NeuroMolecular Medicine

, Volume 16, Issue 1, pp 127–136 | Cite as

Effect of the BDNF Val66Met Polymorphism on Regional Gray Matter Volumes and Cognitive Function in the Chinese Population

  • Mu-En Liu
  • Chu-Chung Huang
  • Mu-Hong Chen
  • Albert C. Yang
  • Pei-Chi Tu
  • Heng-Liang Yeh
  • Chen-Jee Hong
  • Jin-Fan Chen
  • Jen-Ping Hwang
  • Ching-Po Lin
  • Shih-Jen Tsai
Original Paper


The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is common and influences the activity-dependent secretion of BDNF, which is critical for neuronal plasticity and survival. This study investigated the genetic effect of the BDNF Val66Met polymorphism on cognitive function and regional gray matter (GM) volume in a healthy Chinese population (n = 330). Voxel-based morphometry (VBM)-optimized analysis was used. There was no significant difference in the neuropsychological performances among the three BDNF genotypic groups. VBM analyses demonstrated that Met homozygotes had greater GM volumes than Val homozygotes in the left medial frontal gyrus, the left middle temporal gyrus, the left cerebellum, and the right middle temporal gyrus, and had larger GM volumes than Val/Met heterozygotes in the left middle temporal gyrus, the left inferior temporal gyrus, and the right superior frontal gyrus. Our findings suggest that the presence of two Met alleles has a protective effect on regional GM volumes in the Chinese population.


Brain-derived neurotrophic receptor Morphometry Cognition Polymorphism 



This work was supported by Grants V101C-006 from Taipei Veterans General Hospital, Taiwan, and Grant NSC 101-2314-B-075-040, NSC 100-2628-E-010-002-MY3 and NSC 101-2321-B-010-026 from National Science Council Grant, Taiwan. We thank Ms Ashley for English editing.

Conflict of interest

All authors have no actual or potential conflicts of interest within 3 years of beginning the work submitted that could inappropriately influence the work.

Ethical standard

This study was approved by the Institutional Review Board of Taipei Veterans General Hospital. Informed consent was obtained from all subjects prior to commencement.


