Skip to main content
Log in

β-Amyloid-evoked Apoptotic Cell Death is Mediated Through MKK6–p66shc Pathway

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of β-Amyloid-induced toxicity in the mammalian cells. β-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks β-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against β-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in β-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6–p66shc complex mediates β-Amyloid-evoked apoptotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bashir, M., Kirmani, D., Bhat, H. F., Baba, R. A., Hamza, R., Naqash, S., et al. (2010). P66shc and its associate targets are upregulated in esophageal cancers. Cell Communication and Signaling, 8, 13.

    Article  PubMed  Google Scholar 

  • Brera, B., Serrano, A., & De Ceballos, M. L. (2000). β-amyloid peptides are cytotoxic to astrocytes in culture: A role for oxidative stress. Neurobiology of Disease, 7, 395–405.

    Article  CAS  PubMed  Google Scholar 

  • Canevari, L., Abramov, A. Y., & Duchen, M. R. (2004). Toxicity of amyloid peptide: Tales of calcium, mitochondria, and oxidative stress. Neurochemistry and Research, 29, 637–650.

    Article  CAS  Google Scholar 

  • Corrêa, S. A. L., & Eales, K. L. (2012). The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative diseases. Journal of Signal transduction, 2012, 1–12.

    Article  Google Scholar 

  • Cotman, C. W., Whittemore, E. R., Watt, J. A., Anderson, A. J., & Loo, D. T. (1994). Possible role of apoptosis in Alzheimer’s disease. Annuals of New York Acadamy Sciences, 747, 36–49.

    Article  CAS  Google Scholar 

  • Das, D. K., Maulik, N., & Engelman, R. M. (2004). Redox regulation of angiotensin II signaling in the heart. Journal of Cellular and Molecular Medicine, 8, 144–152.

    Article  CAS  PubMed  Google Scholar 

  • Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J., et al. (1995). Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 267, 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Duyckaerts, C., Potier, M. C., & Delatour, B. (2008). Alzheimer disease models and human neuropathology: Similarities and differences. Acta Neuropathologica, 115, 5–38.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferrer, I., Gomez-Isla, T., Puig, B., Freixes, M., Ribe, E., Dalfo, E., et al. (2005). Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Current Alzheimer Research, 2, 3–18.

    Article  CAS  PubMed  Google Scholar 

  • Glenner, G. G., Wong, C. W., Quaranta, V., & Eanes, E. D. (1984). The amyloid deposits in Alzheimer’s disease: Their nature and pathogenesis. Applied Pathology, 2, 357–369.

    CAS  PubMed  Google Scholar 

  • Hashimoto, Y., Tsuji, O., Niikura, T., Yamagishi, Y., Ishizaka, M., Kawasumi, M., et al. (2003). Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. Journal of Neurochemistry, 84, 864–877.

    Article  CAS  PubMed  Google Scholar 

  • Harraz, M. M., Park, A., Abbott, D., Zhou, W., Zhang, Y., & Engelhardt, J. F. (2007). MKK6 phosphorylation regulates production of superoxide by enhancing Rac GTPase activity. Antioxidants & Redox Signaling, 9, 1803–1813.

    Article  CAS  Google Scholar 

  • Hartmann, T., Bieger, S. C., Brühl, B., Tienari, P. J., Ida, N., Allsop, D., et al. (1997). Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nature Medicine, 3, 1016–1020.

    Article  CAS  PubMed  Google Scholar 

  • Hensley, K., Floyd, R. A., Zheng, N. Y., Nael, R., Robinson, K. A., Nguyen, X., et al. (1999). p38 kinase is activated in the Alzheimer’s disease brain. Journal of Neurochemistry, 72, 2053–2058.

    Article  CAS  PubMed  Google Scholar 

  • Holscher, C. (1998). Possible causes of Alzheimer’s disease: Amyloid fragments, free radicals, and calcium homeostasis. Neurobiology Disease, 5, 129–141.

    Article  CAS  Google Scholar 

  • Hooper, C., Killick, R., & Lovestone, S. (2008). The GSK3 hypothesis of Alzheimer’s disease. Journal of Neurochemistry, 104, 1433–1439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu, M. J., Hsu, C. Y., Chen, B. C., Chen, M. C., Ou, G., & Lin, C. H. (2007). Apoptosis signal-regulating kinase 1 in amyloid β peptide-induced cerebral endothelial cell apoptosis. Journal of Neuroscience, 27(21), 5719–5729.

    Article  CAS  PubMed  Google Scholar 

  • Iversen, L. L., Mortishire-Smith, R. J., Pollack, S., & Shearman, M. S. (1995). The toxicity in vitro of β-amyloid protein. Biochemical Journal, 311, 1–16.

