Skip to main content
Log in

Deregulated Chromatin Remodeling in the Pathobiology of Brain Tumors

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Brain tumors encompass a heterogeneous group of malignant tumors with variable histopathology, aggressiveness, clinical outcome and prognosis. Current gene expression profiling studies indicate interplay of genetic and epigenetic alterations in their pathobiology. A central molecular event underlying epigenetics is the alteration of chromatin structure by post-translational modifications of DNA and histones as well as nucleosome repositioning. Dynamic remodeling of the fundamental nucleosomal structure of chromatin or covalent histone marks located in core histones regulate main cellular processes including DNA methylation, replication, DNA-damage repair as well as gene expression. Deregulation of these processes has been linked to tumor suppressor gene silencing, cancer initiation and progression. The reversible nature of deregulated chromatin structure by DNA methylation and histone deacetylation inhibitors, leading to re-expression of tumor suppressor genes, makes chromatin-remodeling pathways as promising therapeutic targets. In fact, a considerable number of these inhibitors are being tested today either alone or in combination with other agents or conventional treatments in the management of brain tumors with considerable success. In this review, we focus on the mechanisms underpinning deregulated chromatin remodeling in brain tumors, discuss their potential clinical implications and highlight the advances toward new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

4-PB:

4-Phenylbutyrate

ADP:

Adenosine-5′-diphosphate

AJAP1:

Adherens junctions associated protein 1, SHREW1

AKT:

RAC-alpha serine/threonine-protein kinase

AN-9:

Pivaloyloxymethyl butyrate

ANGPT1:

Angiopoietin-1

ARID1A:

AT-rich interactive domain-containing protein 1A

AT/RT:

Atypical teratoid/rhabdoid tumors

ATP:

Adenosine-5′-triphosphate

ATRX:

α-Thalassemia/mental retardation syndrome X-linked

Aza:

5-Aza-2′-deoxycitidine

Bak:

BCL2-antagonist/killer

Bax:

BCL2-associated X protein

BEX:

Brain-expressed X-linked

BIK:

BCL2-interacting killer

BLU:

Zinc finger MYND domain-containing protein 10

BMI-1:

BMI1 polycomb ring finger protein

BMP-2:

Bone morphogenetic protein 2

BRG1:

Brahma-related gene 1

BRM:

Drosophila trithorax group gene brahma

BTG2 (PC3):

B cell translocation gene 2

c-Myc:

V-myc myelocytomatosis viral oncogene homolog protein

c-Raf:

V-raf-1 murine leukemia viral oncogene homolog 1

CALCA:

Calcitonin

CASP8:

Caspase-8

CCND1:

Cyclin D1

CDH1:

Cadherin-1

CDKN1A:

Cyclin-dependent kinase inhibitor 1A

CDKN2A:

Cyclin-dependent kinase inhibitor 2A, isoform 4

CDKN2B:

Cyclin-dependent kinase 4 inhibitor B

CHD:

Chromodomain, helicase, DNA binding

CHI3L1 (YKL-40):

Chitinase-3-like protein 1

CITED4:

CBP/p300-interacting transactivator 4

COL1A2:

Collagen alpha-2(I) chain

COUP-TFII:

COUP transcription factor 2

CpG islands:

Cytosine-phosphate-guanine islands

CST6:

Cystatin E/M

CTCL:

Cutaneous T cell lymphoma

DAPK:

Death-associated protein kinase 1

DAXX:

Death-domain-associated protein

DHRS3:

Short-chain dehydrogenase/reductase 3

DKK1:

Dickkopf-1

DLC-1:

Deleted in liver cancer 1

DNMT:

DNA methyltransferase

DOT1L:

Histone-lysine N-methyltransferase, H3 lysine-79 specific

DR4:

Death receptor 4

DUSP3:

Dual specificity protein phosphatase 3

EHMT1:

Euchromatic histone-lysine N-methyltransferase 1

EMP3:

Epithelial membrane protein 3

EORTC/NCIC:

European Organization for Research and Treatment of Cancer/National Cancer Institute of Canada

EZH2:

Enhancer of zeste homolog 2 protein

FHIT:

Fragile histidine triad protein

FK228:

Romidepsin

G9A:

Euchromatic histone-lysine N-methyltransferase 2, EHMT2

GATA6:

GATA-binding protein 6

GBM:

Glioblastoma multiforme

GFAP:

Glial fibrillary acidic protein

GLI GLI:

Family zinc finger

GPR26:

G protein-coupled receptor 26

GSTP1:

Glutathione S-transferase P

GUCY1A3:

Guanylate cyclase 1A3

HAI-2/PB:

Hepatocyte growth factor activator inhibitor type-2/placental bikunin

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HDACI:

Histone deacetylase inhibitor

HGF:

Hepatocyte growth factor

HIC1:

Hypermethylated in cancer 1 protein

HKMT:

Histone-lysine methyltransferase

hMLH1:

HMLH1 protein

HOXA9:

Homeobox A9 protein

HP1:

Heterochromatin protein 1

HR23B RAD23:

Homolog B

HSP72:

Heat shock 70 kDa protein 1A

HSP90:

Heat shock protein 90 kDa alpha

ING1:

Inhibitor of growth 1

INO1:

Inositol-3-phosphate synthase 1

INO80:

Inositol requiring 80

ISWI:

Imitation SWI

JMJD1A:

Lysine-specific demethylase 3A, jumonji domain-containing 1A

JMJD1B:

Lysine-specific demethylase 3B, jumonji domain-containing 1B

JMJD2B:

Lysine-specific demethylase 4B, jumonji domain-containing 2B

JMJD2C:

Lysine-specific demethylase 4C, jumonji domain-containing 2C

KLF4:

Kruppel-like factor 4

KRT19:

Keratin, type I cytoskeletal 19

L3MBTL:

Lethal(3) malignant brain tumor-like protein

LBH589:

Panobinostat

LHX9:

Human Lim-homebox 9

lo-FGF-2:

Fibroblast growth factor-2

LSD1:

Lysine-specific demethylase 1

MAPK:

Mitogen-activated kinase-like protein

MCJ:

Methylation-controlled DNAJ

Mcl-1:

Myeloid cell leukemia 1

MGMT:

O-6-methylguanine-DNA methyltransferase

ΜLL:

Myeloid/lymphoid or mixed-lineage leukemia

MMP-2:

Matrix metallopeptidase 2

MRT:

Malignant rhabdoid tumor

MS275:

Entinostat

MT-3:

Metallothionein-3

MT1-MMP:

Membrane type-1 matrix metalloproteinase

MYOD1:

Myogenic differentiation 1

NAD:

Nicotinamide adenine dinucleotide

NDRG2:

N-myc downstream-regulated gene 2

NECL1:

Nectin-like molecule 1

NEURL1:

Neuralized 1

NF-κB:

Nuclear factor κappaB

Noxa:

NADPH oxidase activator 1

NQO1:

NAD(P)H dehydrogenase, quinone 1

NSCLC:

Non-small cell lung cancer

NSD1:

Nuclear receptor-binding SET domain protein 1

NuRD:

Nucleosome remodeling and deacetylation

p14/ARF:

Alternate reading frame product of the CDKN2A locus

p15INK4b:

Cyclin-dependent kinase 4 inhibitor B

p16INK4a:

Cyclin-dependent kinase inhibitor 2A, isoforms 1/2

p21WAF1/CIP1:

Cyclin-dependent kinase inhibitor 1A

PB:

Phenylbutyrate

PBMC:

Peripheral blood mononuclear cell

PCDHGA11:

Protocadherin gamma-A11

PDAM (TP73):

KIAA0495/p53-dependent apoptosis modulator

PDGFB:

Platelet-derived growth factor beta polypeptide

PEG3:

Paternally expressed gene 3

PHD:

Plant homeo-domain

PNET:

Primitive neuroectodermal tumor

PI3K:

Phosphatidylinositol 3-kinase

POU2F2:

POU domain, class 2, transcription factor 2

PRKCDBP:

Protein kinase C delta-binding protein

PROM1 (CD133):

Prominin 1

PSME2:

Proteasome (prosome, macropain) activator subunit 2

PTCH1–1C:

Patched homolog 1

PTEN:

Phosphatase and tensin homolog

PTGS2:

