Skip to main content

Advertisement

Log in

Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Optic neuritis associated with multiple sclerosis and its animal model, experimental autoimmune optic neuritis (EAON), is characterized by inflammation, T cell activation, demyelination, and neuronal damage, which might induce permanent vision loss. Elucidating the chronological relationship among the features is critical for treatment of demyelinating optic neuritis. EAON was induced in C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein subcutaneously, and visual function was assessed by flash-visual evoked potential (F-VEP) at days 7, 11, 14, 19, 23, 28 post-immunization. Retinal ganglion cell (RGC) apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick-end labeling. Demyelination and axonal damage were verified with myelin basic protein (MBP) and β-amyloid precursor protein staining, respectively. Real-time polymerase chain reaction quantified IL-17, IL-1β, TGF-β, FoxP3, IL-6, and IL-10 mRNA expression in the optic nerve, as well as FoxP3 and IL-17 staining. Systemic changes of Th17 and Treg cells were tested by flow cytometry in spleen. F-VEP latency was prolonged at 11 days and peaked at 23 days commensurate with demyelination. However, F-VEP amplitude was reduced at 11 days, preceding axon damage, and was exacerbated at 23 days when a peak in RGC apoptosis was detected. Th17 cells up-regulated as early as 7 days and peaked at 11 days, while Treg cells down-regulated inversely compared to Th17 cells change as verified by IL-17 and FoxP3 expression; spleen cell samples were slightly different, demonstrating marked changed at 14 days. Treg/Th17 cell imbalance in the optic nerve precedes and may initiate neuronal damage of axons and RGCs. These changes are commensurate with the appearances of visual dysfunction reflected in F-VEP and hence may offer a novel therapeutic avenue for vision preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aranami, T., & Yamamura, T. (2008). Th17 cells and autoimmune encephalomyelitis (EAE/MS). Allergology International, 57(2), 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Bettelli, E., Carrier, Y., Gao, W., et al. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 441, 235–238.

    Article  CAS  PubMed  Google Scholar 

  • Bilbool, N., Kaitz, M., Feinsod, M., et al. (1983). Visual evoked potentials in experimental allergic encephalomyelitis. Journal of the Neurological Sciences, 60(1), 105–115.

    Article  CAS  PubMed  Google Scholar 

  • Diem, R., Tschirne, A., & Bähr, M. (2003). Decreased amplitudes in multiple sclerosis patients with normal visual acuity: A VEP study. Journal of Clinical Neuroscience, 10, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Dutt, M., Rostami, A., Shindler, K. S., et al. (2010). Timing of corticosteroid therapy is critical to prevent retinal ganglion cell loss in experimental optic neuritis. Investigative Ophthalmology & Visual Science, 51(3), 1439–1445.

    Article  Google Scholar 

  • Flugel, A., Berkowicz, T., Ritter, T., et al. (2001). Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity, 14, 547.

    Article  CAS  PubMed  Google Scholar 

  • Furlan, R., Cuomo, C., & Martino, G. (2009) Animal models of multiple sclerosis. Methods in Molecular Biology, 549, 157–173.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martin, E., Polo, V., Larrosa, J. M., et al. (2014). Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Ophthalmology, 121(2), 573–579.

    Article  PubMed  Google Scholar 

  • Gold, R., Linington, C., & Lassmann, H. (2006). Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis re-search. Brain, 129, 1953–1971.

    Article  PubMed  Google Scholar 

  • Guan, Y., Shindler, K. S., Tabuena, P., et al. (2006). Retinal ganglion cell damage induced by spontaneous autoimmune optic neuritis in MOG-specific TCR transgenic mice. Journal of Neuroimmunology, 178(1–2), 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, A., McDonald, W., & Mushin, J. (1972). Delayed visual evoked response in optic neuritis. Lancet, 1, 982–985.

    Article  CAS  PubMed  Google Scholar 

  • Hobom, M., Storch, M. K., Weissert, R., et al. (2004). Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis. Brain Pathology, 14(2), 148–157.

    Article  PubMed  Google Scholar 

  • Horstmann, L., Schmid, H., Heinen, A. P., et al. (2013). Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. Journal of Neuroinflammation, 4(10), 120.

    Article  Google Scholar 

  • Kebir, H., Kreymborg, K., Ifergan, I., et al. (2007). Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nature Medicine, 13(10), 1173–1175.

    Article  CAS  PubMed  Google Scholar 

  • Klistorner, A., Graham, S., Fraser, C., et al. (2007). Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Investigative Ophthalmology & Visual Science, 48, 4549–4556.

    Article  Google Scholar 

  • Kuhlmann, T., Lingfeld, G., Bitsch, A., et al. (2002). Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain, 125(Pt 10), 2202–2212.

    Article  PubMed  Google Scholar 

  • Kuroiwa, Y., & Shibasaki, H. (1973) Clinical studies of multiple sclerosis in Japan. I. A current appraisal of 83 cases. Neurology, 23(6), 609–617.

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz, U., & Alter, M. (1968). Optic nerve involvement and diplopia as initial manifestations of multiple sclerosis. Acta Neurologica Scandinavica, 44, 70–80.

