Skip to main content

Advertisement

Log in

Early Down-Regulation of PKCδ as a Pro-Survival Mechanism in Huntington’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

A balance between cell survival and apoptosis is crucial to avoid neurodegeneration. Here, we analyzed whether the pro-apoptotic protein PKCδ, and the pro-survival PKCα and βII, were dysregulated in the brain of R6/1 mouse model of Huntington’s disease (HD). Protein levels of the three PKCs examined were reduced in all the brain regions analyzed being PKCδ the most affected isoform. Interestingly, PKCδ protein levels were also decreased in the striatum and cortex of R6/2 and HdhQ111/Q111 mice, and in the putamen of HD patients. Nuclear PKCδ induces apoptosis, but we detected reduced PKCδ in both cytoplasmic and nuclear enriched fractions from R6/1 mouse striatum, cortex and hippocampus. In addition, we show that phosphorylation and ubiquitination of PKCδ are increased in 30-week-old R6/1 mouse brain. All together these results suggest a pro-survival role of reduced PKCδ levels in response to mutant huntingtin-induced toxicity. In fact, we show that over-expression of PKCδ increases mutant huntingtin-induced cell death in vitro, whereas over-expression of a PKCδ dominant negative form or silencing of endogenous PKCδ partially blocks mutant huntingtin-induced cell death. Finally, we show that the analysis of lamin B protein levels could be a good marker of PKCδ activity, but it is not involved in PKCδ-mediated cell death in mutant huntingtin-expressing cells. In conclusion, our results suggest that neurons increase the degradation of PKCδ as a compensatory pro-survival mechanism in response to mutant huntingtin-induced toxicity that can help to understand why cell death appears late in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkon, D. L., Sun, M. K., & Nelson, T. J. (2007). PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer’s disease. Trends in Pharmacological Sciences, 28(2), 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Anantharam, V., Kitazawa, M., Wagner, J., Kaul, S., & Kanthasamy, A. G. (2002). Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. Journal of Neuroscience, 22(5), 1738–1751.

    CAS  PubMed  Google Scholar 

  • Anglada-Huguet, M., Giralt, A., Perez-Navarro, E., Alberch, J., & Xifro, X. (2012). Activation of Elk-1 participates as a neuroprotective compensatory mechanism in models of Huntington’s disease. Journal of Neurochemistry, 121(4), 639–648.

    Article  CAS  PubMed  Google Scholar 

  • Battaini, F., & Pascale, A. (2005). Protein kinase C signal transduction regulation in physiological and pathological aging. Annals of the New York Academy of Sciences, 1057, 177–192.

    Article  CAS  PubMed  Google Scholar 

  • Brodie, C., & Blumberg, P. M. (2003). Regulation of cell apoptosis by protein kinase c delta. Apoptosis, 8(1), 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Brognard, J., & Newton, A. C. (2008). Phlipping the switch on Akt and protein kinase C signaling. Trends in Endocrinology and Metabolism, 19(6), 223–230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canals, J. M., Pineda, J. R., Torres-Peraza, J. F., Bosch, M., Martin-Ibanez, R., Munoz, M. T., et al. (2004). Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. Journal of Neuroscience, 24(35), 7727–7739.

    Article  CAS  PubMed  Google Scholar 

  • Costa, V., Giacomello, M., Hudec, R., Lopreiato, R., Ermak, G., Lim, D., et al. (2010). Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Molecular Medicine, 2(12), 490–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crook, Z. R., & Housman, D. (2011). Huntington’s disease: can mice lead the way to treatment? Neuron, 69(3), 423–435.

    Article  CAS  PubMed  Google Scholar 

  • Cross, T., Griffiths, G., Deacon, E., Sallis, R., Gough, M., Watters, D., et al. (2000). PKC-delta is an apoptotic lamin kinase. Oncogene, 19(19), 2331–2337.