  1. Aicardi, G., Argilli, E., Cappello, S., Santi, S., Riccio, M., Thoenen, H., et al. (2004). Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15788–15792.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.CrossRefPubMedGoogle Scholar
  3. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry–the methods. Neuroimage, 11(6 Pt 1), 805–821.CrossRefPubMedGoogle Scholar
  4. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839–851.CrossRefPubMedGoogle Scholar
  5. Bueller, J. A., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J. K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 59(9), 812–815.CrossRefPubMedGoogle Scholar
  6. Carballedo, A., Amico, F., Ugwu, I., Fagan, A. J., Fahey, C., Morris, D., et al. (2012). Reduced fractional anisotropy in the uncinate fasciculus in patients with major depression carrying the met-allele of the Val66Met brain-derived neurotrophic factor genotype. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B(5), 537–548.CrossRefGoogle Scholar
  7. Carballedo, A., Morris, D., Zill, P., Fahey, C., Reinhold, E., Meisenzahl, E., et al. (2013). Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162B(2), 183–190.CrossRefGoogle Scholar
  8. Chen, Q. Y., Chen, Q., Feng, G. Y., Wan, C. L., Lindpaintner, K., Wang, L. J., et al. (2006). Association between the brain-derived neurotrophic factor (BDNF) gene and schizophrenia in the Chinese population. Neuroscience Letters, 397(3), 285–290.CrossRefPubMedGoogle Scholar
  9. Cuadra, M. B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J. P. (2005). Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical Imaging, 24(12), 1548–1565.CrossRefPubMedGoogle Scholar
  10. Dempster, E., Toulopoulou, T., McDonald, C., Bramon, E., Walshe, M., Filbey, F., et al. (2005). Association between BDNF val66 met genotype and episodic memory. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 134B(1), 73–75.CrossRefGoogle Scholar
  11. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–269.CrossRefPubMedGoogle Scholar
  12. Gajewski, P. D., Hengstler, J. G., Golka, K., Falkenstein, M., & Beste, C. (2011). The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiology of Aging, 32(12), 2327.e7–2327.e19.CrossRefGoogle Scholar
  13. Goldberg, T. E., Iudicello, J., Russo, C., Elvevag, B., Straub, R., Egan, M. F., et al. (2008). BDNF Val66Met polymorphism significantly affects d′ in verbal recognition memory at short and long delays. Biological Psychology, 77(1), 20–24.CrossRefPubMedGoogle Scholar
  14. Gonul, A. S., Kitis, O., Eker, M. C., Eker, O. D., Ozan, E., & Coburn, K. (2011). Association of the brain-derived neurotrophic factor Val66Met polymorphism with hippocampus volumes in drug-free depressed patients. The World Journal of Biological Psychiatry, 12(2), 110–118.CrossRefPubMedGoogle Scholar
  15. Gorski, J. A., Balogh, S. A., Wehner, J. M., & Jones, K. R. (2003). Learning deficits in forebrain-restricted brain derived neurotrophic factor mutant mice. Neuroscience, 121(2), 341–354.CrossRefPubMedGoogle Scholar
  16. Guo, N. W., Liu, H. C., Wong, P. F., Liao, K. K., Yan, S. H., Lin, K. P., et al. (1988). Chinese version and norms of the mini-mental status examination. Chinese Journal of Rehabilitation Medicine, 16, 52–59.Google Scholar
  17. Hajek, T., Kopecek, M., & Höschl, C. (2012). Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: Meta-analysis. The World Journal of Biological Psychiatry, 13(3), 178–187.CrossRefPubMedGoogle Scholar
  18. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., & Egan, M. F. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience, 23(17), 6690–6694.PubMedGoogle Scholar
  19. Harris, S. E., Fox, H., Wright, A. F., Hayward, C., Starr, J. M., & Whalley, L. J. (2006). The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Molecular Psychiatry, 11(5), 505–513.CrossRefPubMedGoogle Scholar
  20. Hofer, M., Pagliusi, S. R., Hohn, A., Leibrock, J., & Barde, Y. A. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. The EMBO Journal, 9(8), 2459–2464.PubMedGoogle Scholar