Prostaglandin-endoperoxide synthase 2

Rad51:

RAD51 homolog

RARB:

Retinoic acid receptor beta

RASL10A (RRP22):

RAS-like, family 10, member A

RASSF1A:

Ras association domain-containing protein 1A

RB1:

Retinoblastoma-associated protein

REN:

Renin

RTK:

Receptor tyrosine kinase

SAHA:

Suberoylanilide hydroxamic acid

SCNN1A:

Amiloride-sensitive sodium channel subunit alpha

SEC23A:

Sec23 homolog A

SET7:

Histone-lysine N-methyltransferase SET7

SET9:

Histone-lysine N-methyltransferase SET9

SETD7:

Histone-lysine N-methyltransferase SETD7

SETDB1:

Histone-lysine N-methyltransferase SETDB1

SFRP:

Secreted frizzled-related protein

Shh Sonic:

Hedgehog

Slit Slit homolog:

2 protein

SMARCA4:

SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 or BRG1

SMARCB1 (INI1):

SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily b, member 1 or integrase interactor 1 protein

SMYD:

SET and MYND domain-containing protein

SN38:

Active metabolite of the topoisomerase I inhibitor irinotecan, CPT-11

SPINT2:

Serine peptidase inhibitor, Kunitz type, 2

Sox2:

SRY (sex determining region Y)-box 2

SUV39H:

Histone-lysine N-methyltransferase SUV39H

SWI/SNF:

SWItch/Sucrose NonFermentable

TCA:

Trichostatin A

TFPI-2:

Tissue factor pathway inhibitor

TGFBI:

Transforming growth factor-beta-induced protein ig-h3

THBS1:

Thrombospondin 1

THEM4 (CTMP):

Thioesterase superfamily member 4

TFRS-F10C:

Transferrin receptor-linked F10 gene

TIMP-2:

TIMP metallopeptidase inhibitor 2

TIMP3:

Metalloproteinase inhibitor 3

TMS1/ASC:

Target of methylation-induced silencing 1/Apoptosis-associated speck-like protein containing a CARD

TNF-α:

Tumor necrosis factor-alpha

TP14 (ARF):

Protamine TP14

TP73:

Tumor protein p73

TRAIL:

Tumor necrosis factor ligand superfamily member 10

TSP- 1:

Thrombospondin 1

TSPYL5:

Testis-specific protein, Y-encoded-like 5

UHRF1:

Ubiquitin-like with PHD and Ring finger domains 1

VHL:

Von Hippel-Lindau disease tumor suppressor

VPA:

Valproic acid

Wnt:

Wingless

ZIC2:

Zinc finger protein of cerebellum 2

References

  • Aguilera, D. G., Das, C. M., Sinnappah-Kang, N. D., Joyce, C., Taylor, P. H., Wen, S., et al. (2009). Reactivation of death receptor 4 (DR4) expression sensitizes medulloblastoma cell lines to TRAIL. Journal of Neuro-oncology, 93, 303–318.

    Article  PubMed  CAS  Google Scholar 

  • Alaminos, M., Davalos, V., Ropero, S., Setien, F., Paz, M. F., Herranz, M., et al. (2005). EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Research, 65, 2565–2571.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, M. E., Bello, M. J., Gonzalez-Gomez, P., Arjona, D., Lomas, J., de Campos, J. M., et al. (2003). Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genetics and Cytogenetics, 144, 134–142.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, M. E., Bello, M. J., Gonzalez-Gomez, P., Arjona, D., de Campos, J. M., Gutierrez, M., et al. (2004). Aberrant CpG island methylation of multiple genes in ependymal tumors. Journal of Neuro-oncology, 67, 159–165.

    Article  PubMed  Google Scholar 

  • Alonso, M. M., Diez-Valle, R., Manterola, L., Rubio, A., Liu, D., Cortes-Santiago, N., et al. (2011). Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS ONE, 6, e26740.

    Article  PubMed  CAS  Google Scholar 

  • An, Z., Gluck, C. B., Choy, M. L., & Kaufman, L. J. (2010). Suberoylanilide hydroxamic acid limits migration and invasion of glioma cells in two and three dimensional culture. Cancer Letters, 292, 215–227.