    Article  CAS  PubMed  Google Scholar 

  • Dragatsis, I., Goldowitz, D., Del, M. N., Deng, Y. P., Meade, C. A., Liu, L., et al. (2009). CAG repeat lengths > or = 335 attenuate the phenotype in the R6/2 Huntington’s disease transgenic mouse. Neurobiology of Disease, 33(3), 315–330.

    Article  CAS  PubMed  Google Scholar 

  • Eitel, K., Staiger, H., Rieger, J., Mischak, H., Brandhorst, H., Brendel, M. D., et al. (2003). Protein kinase C delta activation and translocation to the nucleus are required for fatty acid-induced apoptosis of insulin-secreting cells. Diabetes, 52(4), 991–997.

    Article  CAS  PubMed  Google Scholar 

  • Enokido, Y., Tamura, T., Ito, H., Arumughan, A., Komuro, A., Shiwaku, H., et al. (2010). Mutant huntingtin impairs Ku70-mediated DNA repair. Journal of Cell Biology, 189(3), 425–443.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, T., Garcia-Bermejo, M. L., Bernabo, J. L., Caamano, J., Ohba, M., Kuroki, T., et al. (2000). Involvement of protein kinase C delta (PKCdelta) in phorbol ester-induced apoptosis in LNCaP prostate cancer cells. Lack of proteolytic cleavage of PKCdelta. Journal of Biological Chemistry, 275(11), 7574–7582.

    Article  CAS  PubMed  Google Scholar 

  • Gao, T., Brognard, J., & Newton, A. C. (2008). The phosphatase PHLPP controls the cellular levels of protein kinase C. Journal of Biological Chemistry, 283(10), 6300–6311.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez, J. M., Perez-Navarro, E., Xifro, X., Canals, J. M., Diaz-Hernandez, M., Trioulier, Y., et al. (2007). BH3-only proteins bid and bim(EL) are differentially involved in neuronal dysfunction in mouse models of Huntington’s disease. Journal of Neuroscience Research, 85(12), 2756–2769.

    Article  CAS  PubMed  Google Scholar 

  • Gines, S., Ivanova, E., Seong, I. S., Saura, C. A., & MacDonald, M. E. (2003). Enhanced Akt signaling is an early pro-survival response that reflects N-methyl-D-aspartate receptor activation in Huntington’s disease knock-in striatal cells. Journal of Biological Chemistry, 278(50), 50514–50522.

    Article  CAS  PubMed  Google Scholar 

  • Giralt, A., Saavedra, A., Carreton, O., Xifro, X., Alberch, J., & Perez-Navarro, E. (2011). Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington’s disease. Human Molecular Genetics, 20(21), 4232–4247.

    Article  CAS  PubMed  Google Scholar 

  • Griner, E. M., & Kazanietz, M. G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nature Reviews Cancer, 7(4), 281–294.

    Article  CAS  PubMed  Google Scholar 

  • Harris, A. S., Denovan-Wright, E. M., Hamilton, L. C., & Robertson, H. A. (2001). Protein kinase C beta II mRNA levels decrease in the striatum and cortex of transgenic Huntington’s disease mice. Journal of Psychiatry and Neurosciences, 26(2), 117–122.

    CAS  Google Scholar 

  • Hashimoto, T., Kitamura, N., Saito, N., Komure, O., Nishino, N., & Tanaka, C. (1992). The loss of beta II-protein kinase C in the striatum from patients with Huntington’s disease. Brain Research, 585(1–2), 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Hongpaisan, J., & Alkon, D. L. (2007). A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proceedings of the National Academy of Sciences USA, 104(49), 19571–19576.

    Article  CAS  Google Scholar 

  • Hu, Y., Liu, Z., Yang, S. J., & Ye, K. (2007). Acinus-provoked protein kinase C delta isoform activation is essential for apoptotic chromatin condensation. Cell Death and Differentiation, 14(12), 2035–2046.

    Article  CAS  PubMed  Google Scholar 

  • Humphries, M. J., Limesand, K. H., Schneider, J. C., Nakayama, K. I., Anderson, S. M., & Reyland, M. E. (2006). Suppression of apoptosis in the protein kinase Cdelta null mouse in vivo. Journal of Biological Chemistry, 281(14), 9728–9737.