    Article  CAS  PubMed  Google Scholar 

  • Lock, C., Hermans, G., Pedotti, R., et al. (2002). Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Medicine, 8(5), 500–508.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, R., Kezuka, T., Nishiyama, C., et al. (2012). Interleukin-10 gene-transfected mature dendritic cells suppress murine experimental autoimmune optic neuritis. Investigative Ophthalmology & Visual Science, 53, 7235–7245.

    Article  CAS  Google Scholar 

  • Matsunaga, Y., Kezuka, T., An, X., et al. (2012). Visual functional and histopathological correlation in experimental autoimmune optic neuritis. Investigative Ophthalmology & Visual Science, 53(11), 6964–6971.

    Article  Google Scholar 

  • McAllister, F., Henry, A., Kreindler, J. L., et al. (2005). Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: Implications or airway inflammation in cystic fibrosis. The Journal of Immunology, 175, 404–412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer-Franke, A., Wilkinson, G. A., Kruttgen, A., et al. (1998). Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron, 21, 681–693.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narayanan, D., Cheng, H., Bonem, K. N. et al. (2014) Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis. Mult Scler. [Epub ahead of print].

  • Oukka, M. (2007). Interplay between pathogenic Th17 and regulatory T cells. Annals of the Rheumatic Diseases, 66(Suppl 3), iii87–iii90.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prilloff, S., Henrich-Noack, P., & Sabel, B. A. (2012). Recovery of axonal transport after partial optic nerve damage is associated with secondary retinal ganglion cell death in vivo. Investigative Ophthalmology & Visual Science, 53(3), 1460–1466.

    Article  CAS  Google Scholar 

  • Quinn, T. A., Dutt, M., & Shindler, K. S. (2011). Optic neuritis and retinal ganglion cell loss in a chronic murine model of multiple sclerosis. Frontiers in neurology, 2, 50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sabel, B. A. (1999). Restoration of vision I: Neurobiological mechanisms of restoration and plasticity after brain damage—A review. Restorative Neurology and Neuroscience, 15(2–3), 177–200.

    CAS  PubMed  Google Scholar 

  • Sabel, B. A. (2008). Plasticity and restoration of vision after visual system damage: An update. Restorative Neurology and Neuroscience, 26(4–5), 243–247.

    PubMed  Google Scholar 

  • Sättler, M. B., Williams, S. K., Diem, R., et al. (2008). Flupirtine as neuroprotective add-on therapy in autoimmune optic neuritis. American Journal of Pathology, 173(5), 1496–1507.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shao, H., Huang, Z., Sun, S. L., et al. (2004). Myelin/oligodendrocyte glycoprotein-specific T-cells induce severe optic neuritis in the C57BL/6 mouse. Investigative Ophthalmology & Visual Science, 45, 4060–4065.

    Article  Google Scholar 

  • Shields, D. C., Schaecher, K. E., Saido, T. C., et al. (1999). A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proceedings of the National Academy of Sciences of the United States of America, 96, 11486–11491.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shindler, K. S., Ventura, E., Dutt, M., et al. (2008). Inflammatory demyelination induces axonal injury and retinal ganglion cell apoptosis in experimental optic neuritis. Experimental Eye Research, 87(3), 208–213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorensen, T. L., Frederiksen, J. L., Bronnum-Hansen, H., et al. (1999). Optic neuritis as onset manifestation of multiple sclerosis: A nationwide, long-term survey. Neurology, 53, 473–478.

    Article  CAS  PubMed  Google Scholar 

  • Touil, T., Ciric, B., Shindler, K. S., et al. (2008). Bowman–Birk inhibitor suppresses autoimmune inflammation and neuronal loss in a mouse model of multiple sclerosis. Journal of the Neurological Sciences, 271(1–2), 191–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trapp, B. D., Ransohoff, R., & Rudick, R. (1999). Axonal pathology in multiple sclerosis: Relationship to neurologic disability. Current Opinion in Neurology, 12, 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Verhagen, J., Burton, B. R., Britton, G. J., et al. (2013). Modification of the FoxP3 transcription factor principally affects inducible T regulatory cells in a model of experimental autoimmune encephalomyelitis. PLoS One, 8(4), e61334.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walter, S. D., Ishikawa, H., Galetta, K. M., et al. (2012). Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology, 119(6), 1250–1257.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiao, J., Liu, C., Li, G., et al. (2013). PDCD5 negatively regulates autoimmunity by upregulating FOXP3(+) regulatory T cells and suppressing Th17 and Th1 responses. Journal of Autoimmunity, 47, 34–44.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., Li, F., & Zhang, L. (2012). A new and reliable animal model for optic nerve injury. Current Eye Research, 37(10), 941–948.

    Article  PubMed  Google Scholar 

  • You, Y., Klistorner, A., Thie, J., et al. (2011). Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Investigative Ophthalmology & Visual Science, 52(9), 6911–6918.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of Tianjin grant (Grant Numbers 12JCYBJC33900 and 14JCYBJC28000) and National Natural Science Foundation of China (Grant Numbers 81371038 and 91442124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., You, C., Zhang, Z. et al. Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically. Neuromol Med 17, 391–403 (2015). https://doi.org/10.1007/s12017-015-8368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8368-4

Keywords

Navigation