  21. Joffe, R. T., Gatt, J. M., Kemp, A. H., Grieve, S., Dobson-Stone, C., Kuan, S. A., et al. (2009). Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: Implications for depressive illness. Human Brain Mapping, 30(4), 1246–1256.CrossRefPubMedGoogle Scholar
  22. Kambeitz, J. P., Bhattacharyya, S., Ilankovic, L. M., Valli, I., & Collier, D. A. (2012). Effect of BDNF Met66Val-Polymorphism on declarative memory and its neural substrate: A meta-analysis. Neuroscience and Biobehavioral Reviews, 36(9), 2165–2177.CrossRefPubMedGoogle Scholar
  23. Karnik, M. S., Wang, L., Barch, D. M., Morris, J. C., & Csernansky, J. G. (2010). BDNF polymorphism rs6265 and hippocampal structure and memory performance in healthy control subjects. Psychiatry Research, 178(2), 425–429.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Koolschijn, P. C., van Haren, N. E., Bakker, S. C., Hoogendoorn, M. L., Hulshoff Pol, H. E., & Kahn, R. S. (2010). Effects of brain-derived neurotrophic factor Val66Met polymorphism on hippocampal volume change in schizophrenia. Hippocampus, 20(9), 1010–1017.CrossRefPubMedGoogle Scholar
  25. Korte, M., Griesbeck, O., Gravel, C., Carroll, P., Staiger, V., Thoenen, H., et al. (1996). Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 93(22), 12547–12552.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Lang, U. E., Hellweg, R., Kalus, P., Bajbouj, M., Lenzen, K. P., Sander, T., et al. (2005). Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology (Berl), 180(1), 95–99.CrossRefGoogle Scholar
  27. Lau, J. Y., Goldman, D., Buzas, B., Hodgkinson, C., Leibenluft, E., Nelson, E., et al. (2010). BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents. Neuroimage, 53(3), 952–961.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294(5548), 1945–1948.CrossRefPubMedGoogle Scholar
  29. Li, J., Yu, C., Li, Y., Liu, B., Liu, Y., Shu, N., et al. (2009). COMT val158met modulates association between brain white matter architecture and IQ. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150B(3), 375–380.CrossRefGoogle Scholar
  30. Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learning & Memory, 10(2), 86–98.CrossRefGoogle Scholar
  31. Manjon, J. V., Coupe, P., Marti-Bonmati, L., Collins, D. L., & Robles, M. (2010). Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging: JMRI, 31(1), 192–203.CrossRefPubMedGoogle Scholar
  32. Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7(10), 818–827.CrossRefPubMedGoogle Scholar
  33. Molendijk, M. L., Bus, B. A., Spinhoven, P., Kaimatzoglou, A., Voshaar, R. C., Penninx, B. W., et al. (2012). A systematic review and meta-analysis on the association between BDNF val(66) met and hippocampal volume-A genuine effect or a winners curse? American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B(6), 731–740.CrossRefGoogle Scholar
  34. Montag, C., Basten, U., Stelzel, C., Fiebach, C. J., & Reuter, M. (2010a). The BDNF Val66Met polymorphism and anxiety: Support for animal knock-in studies from a genetic association study in humans. Psychiatry Research, 179(1), 86–90.CrossRefPubMedGoogle Scholar
  35. Montag, C., Reuter, M., Newport, B., Elger, C., & Weber, B. (2008). The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: Evidence from a genetic imaging study. Neuroimage, 42(4), 1554–1559.CrossRefPubMedGoogle Scholar
  36. Montag, C., Schoene-Bake, J. C., Faber, J., Reuter, M., & Weber, B. (2010b). Genetic variation on the BDNF gene is not associated with differences in white matter tracts in healthy humans measured by tract-based spatial statistics. Genes, Brain and Behavior, 9(8), 886–891.CrossRefGoogle Scholar
  37. Montag, C., Weber, B., Fliessbach, K., Elger, C., & Reuter, M. (2009). The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: Incremental support for a genetic risk factor for depression. Psychological Medicine, 39(11), 1831–1839.CrossRefPubMedGoogle Scholar
