Skip to main content

Advertisement

Log in

ATP7B Variants as Modulators of Copper Dyshomeostasis in Alzheimer’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

To understand the role of the key copper-regulating gene, ATP7B, in copper dyshomeostasis associated with Alzheimer’s disease (AD), we analyzed the serum levels of copper, ceruloplasmin and ‘free’ (i.e., non-ceruloplasmin bound) copper in 399 patients with AD and 303 elderly healthy controls. We also performed analyses of informative variants of ATP7B. AD patients had higher levels of copper and free copper than controls. Individuals with free copper levels higher than 1.6 μmol/L (the upper value of the normal reference range) were more frequent among cases (p < 0.001). Among these individuals, those who were carriers of the ATP7B variants accounted for a large proportion of the free copper levels, specifically in the AD group (p < 0.01). Our results suggest the existence of a ‘copper dysfunction’ phenotype of sporadic AD which has a genetic basis. They also suggest that free copper is a risk factor for this disorder, modulating additional pathways leading to the disease cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brewer, G. J. (2009). Zinc and tetrathiomolybdate for the treatment of Wilson’s disease and the potential efficacy of anticopper therapy in a wide variety of diseases. Metallomics, 1(3), 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Bucossi, S., Mariani, S., Ventriglia, M., Polimanti, R., Gennarelli, M., Bonvicini, C., et al. (2011a). Association between the c. 2495 A>G ATP7B polymorphism and sporadic Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2011, 973692.

    PubMed  Google Scholar 

  • Bucossi, S., Polimanti, R., Mariani, S., Ventriglia, M., Bonvicini, C., Migliore, S., et al. (2012). Association of K832R and R952 K SNPs of Wilson’s disease gene with Alzheimer’s disease. Journal of Alzheimer’s Disease, 29(4), 913–919.

    PubMed  CAS  Google Scholar 

  • Bucossi, S., Ventriglia, M., Panetta, V., Salustri, C., Pasqualetti, P., Mariani, S., et al. (2011b). Copper in Alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. Journal of Alzheimer’s Disease, 24(1), 175–185.

    PubMed  CAS  Google Scholar 

  • Bush, A. I., & Tanzi, R. E. (2008). Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 5(3), 421–432.

    Article  PubMed  CAS  Google Scholar 

  • Capo, C. R., Arciello, M., Squitti, R., Cassetta, E., Rossini, P. M., Calabrese, L., et al. (2008). Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer’s disease patients. BioMetals, 21(3), 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Cherny, R. A., Legg, J. T., McLean, C. A., Fairlie, D. P., Huang, X., Atwood, C. S., et al. (1999). Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. Journal of Biological Chemistry, 274(33), 23223–23228.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6(8), 734–746.

    Article  PubMed  Google Scholar 

  • Excoffier, L., Laval, G., & Balding, D. (2003). Gametic phase estimation over large genomic regions using an adaptive window approach. Human Genomics, 1(1), 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Faller, P. (2011). Copper in Alzheimer disease: Too much, too little, or misplaced? Free Radical Biology & Medicine. doi:10.1016/j.freeradbiomed.2011.11.005.

    Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Frautschy, S. A., & Cole, G. M. (2010). Why pleiotropic interventions are needed for Alzheimer’s disease. Molecular Neurobiology, 41(2–3), 392–409.

    Article  PubMed  CAS  Google Scholar 

  • Gaggelli, E., Kozlowski, H., Valensin, D., & Valensin, G. (2006). Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chemical Reviews, 106(6), 1995–2044.

    Article  PubMed  CAS  Google Scholar 

  • Giambattistelli, F., Bucossi, S., Salustri, C., Panetta, V., Mariani, S., Siotto, M., et al. (2011). Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer’s disease. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2011.03.005.

    PubMed  Google Scholar 

  • Gupta, A., Maulik, M., Nasipuri, P., Chattopadhyay, I., Das, S. K., Gangopadhyay, P. K., et al. (2007). Molecular diagnosis of Wilson disease using prevalent mutations and informative single-nucleotide polymorphism markers. Clinical Chemistry, 53(9), 1601–1608.

    Article  PubMed  CAS  Google Scholar 

  • Halliday, G. M., & McCann, H. (2010). The progression of pathology in Parkinson’s disease [Review]. Annals of the New York Academy of Sciences, 1184, 188–195.

    Article  PubMed  Google Scholar 

  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Hixson, J. E., & Vernier, D. T. (1990). Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. Journal of Lipid Research, 31(3), 545–548.

