herbal treatment of non-alcoholic Fatty liver disease. Journal of Traditional and Complementary Medicine, 3(2), 88–94. doi: 10.4103/2225-4110.110411.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Xiao, J., Liong, E. C., Ching, Y. P., Chang, R. C., So, K. F., Fung, M. L., et al. (2012). Lycium barbarum polysaccharides protect mice liver from carbon tetrachloride-induced oxidative stress and necroinflammation. Journal of Ethnopharmacology, 139(2), 462–470. doi: 10.1016/j.jep.2011.11.033.CrossRefPubMedGoogle Scholar
  80. Xiao, J., Wang, J., Xing, F., Han, T., Jiao, R., Liong, E. C., et al. (2014a). Zeaxanthin dipalmitate therapeutically improves hepatic functions in an alcoholic fatty liver disease model through modulating MAPK pathway. Plos One, 9(4), e95214. doi: 10.1371/journal.pone.0095214.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Xiao, J., Xing, F., Huo, J., Fung, M. L., Liong, E. C., Ching, Y. P., et al. (2014b). Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Scientific Reports, 4, 5587. doi: 10.1038/srep05587.PubMedPubMedCentralGoogle Scholar
  82. Xiao, W., Yu, A., Liu, D., Shen, J., & Xu, Z. (2015). Ligustilide treatment promotes functional recovery in a rat model of spinal cord injury via preventing ROS production. International Journal of Clinical and Experimental Pathology, 8(10), 12005–12013.PubMedPubMedCentralGoogle Scholar
  83. Xiao, J., Zhu, Y., Liu, Y., Tipoe, G. L., Xing, F., & So, K. F. (2014c). Lycium barbarum polysaccharide attenuates alcoholic cellular injury through TXNIP–NLRP3 inflammasome pathway. International Journal of Biological Macromolecules, 69, 73–78. doi: 10.1016/j.ijbiomac.2014.05.034.CrossRefPubMedGoogle Scholar
  84. Yang, D., Li, S. Y., Yeung, C. M., Chang, R. C., So, K. F., Wong, D., et al. (2012). Lycium barbarum extracts protect the brain from blood-brain barrier disruption and cerebral edema in experimental stroke. Plos One, 7(3), e33596. doi: 10.1371/journal.pone.0033596.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yang, W., Lu, J., Weng, J., Jia, W., Ji, L., Xiao, J., et al. (2010). Prevalence of diabetes among men and women in China. New England Journal of Medicine, 362(12), 1090–1101. doi: 10.1056/NEJMoa0908292.CrossRefPubMedGoogle Scholar
  86. Yi, R., Liu, X. M., & Dong, Q. (2013). A study of Lycium barbarum polysaccharides (LBP) extraction technology and its anti-aging effect. African Journal of Traditional, Complementary and Alternative Medicines, 10(4), 171–174.Google Scholar
  87. Yu, M. S., Lai, C. S., Ho, Y. S., Zee, S. Y., So, K. F., Yuen, W. H., et al. (2007). Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. International Journal of Molecular Medicine, 20(2), 261–268.PubMedGoogle Scholar
  88. Yu, M. S., Leung, S. K., Lai, S. W., Che, C. M., Zee, S. Y., So, K. F., et al. (2005). Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity. Experimental Gerontology, 40(8–9), 716–727. doi: 10.1016/j.exger.2005.06.010.CrossRefPubMedGoogle Scholar
  89. Yu, H., Wark, L., Ji, H., Willard, L., Jaing, Y., Han, J., et al. (2013). Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice. Molecular Nutrition and Food Research, 57(7), 1158–1169. doi: 10.1002/mnfr.201200642.CrossRefPubMedGoogle Scholar
  90. Zhang, Q., Du, X., Xu, Y., Dang, L., Xiang, L., & Zhang, J. (2013a). The effects of Gouqi extracts on Morris maze learning in the APP/PS1 double transgenic mouse model of Alzheimer’s disease. Experimental and Therapeutic Medicine, 5(5), 1528–1530. doi: 10.3892/etm.2013.1006.PubMedPubMedCentralGoogle Scholar
  91. Zhang, Q., Lv, X., Wu, T., Ma, Q., Teng, A., Zhang, Y., et al. (2015). Composition of Lycium barbarum polysaccharides and their apoptosis-inducing effect on human hepatoma SMMC-7721 cells. Food and Nutrition Research, 59, 28696. doi: 10.3402/fnr.v59.28696.CrossRefPubMedGoogle Scholar
  92. Zhang, Y. K., Wang, J., Liu, L., Chang, R. C., So, K. F., & Ju, G. (2013b). The effect of Lycium barbarum on spinal cord injury, particularly its relationship with M1 and M2 macrophage in rats. BMC Complementary and Alternative Medicine, 13, 67. doi: 10.1186/1472-6882-13-67.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiotechnologyJinan UniversityGuangzhouChina
  2. 2.Department of Immunobiology, Institute of Tissue Transplantation and ImmunologyJinan UniversityGuangzhouChina
  3. 3.State Key Discipline of Infectious Diseases, Department of Infectious DiseasesShenzhen Third People’s HospitalShenzhenChina
  4. 4.GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and DiseasesJinan UniversityGuangzhouChina
  5. 5.Department of Ophthalmology, State Key Lab of Brain and Cognitive SciencesThe University of Hong KongPokfulamHong Kong, SAR

Personalised recommendations