  38. Nemoto, K., Ohnishi, T., Mori, T., Moriguchi, Y., Hashimoto, R., Asada, T., et al. (2006). The Val66Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology. Neuroscience Letters, 397(1–2), 25–29.CrossRefPubMedGoogle Scholar
  39. Neves-Pereira, M., Cheung, J. K., Pasdar, A., Zhang, F., Breen, G., Yates, P., et al. (2005). BDNF gene is a risk factor for schizophrenia in a Scottish population. Molecular Psychiatry, 10(2), 208–212.CrossRefPubMedGoogle Scholar
  40. Oroszi, G., Lapteva, L., Davis, E., Yarboro, C. H., Weickert, T., Roebuck-Spencer, T., et al. (2006). The Met66 allele of the functional Val66Met polymorphism in the brain-derived neurotrophic factor gene confers protection against neurocognitive dysfunction in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 65(10), 1330–1335.CrossRefPubMedGoogle Scholar
  41. Petryshen, T. L., Sabeti, P. C., Aldinger, K. A., Fry, B., Fan, J. B., Schaffner, S. F., et al. (2010). Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Molecular Psychiatry, 15(8), 810–815.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Pezawas, L., Meyer-Lindenberg, A., Goldman, A. L., Verchinski, B. A., Chen, G., Kolachana, B. S., et al. (2008). Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Molecular Psychiatry, 13(7), 709–716.CrossRefPubMedGoogle Scholar
  43. Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. The Journal of Neuroscience, 24(45), 10099–10102.CrossRefPubMedGoogle Scholar
  44. Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nature Reviews Neuroscience, 2(1), 24–32.CrossRefPubMedGoogle Scholar
  45. Rajapakse, J. C., Giedd, J. N., & Rapoport, J. L. (1997). Statistical approach to segmentation of single-channel cerebral MR images. IEEE Transactions on Medical Imaging, 16(2), 176–186.CrossRefPubMedGoogle Scholar
  46. Ramasamy, D. P., Ramanathan, M., Cox, J. L., Antulov, R., Weinstock-Guttman, B., Bergsland, N., et al. (2011). Effect of Met66 allele of the BDNF rs6265 SNP on regional gray matter volumes in patients with multiple sclerosis: A voxel-based morphometry study. Pathophysiology, 18(1), 53–60.CrossRefPubMedGoogle Scholar
  47. Reitan, M., & Wolfson, D. (1985). The Halstead–Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press.Google Scholar
  48. Rosa, A., Cuesta, M. J., Fatjo-Vilas, M., Peralta, V., Zarzuela, A., & Fañanás, L. (2006). The Val66Met polymorphism of the brain-derived neurotrophic factor gene is associated with risk for psychosis: Evidence from a family-based association study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141B(2), 135–138.CrossRefGoogle Scholar
  49. Seidah, N. G., Benjannet, S., Pareek, S., Chretien, M., & Murphy, R. A. (1996). Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Letters, 379(3), 247–250.CrossRefPubMedGoogle Scholar
  50. Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., et al. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology, 28(2), 397–401.CrossRefPubMedGoogle Scholar
  51. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., et al. (1998). The Mini-International Neuropsychiatric Interview (MINI.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 22–33.PubMedGoogle Scholar
  52. Studer, L., Spenger, C., Seiler, R. W., Othberg, A., Lindvall, O., & Odin, P. (1996). Effects of brain-derived neurotrophic factor on neuronal structure of dopaminergic neurons in dissociated cultures of human fetal mesencephalon. Experimental Brain Research, 108(2), 328–336.CrossRefPubMedGoogle Scholar
  53. Szeszko, P. R., Lipsky, R., Mentschel, C., Robinson, D., Gunduz-Bruce, H., Sevy, S., et al. (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry, 10(7), 631–636.CrossRefPubMedGoogle Scholar
  54. Takahashi, T., Suzuki, M., Tsunoda, M., Kawamura, Y., Takahashi, N., Maeno, N., et al. (2008). The association of genotypic combination of the DRD3 and BDNF polymorphisms on the adhesio interthalamica and medial temporal lobe structures. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(5), 1236–1242.CrossRefPubMedGoogle Scholar