    PubMed  CAS  Google Scholar 

  • Hochstrasser, H., Tomiuk, J., Walter, U., Behnke, S., Spiegel, J., Kruger, R., et al. (2005). Functional relevance of ceruloplasmin mutations in Parkinson’s disease. FASEB Journal, 19(13), 1851–1853.

    PubMed  CAS  Google Scholar 

  • Hoogenraad, T. (2001). Wilson’s disease. Amsterdam: Intermed Medical Publishers.

    Google Scholar 

  • James, S. A., Volitakis, I., Adlard, P. A., Duce, J. A., Masters, C. L., Cherny, R. A., et al. (2012). Elevated labile Cu is associated with oxidative pathology in Alzheimer disease. Free Radical Biology & Medicine, 52(2), 298–302.

    Article  CAS  Google Scholar 

  • Jin, L., Wu, W. H., Li, Q. Y., Zhao, Y. F., & Li, Y. M. (2011). Copper inducing Abeta42 rather than Abeta40 nanoscale oligomer formation is the key process for Abeta neurotoxicity. Nanoscale, 3(11), 4746–4751.

    Article  PubMed  CAS  Google Scholar 

  • Kennerson, M. L., Nicholson, G. A., Kaler, S. G., Kowalski, B., Mercer, J. F., Tang, J., et al. (2010). Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. American Journal of Human Genetics, 86(3), 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Koedam, E. L., Lauffer, V., van der Vlies, A. E., van der Flier, W. M., Scheltens, P., & Pijnenburg, Y. A. (2010). Early-versus late-onset Alzheimer’s disease: More than age alone [Research Support, Non-U.S. Gov’t]. Journal of Alzheimer’s Disease, 19(4), 1401–1408.

    PubMed  Google Scholar 

  • Lam, P. K., Kritz-Silverstein, D., Barrett Connor, E., Milne, D., Nielsen, F., Gamst, A., et al. (2008). Plasma trace elements and cognitive function in older men and women: The Rancho Bernardo study. The Journal of Nutrition Health Aging, 12(1), 22–27.

    Article  CAS  Google Scholar 

  • Loef, M., & Walach, H. (2012). Copper and iron in Alzheimer’s disease: A systematic review and its dietary implications. British Journal of Nutrition, 107(1), 7–19.

    Article  PubMed  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, 34(7), 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Mold, M., Ouro-Gnao, L., Wieckowski, B. M., & Exley, C. (2013). Copper prevents amyloid-beta(1-42) from forming amyloid fibrils under near-physiological conditions in vitro [Research Support, Non-U.S. Gov’t]. Science Report, 3, 1256.

  • Moller, L. B., Tumer, Z., Lund, C., Petersen, C., Cole, T., Hanusch, R., et al. (2000). Similar splice-site mutations of the ATP7A gene lead to different phenotypes: Classical Menkes disease or occipital horn syndrome. American Journal of Human Genetics, 66(4), 1211–1220.

    Article  PubMed  CAS  Google Scholar 

  • Morris, M. C., Evans, D. A., Tangney, C. C., Bienias, J. L., Schneider, J. A., Wilson, R. S., et al. (2006). Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Archives of Neurology, 63(8), 1085–1088.

    Article  PubMed  Google Scholar 

  • Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C. L., et al. (1996). The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science, 271(5254), 1406–1409.

    Article  PubMed  CAS  Google Scholar 

  • Nandar, W., & Connor, J. R. (2011). HFE gene variants affect iron in the brain. Journal of Nutrition, 141(4), 729S–739S.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, K. J. (1986). Modern epidemiology (1st ed.). Boston: Little, Brown.

    Google Scholar 

  • Scalfari, A., Neuhaus, A., Daumer, M., Ebers, G. C., & Muraro, P. A. (2011). Age and disability accumulation in multiple sclerosis. Neurology, 77(13), 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  • Scheinberg, I. H., & Sternlieb, I. (1965). Wilson’s disease. Annual Review of Medicine, 16, 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Schrag, M., Mueller, C., Oyoyo, U., Smith, M. A., & Kirsch, W. M. (2011). Iron, zinc and copper in the Alzheimer’s disease brain: A quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Progress in Neurobiology, 94(3), 296–306.

    Article  PubMed  CAS  Google Scholar 

  • Sole, X., Guino, E., Valls, J., Iniesta, R., & Moreno, V. (2006). SNPStats: A web tool for the analysis of association studies. Bioinformatics, 22(15), 1928–1929.