    CAS  PubMed  Google Scholar 

  • Jin, Y., Fan, Y., Yan, E. Z., Liu, Z., Zong, Z. H., & Qi, Z. M. (2006). Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacologica Sinica, 27, 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  • Kalaria, R. N. (1999). Microglia and Alzheimer’s disease. Current Opinion in Hematology, 6, 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki, H., Nishitoh, H., Urano, F., Sadamitsu, C., Matsuzawa, A., Takeda, K., et al. (2005). Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death and Differentaition, 12, 19–24.

    Article  CAS  Google Scholar 

  • Kawahara, M., & Kuroda, Y. (2000). Molecular mechanism of neurodegeneration induced by Alzheimer’s β-Amyloid protein: Channel formation and disruption of calcium homeostasis. Brain Research Bulletin, 53, 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Khanday, F. A., Santhanam, L., Kasuno, K., Yamamori, T., Naqvi, A., Dericio, J., et al. (2006a). SOS-mediated activation of Rac1 by p66shc. Journal of Cell Biology, 172, 817–822.

    Article  CAS  PubMed  Google Scholar 

  • Khanday, F. A., Yamamori, T., Singh, I. M., Zhang, Z., Bugayenko, A., Naqvi, A., et al. (2006b). Rac1 Leads to Phosphorylation-dependent increase in stability of the p66shc adaptor protein: Role in rac1-induced oxidative stress. Molecular Biolpgy of Cell, 17, 122–129.

    Article  CAS  Google Scholar 

  • Le, S., Connors, T. J., & Maroney, A. C. (2001). c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. Journal of Biological Chemistry, 276, 48332–48336.

    CAS  PubMed  Google Scholar 

  • Lee, D. H., & Wang, H. Y. (2003). Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to β-amyloid1–40 and β-amyloid1–42. Journal of Neurobiology, 55, 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M., You, H. J., Cho, S. H., Woo, C. H., Yoo, M. H., & Joe, E. H. (2000). Implication of the small GTPase Rac1 in the generation of reactive oxygen species in response to β-amyloid in C6 astroglioma cells. Biochemistry Journal, 366, 937–943.

    Google Scholar 

  • Li, X. D., & Buccafusco, J. J. (2003). Effect of β-Amyloid peptide 1-42 on the cytoprotective action mediated by alpha7 nicotinic acetylcholine receptors in growth factor-deprived differentiated PC-12 cells. Journal of Pharmacological Experimental Therapy, 307, 670–675.

    Article  CAS  Google Scholar 

  • Luzi, L., Confalonieri, S., Di Fiore, P. P., & Pelicci, P. G. (2000). Evolution of Shc functions from nematode to human. Current Opinion in Genetics & Development, 10, 668–674.

    Article  CAS  Google Scholar 

  • Mattson, M. P. (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer’s disease. Journal of Neurovirology, 8, 539–550.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L., & Rydel, R. E. (1993). Β-Amyloid precursor protein metabolites and loss of Ca homeostasis in Alzheimer’s disease. Trends in Neuroscience, 16, 409–414.

    Article  CAS  Google Scholar 

  • Mattson, M. P., & Chan, S. L. (2003). Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 34, 385–397.

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., et al. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402, 309–313.

    Article  CAS  PubMed  Google Scholar 

  • Nagele, R. G., D’Andrea, M. R., Lee, H., Venkataraman, V., & Wang, H. Y. (2003). Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Reearch, 971, 197–209.

    Article  CAS  Google Scholar 

  • Nebreda, A. R., & Porras, A. (2000). p38 MAP kinases: Beyond the stress response. Trends in Biochemical Sciences, 25, 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Nemoto, S., & Finkel, T. (2002). Redox regulation of forkhead proteins through a p66shc dependent signaling pathway. Science, 291, 2450–2452.

    Article  Google Scholar 

  • Okada, S., Kao, A. W., Ceresa, B. P., Blaikie, P., Margolis, B., & Pessin, J. E. (1997). The 66-kDa Shc isoform is a negative regulator of the epidermal growth factor-stimulated mitogen activated protein kinase pathway. Journal of Biological Chemistry, 272, 28042–28049.

    Article  CAS  PubMed  Google Scholar 

  • Pacini, S., Pellegrini, M., Migliaccio, E., Patrussi, L., Ulivieri, C., Ventura, A., et al. (2004). SHC promotes apoptosis and antagonizes mitogenic signaling in T cells. Molecular and Cellular Biology, 24, 1747–1757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pagani, L., & Eckert, A. (2010). Amyloid-Beta Interaction with Mitochondria. International Journal of Alzheimer’s Disease, 2011, 1–12.

    Article  Google Scholar 

  • Pelicci, G., Lanfrancone, L., Grignani, F., McGlade, J., Cavallo, F., Forni, G., et al. (1992). A novel transforming protein (SHC) within SH2 domain is implicated in mitogenic signal transduction. Cell, 70, 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Pike, C. J., Overman, M. J., & Cotman, C. W. (1995). Amino-terminal deletions enhance aggregation of β-amyloid peptides in vitro. Journal of Biological Chemistry, 270, 23895–23898.