    Article  CAS  PubMed  Google Scholar 

  • Kaasinen, S. K., Goldsteins, G., Alhonen, L., Janne, J., & Koistinaho, J. (2002). Induction and activation of protein kinase C delta in hippocampus and cortex after kainic acid treatment. Experimental Neurology, 176(1), 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Klauck, T. M., Faux, M. C., Labudda, K., Langeberg, L. K., Jaken, S., & Scott, J. D. (1996). Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science, 271(5255), 1589–1592.

    Article  CAS  PubMed  Google Scholar 

  • Koponen, S., Goldsteins, G., Keinanen, R., & Koistinaho, J. (2000). Induction of protein kinase Cdelta subspecies in neurons and microglia after transient global brain ischemia. Journal of Cerebral Blood Flow and Metabolism, 20(1), 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z., Liu, D., Hornia, A., Devonish, W., Pagano, M., & Foster, D. A. (1998). Activation of protein kinase C triggers its ubiquitination and degradation. Molecular and Cellular Biology, 18(2), 839–845.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maher, P. (2001). How protein kinase C activation protects nerve cells from oxidative stress-induced cell death. Journal of Neuroscience, 21(9), 2929–2938.

    CAS  PubMed  Google Scholar 

  • Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3), 493–506.

    Article  CAS  PubMed  Google Scholar 

  • Mann, D. M., Oliver, R., & Snowden, J. S. (1993). The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathologica, 85(5), 553–559.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J. B., & Gusella, J. F. (1986). Huntington’s disease. Pathogenesis and management. New England Journal of Medicine, 315(20), 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  • Mochel, F., Durant, B., Meng, X., O’Callaghan, J., Yu, H., Brouillet, E., et al. (2012). Early alterations of brain cellular energy homeostasis in Huntington disease models. Journal of Biological Chemistry, 287(2), 1361–1370.

    Article  CAS  PubMed  Google Scholar 

  • Mollersen, L., Rowe, A. D., Larsen, E., Rognes, T., & Klungland, A. (2010). Continuous and periodic expansion of CAG repeats in Huntington’s disease R6/1 mice. PLoS Genetics, 6(12), e1001242.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morton, A. J., Glynn, D., Leavens, W., Zheng, Z., Faull, R. L., Skepper, J. N., et al. (2009). Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiology of Disease, 33(3), 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, T. J., Sun, M. K., Hongpaisan, J., & Alkon, D. L. (2008). Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. European Journal of Pharmacology, 585(1), 76–87.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, Z., Diaz-Hernandez, M., Maynard, C. J., Hernandez, F., Dantuma, N. P., & Lucas, J. J. (2010). Acute polyglutamine expression in inducible mouse model unravels ubiquitin/proteasome system impairment and permanent recovery attributable to aggregate formation. Journal of Neuroscience, 30(10), 3675–3688.

    Article  CAS  PubMed  Google Scholar 

  • Pineda, J. R., Pardo, R., Zala, D., Yu, H., Humbert, S., & Saudou, F. (2009). Genetic and pharmacological inhibition of calcineurin corrects the BDNF transport defect in Huntington’s disease. Molecular Brain, 2, 33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Qi, X., Disatnik, M. H., Shen, N., Sobel, R. A., & Mochly-Rosen, D. (2011). Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Molecular Biology of the Cell, 22(2), 256–265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rangone, H., Poizat, G., Troncoso, J., Ross, C. A., MacDonald, M. E., Saudou, F., et al. (2004). The serum- and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine 421 of huntingtin. European Journal of Neuroscience, 19(2), 273–279.

    Article  PubMed  Google Scholar 

  • Ribeiro, F. M., Paquet, M., Ferreira, L. T., Cregan, T., Swan, P., Cregan, S. P., et al. (2010). Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington’s disease. Journal of Neuroscience, 30(1), 316–324.