    Article  PubMed  CAS  Google Scholar 

  • Squitti, R., Barbati, G., Rossi, L., Ventriglia, M., Dal Forno, G., Cesaretti, S., et al. (2006). Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology, 67(1), 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Squitti, R., Ghidoni, R., Scrascia, F., Benussi, L., Panetta, V., Pasqualetti, P., et al. (2011). Free copper distinguishes mild cognitive impairment subjects from healthy elderly individuals. Journal of Alzheimer’s Disease, 23(2), 239–248.

    PubMed  CAS  Google Scholar 

  • Squitti, R., Pasqualetti, P., Dal Forno, G., Moffa, F., Cassetta, E., Lupoi, D., et al. (2005). Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology, 64(6), 1040–1046.

    Article  PubMed  CAS  Google Scholar 

  • Squitti, R., & Polimanti, R. (2012). Copper hypothesis in the missing hereditability of sporadic Alzheimer’s disease: ATP7B gene as potential harbor of rare variants. Journal of Alzheimer’s Disease, 29(3), 493–501.

    PubMed  CAS  Google Scholar 

  • Squitti, R., Polimanti, R., Bucossi, S., Ventriglia, M., Mariani, S., Manfellotto, D., et al. (2013). Linkage Disequilibrium and haplotype analysis of ATP7B gene in Alzheimer’s disease. Rejuvenation Research, 16(1), 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Squitti, R., & Salustri, C. (2009). Agents complexing copper as a therapeutic strategy for the treatment of Alzheimer’s disease. Current Alzheimer Research, 6(6), 476–487.

    Article  PubMed  CAS  Google Scholar 

  • Squitti, R., Ventriglia, M., Barbati, G., Cassetta, E., Ferreri, F., Dal Forno, G., et al. (2007). ‘Free’ copper in serum of Alzheimer’s disease patients correlates with markers of liver function. Journal of Neural Transmission, 114(12), 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  • Ventriglia, M., Bucossi, S., Panetta, V., & Squitti, R. (2012). Copper in Alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. Journal of Alzheimer’s Disease, 30(4), 981–984.

    PubMed  Google Scholar 

  • Walshe, J. M. (2003). Wilson’s disease: The importance of measuring serum ceruloplasmin non-immunologically. Annals of Clinical Biochemistry, 40(Pt 2), 115–121.

    Article  PubMed  CAS  Google Scholar 

  • White, A. R., Multhaup, G., Maher, F., Bellingham, S., Camakaris, J., Zheng, H., et al. (1999). The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. Journal of Neuroscience, 19(21), 9170–9179.

    PubMed  CAS  Google Scholar 

  • Wolf, P. L. (1982). Ceruloplasmin: Methods and clinical use. Critical Reviews in Clinical Laboratory Sciences, 17(3), 229–245.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. H., Huang, H. C., Chen, L., Xu, W., & Jiang, Z. F. (2009). Coordinating to three histidine residues: Cu(II) promotes oligomeric and fibrillar amyloid-beta peptide to precipitate in a non-beta aggregation manner [Research Support, Non-U.S. Gov’t]. Journal of Alzheimer’s Disease, 18(4), 799–810.

    PubMed  CAS  Google Scholar 

  • Zappasodi, F., Salustri, C., Babiloni, C., Cassetta, E., Del Percio, C., Ercolani, M., et al. (2008). An observational study on the influence of the APOE-epsilon4 allele on the correlation between ‘free’ copper toxicosis and EEG activity in Alzheimer disease. Brain Research, 1215, 183–189.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the following grants: 1) European Community’s Seventh Framework Programme Project MEGMRI (no. 200859); 2) FISM—Fondazione Italiana Sclerosi Multipla—Cod.2010/R/38” Fatigue Relief in Multiple Sclerosis by Neuromodulation: a transcranial Direct Current Stimulation (tDCS) Intervention. [FaMuSNe]; 3) Italian Ministry of Health Cod. GR-2008-1138642 ‘Promoting recovery from Stroke: Individually enriched therapeutic intervention in Acute phase’ [ProSIA].

Conflict of interest

All authors and their family members report no financial relationship related to the manuscript or the topic and no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna Squitti.

Additional information

Rosanna Squitti and Renato Polimanti contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squitti, R., Polimanti, R., Siotto, M. et al. ATP7B Variants as Modulators of Copper Dyshomeostasis in Alzheimer’s Disease. Neuromol Med 15, 515–522 (2013). https://doi.org/10.1007/s12017-013-8237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8237-y

Keywords

Navigation