  55. Talairach, J., & Tornoux, P. (1998). Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system: An approach to cerebral imaging. Stuttgart: Georg Thieme.Google Scholar
  56. Tan, H. Y., Chen, A. G., Chen, Q., Browne, L. B., Verchinski, B., Kolachana, B., et al. (2012). Epistatic interactions of AKT1 on human medial temporal lobe biology and pharmacogenetic implications. Molecular Psychiatry, 17(10), 1007–1016.CrossRefPubMedCentralPubMedGoogle Scholar
  57. Tapia-Arancibia, L., Aliaga, E., Silhol, M., & Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Research Reviews, 59(1), 201–220.CrossRefPubMedGoogle Scholar
  58. Tohka, J., Zijdenbos, A., & Evans, A. (2004). Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage, 23(1), 84–97.CrossRefPubMedGoogle Scholar
  59. Tost, H., Alam, T., Geramita, M., Rebsch, C., Kolachana, B., Dickinson, D., et al. (2012). Effects of the BDNF Val66Met polymorphism on white matter microstructure in healthy adults. Neuropsychopharmacology, 38(3), 525–532.CrossRefPubMedGoogle Scholar
  60. Tsai, S. J., Gau, Y. T., Liu, M. E., Hsieh, C. H., Liou, Y. J., & Hong, C. J. (2008). Association study of brain-derived neurotrophic factor and apolipoprotein E polymorphisms and cognitive function in aged males without dementia. Neuroscience Letters, 433(2), 158–162.CrossRefPubMedGoogle Scholar
  61. Ventriglia, M., Bocchio Chiavetto, L., Benussi, L., Binetti, G., Zanetti, O., Riva, M. A., et al. (2002). Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Molecular Psychiatry, 7(2), 136–137.CrossRefPubMedGoogle Scholar
  62. Voineskos, A. N., Lerch, J. P., Felsky, D., Shaikh, S., Rajji, T. K., Miranda, D., et al. (2011). The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Archives of General Psychiatry, 68(2), 198–206.CrossRefPubMedGoogle Scholar
  63. Willis-Owen, S. A., Fullerton, J., Surtees, P. G., Wainwright, N. W., Miller, S., & Flint, J. (2005). The Val66Met coding variant of the brain-derived neurotrophic factor (BDNF) gene does not contribute toward variation in the personality trait neuroticism. Biological Psychiatry, 58(9), 738–742.CrossRefPubMedGoogle Scholar
  64. Yamada, K., Mizuno, M., & Nabeshima, T. (2002). Role for brain-derived neurotrophic factor in learning and memory. Life Sciences, 70(7), 735–744.CrossRefPubMedGoogle Scholar
  65. Yang, X., Liu, P., Sun, J., Wang, G., Zeng, F., Yuan, K., et al. (2012). Impact of brain-derived neurotrophic factor Val66Met polymorphism on cortical thickness and voxel-based morphometry in healthy Chinese young adults. PLoS One, 7(6), e37777.CrossRefPubMedCentralPubMedGoogle Scholar
  66. Yu, H., Zhang, Z., Shi, Y., Bai, F., Xie, C., Qian, Y., et al. (2008). Association study of the decreased serum BDNF concentrations in amnestic mild cognitive impairment and the Val66Met polymorphism in Chinese Han. The Journal of Clinical Psychiatry, 69(7), 1104–1111.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mu-En Liu
    • 1
  • Chu-Chung Huang
    • 2
  • Mu-Hong Chen
    • 3
  • Albert C. Yang
    • 3
    • 4
    • 5
  • Pei-Chi Tu
    • 3
    • 6
  • Heng-Liang Yeh
    • 7
  • Chen-Jee Hong
    • 3
    • 4
  • Jin-Fan Chen
    • 9
  • Jen-Ping Hwang
    • 3
    • 4
  • Ching-Po Lin
    • 2
    • 8
  • Shih-Jen Tsai
    • 3
    • 4
  1. 1.Department of PsychiatryTaipei Veterans General HospitalTaipeiTaiwan
  2. 2.Department of Biomedical Imaging and Radiological SciencesNational Yang-Ming UniversityTaipeiTaiwan
  3. 3.Department of PsychiatryTaipei Veterans General HospitalTaipeiTaiwan
  4. 4.School of MedicineNational Yang-Ming UniversityTaipeiTaiwan
  5. 5.Center for Dynamical Biomarkers and Translational MedicineNational Central UniversityJungliTaiwan
  6. 6.Department of Medical Research and EducationTaipei Veterans General HospitalTaipeiTaiwan
  7. 7.Taipei Veterans HomeNew-Taipei CityTaiwan
  8. 8.Institute of Neuroscience, School of Life ScienceNational Yang-Ming UniversityTaipeiTaiwan
  9. 9.Department of PathologyTao-Yuan Veterans HospitalTaoyuanTaiwan

Personalised recommendations