    Article  CAS  PubMed  Google Scholar 

  • Ron, D., & Mochly-Rosen, D. (1994). Agonists and antagonists of protein kinase C function, derived from its binding proteins. Journal of Biological Chemistry, 269(34), 21395–21398.

    CAS  PubMed  Google Scholar 

  • Rosas, H. D., Koroshetz, W. J., Chen, Y. I., Skeuse, C., Vangel, M., Cudkowicz, M. E., et al. (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60(10), 1615–1620.

    Article  CAS  PubMed  Google Scholar 

  • Rybin, V. O., Guo, J., Gertsberg, Z., Elouardighi, H., & Steinberg, S. F. (2007). Protein kinase Cepsilon (PKCepsilon) and Src control PKCdelta activation loop phosphorylation in cardiomyocytes. Journal of Biological Chemistry, 282(32), 23631–23638.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saavedra, A., Alberch, J., & Perez-Navarro, E. (2012). Don’t take away my P: Phosphatases as therapeutic targets in Huntington’s disease. In N. E. Tunali, (Ed.), Huntington’s disease—Core concepts and current advances. Rijeka, Croatia: Intech.

  • Saavedra, A., Garcia-Martinez, J. M., Xifro, X., Giralt, A., Torres-Peraza, J. F., Canals, J. M., et al. (2010). PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3 K/Akt pro-survival pathway in Huntington’s disease striatum. Cell Death and Differentiation, 17(2), 324–335.

    Article  CAS  PubMed  Google Scholar 

  • Saavedra, A., Giralt, A., Rue, L., Xifro, X., Xu, J., Ortega, Z., et al. (2011). Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington’s disease: a STEP in the resistance to excitotoxicity. Journal of Neuroscience, 31(22), 8150–8162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shin, E. J., Duong, C. X., Nguyen, T. X., Bing, G., Bach, J. H., Park, D. H., et al. (2011). PKCδ inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment. Neurochemistry International, 59(1), 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R., Brundin, P., & Li, J. Y. (2005). Synaptic dysfunction in Huntington’s disease: a new perspective. Cellular and Molecular Life Sciences, 62(17), 1901–1912.

    Article  CAS  PubMed  Google Scholar 

  • Soh, J. W., & Weinstein, I. B. (2003). Roles of specific isoforms of protein kinase C in the transcriptional control of cyclin D1 and related genes. Journal of Biological Chemistry, 278(36), 34709–34716.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, J., Procyk, K. J., Iturrioz, X., & Parker, P. J. (2002). Phosphorylation is required for PMA- and cell-cycle-induced degradation of protein kinase Cdelta. Biochemical Journal, 368(Pt 1), 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, C., Nishino, N., Hashimoto, T., Kitamura, N., Yoshihara, C., & Saito, N. (1993). Second messenger systems in brains of patients with Parkinson’s or Huntington’s disease. Advances in Neurology, 60, 175–180.

    CAS  PubMed  Google Scholar 

  • Tanaka, C., & Nishizuka, Y. (1994). The protein kinase C family for neuronal signaling. Annual Review of Neuroscience, 17, 551–567.

    Article  CAS  PubMed  Google Scholar 

  • The Huntington’s Disease Collaborative Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell, 72(6), 971–983.

    Article  Google Scholar 

  • Van Der Hoeven, P. C., Van Der Wal, J. C., Ruurs, P., & Van Blitterswijk, W. J. (2000). Protein kinase C activation by acidic proteins including 14-3-3. Biochemical Journal, 347(Pt 3), 781–785.

    Article  Google Scholar 

  • Villalba, M. (1998). A possible role for PKC delta in cerebellar granule cells apoptosis. NeuroReport, 9(10), 2381–2385.

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., & Richardson, E. P, Jr. (1985). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44(6), 559–577.

    Article  CAS  PubMed  Google Scholar 

  • Wahlin, T. B., & Byrne, G. J. (2012). Cognition in Huntington’s disease. In N. E. Tunali (Ed.), Huntington’s disease—Core concepts and current advances. Rijeka, Croatia: Intech.