    Article  CAS  PubMed  Google Scholar 

  • Purdom, S., & Chen, Q. M. (2003). P66(Shc): At the crossroad of oxidative stress and the genetics of aging. Trends in Molecular Medicine, 9, 206–210.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, J. J., Witton, J., Olabarria, M., Noristani, H. N., & Verkhratsky, A. (2010). Increase in the density of resting microglia precedes neuritic plaque formation and microglial activation in a transgenic model of Alzheimer’s disease. Cell Death and Disease, 1, 1–6.

    Article  Google Scholar 

  • Ryder, J., Su, Y., & Ni, B. (2004). Akt/GSK3β serine/threonine kinases: Evidence for a signalling pathway mediated by familial Alzheimer’s disease mutations. Cellular Signaling, 16, 187–200.

    Article  CAS  Google Scholar 

  • Selkoe, D. J. (1994). Alzheimer’s disease: A central role for amyloid. Journal of Neuropathology and Experimental Neurology, 53, 438–447.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (1999). Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 399(Supp), A23–A31.

    Article  CAS  PubMed  Google Scholar 

  • Smith, W. W., Norton, D. D., Gorospe, M., Jiang, H., Nemoto, S., Holbrook, N. J., et al. (2005). Phosphorylation of p66Shc and forkhead proteins mediates Aβ Toxicity. Journal of Cell Biology, 169, 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Smith, W. W., Gorospe, M., & Kusiak, J. W. (2006). Signaling Mechanisms Underlying A beta Toxicity: Potential Therapeutic Targets for Alzheimer’s Disease. CNS Neurological Disordors-Drug Targets, 5, 355–361.

    Article  CAS  Google Scholar 

  • Spuch, C., Ortolano, S., & Navarro, C. (2012). New insights in the amyloid-beta interaction with mitochondria. Journal of Aging and Research, 2012, 324968.

    Article  Google Scholar 

  • Stein, B., Brady, H., Yang, M. X., Young, D. B., & Barbosa, M. S. (1996). Cloning and characterization of MEK6 a novel member of the mitogen activated protein kinase kinase cascade. Journal of Biological Chemistry, 271, 11427–11433.

    Article  CAS  PubMed  Google Scholar 

  • Strooper, B. D., & Annaert, W. (2000). Proteolytic processing and cell biological functions of the amyloid precursor protein. Journal of Cell Sciences, 113, 1857–1870.

    Google Scholar 

  • Sturchler, E., Feurstein, D., McDonald, P., & Duckett, D. (2010). Mechanism of oxidative stress-induced ASK1-catalyzed MKK6 phosphorylation. Biochemistry, 49, 4094–4102.

    Article  CAS  PubMed  Google Scholar 

  • Su, B., Wang, X., Nunomura, A., Moreira, P. I., Lee, H., Perry, G., et al. (2008). Oxidative Stress Signaling in Alzheimer’s Disease. Current Alzheimer Research, 5, 525–532.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tare, M., Modi, R. M., Nainaparampil, J. J., Puli, O. R., Bedi, S., Fernandez-Funez, P., et al. (2011). Activation of JNK signaling mediates amyloid-ss-dependent cell death. PLoS One, 6, e24361.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tong, L., Thornton, P. L., Balazs, R., & Cotman, C. W. (2001). β-amyloid-(1–42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. Journal of Biological Chemistry, 276, 17301–17306.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. Y., Lee, D. H., D’Andrea, M. R., Peterson, P. A., Shank, R. P., & Reitz, A. B. (2000). β-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. Journal Biological Chemistry, 275, 5626–5632.

    Article  CAS  Google Scholar 

  • Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., & Neve, R. L. (1989). Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science, 245, 417–420.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Ogawa, O., Wang, Y., Perry, G., & Smith, M. A. (2003). JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer’s disease. Journal of Neurochemistry, 85, 87–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Department of Science and Technology, Govt. of India, No: SR/SO/BB-09/2009 and by the University Grants Commission No F. 17-82/98(SA-I). Work was also supported by FIST (SR/FST/LSI-384/2008) and SAP (F.3-26/2011 (SAP-II) grants awarded to the department by the Department of Science & Technology, Govt. of India, and University Grants Commission, Govt. of India, respectively. We are grateful to Kaikobad Irani, Associate Professor at UPMC, USA, for providing ShRNA of p66shc and SS Andrabi, Fellow at Harvard University, USA, for providing WT p66shc and WT MKK6 plasmids.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdous A. Khanday.

Additional information

Rafia A. Baba and Hina F. Bhat have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, M., Parray, A.A., Baba, R.A. et al. β-Amyloid-evoked Apoptotic Cell Death is Mediated Through MKK6–p66shc Pathway. Neuromol Med 16, 137–149 (2014). https://doi.org/10.1007/s12017-013-8268-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8268-4

Keywords

Navigation