  • Weeber, E. J., Atkins, C. M., Selcher, J. C., Varga, A. W., Mirnikjoo, B., Paylor, R., et al. (2000). A role for the beta isoform of protein kinase C in fear conditioning. Journal of Neuroscience, 20(16), 5906–5914.

    CAS  PubMed  Google Scholar 

  • Wheeler, V. C., Auerbach, W., White, J. K., Srinidhi, J., Auerbach, A., Ryan, A., et al. (1999). Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Human Molecular Genetics, 8(1), 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, V. C., Gutekunst, C. A., Vrbanac, V., Lebel, L. A., Schilling, G., Hersch, S., et al. (2002). Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Human Molecular Genetics, 11(6), 633–640.

    Article  CAS  PubMed  Google Scholar 

  • Xifro, X., Anglada-Huguet, M., Rue, L., Saavedra, A., Perez-Navarro, E., & Alberch, J. (2011). Increased 90-kDa ribosomal S6 kinase (Rsk) activity is protective against mutant huntingtin toxicity. Molecular Neurodegeneration, 6, 74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xifro, X., Garcia-Martinez, J. M., Del, T. D., Alberch, J., & Perez-Navarro, E. (2008). Calcineurin is involved in the early activation of NMDA-mediated cell death in mutant huntingtin knock-in striatal cells. Journal of Neurochemistry, 105(5), 1596–1612.

    Article  CAS  PubMed  Google Scholar 

  • Xifro, X., Giralt, A., Saavedra, A., Garcia-Martinez, J. M., Diaz-Hernandez, M., Lucas, J. J., et al. (2009). Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington’s disease: role in excitotoxicity. Neurobiology of Disease, 36(3), 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Zemskov, E. A., Jana, N. R., Kurosawa, M., Miyazaki, H., Sakamoto, N., Nekooki, M., et al. (2003). Pro-apoptotic protein kinase C delta is associated with intranuclear inclusions in a transgenic model of Huntington’s disease. Journal of Neurochemistry, 87(2), 395–406.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Anantharam, V., Kanthasamy, A., & Kanthasamy, A. G. (2007). Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson’s disease. Journal of Pharmacology and Experimental Therapeutics, 322(3), 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, C., Leitges, M., & Gereau, R. W. (2011). Isozyme-specific effects of protein kinase C in pain modulation. Anesthesiology, 115(6), 1261–1270.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong, M., Lu, Z., & Foster, D. A. (2002). Downregulating PKCδ provides a PI3 K/Akt-independent survival signal that overcomes apoptotic signals generated by c-Src overexpression. Oncogene, 21(7), 1071–1078.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M MacDonald (Massachusetts General Hospital, Boston, MA, USA) for the STHdhQ7/Q7 cell line and HdhQ7/Q111 mice, Dr. J. J Lucas (Center for Molecular Biology Severo Ochoa, Madrid, Spain) for the generous gift of the N-WThtt-CFP and N-mhtt-CFP plasmids, Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS (Barcelona, Spain) and Institute of Neuropathology (Hospital de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain) for human tissue samples. We also thank Ana López and Maria Teresa Muñoz for technical assistance, and Dr. Teresa Rodrigo, Dr. Amèrica Jiménez, and the staff of the animal care facility (Facultat de Psicologia and Facultat de Medicina, Universitat de Barcelona) for their help. Financial support was obtained from Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, (grant numbers PI071183, PI10/01072 to E.P.-N., RETICS: RD06/0010/0006), the Ministerio de Educación y Ciencia (grant SAF2011-29507 to J.A.), and Generalitat de Catalunya (Grant number 2009SGR-00326 to J.A.). L.R is a fellow of Ministerio de Educación y Ciencia, Spain (grant number AP2007-01066).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Pérez-Navarro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,483 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rué, L., Alcalá-Vida, R., López-Soop, G. et al. Early Down-Regulation of PKCδ as a Pro-Survival Mechanism in Huntington’s Disease. Neuromol Med 16, 25–37 (2014). https://doi.org/10.1007/s12017-013-8248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8248-8

Keywords

Navigation