    Article  PubMed  CAS  Google Scholar 

  • Anderton, J. A., Lindsey, J. C., Lusher, M. E., Gilbertson, R. J., Bailey, S., Ellison, D. W., et al. (2008). Global analysis of the medulloblastoma epigenome identifies disease-subgroup-specific inactivation of COL1A2. Neuro-oncology, 10, 981–994.

    Article  PubMed  CAS  Google Scholar 

  • Arts, J., Angibaud, P., Marien, A., Floren, W., Janssens, B., King, P., et al. (2007). R306465 is a novel potent inhibitor of class I histone deacetylases with broad-spectrum antitumoral activity against solid and haematological malignancies. British Journal of Cancer, 97, 1344–1353.

    Article  PubMed  CAS  Google Scholar 

  • Bangert, A., Hacker, S., Cristofanon, S., Debatin, K. M., & Fulda, S. (2011). Chemosensitization of glioblastoma cells by the histone deacetylase inhibitor MS275. Anti-Cancer Drugs, 22, 494–499.

    Article  PubMed  CAS  Google Scholar 

  • Bao, Y., & Shen, X. (2007). SnapShot: Chromatin remodeling complexes. Cell, 129, 632.

    Article  PubMed  CAS  Google Scholar 

  • Becker, P. B., & Horz, W. (2002). ATP-dependent nucleosome remodeling. Annual Review of Biochemistry, 71, 247–273.

    Article  PubMed  CAS  Google Scholar 

  • Berdasco, M., Ropero, S., Setien, F., Fraga, M. F., Lapunzina, P., Losson, R., et al. (2009). Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proceedings of the National Academy of Sciences of the United States of America, 106, 21830–21835.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, K. P., Pelloski, C. E., Zhang, Y., Kim, S. H., deLaCruz, C., Rehli, M., et al. (2008). Selective repression of YKL-40 by NF-kappaB in glioma cell lines involves recruitment of histone deacetylase-1 and -2. FEBS Letters, 582, 3193–3200.

    Article  PubMed  CAS  Google Scholar 

  • Biegel, J. A., Zhou, J. Y., Rorke, L. B., Stenstrom, C., Wainwright, L. M., & Fogelgren, B. (1999). Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Research, 59, 74–79.

    PubMed  CAS  Google Scholar 

  • Biegel, J. A., Tan, L., Zhang, F., Wainwright, L., Russo, P., & Rorke, L. B. (2002). Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clinical Cancer Research, 8, 3461–3467.

    PubMed  CAS  Google Scholar 

  • Bonisch, C., Nieratschker, S. M., Orfanos, N. K., & Hake, S. B. (2008). Chromatin proteomics and epigenetic regulatory circuits. Expert Review of Proteomics, 5, 105–119.

    Article  PubMed  Google Scholar 

  • Boulay, J. L., Ionescu, M. C., Sivasankaran, B., Labuhn, M., Dolder-Schlienger, B., Taylor, E., et al. (2009). The 10q25.3-26.1 G protein-coupled receptor gene GPR26 is epigenetically silenced in human gliomas. International Journal of Oncology, 35, 1123–1131.

    Article  PubMed  CAS  Google Scholar 

  • Brodeur, G. M., Sekhon, G., & Goldstein, M. N. (1977). Chromosomal aberrations in human neuroblastomas. Cancer, 40, 2256–2263.

    Article  PubMed  CAS  Google Scholar 

  • Brose, K., Bland, K. S., Wang, K. H., Arnott, D., Henzel, W., Goodman, C. S., et al. (1999). Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell, 96, 795–806.

    Article  PubMed  CAS  Google Scholar 

  • Bruna, A., Darken, R. S., Rojo, F., Ocana, A., Penuelas, S., Arias, A., et al. (2007). High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell, 11, 147–160.

    Article  PubMed  CAS  Google Scholar 

  • Cadieux, B., Ching, T. T., VandenBerg, S. R., & Costello, J. F. (2006). Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Research, 66, 8469–8476.

    Article  PubMed  CAS  Google Scholar 

  • Campos, B., Bermejo, J. L., Han, L., Felsberg, J., Ahmadi, R., Grabe, N., et al. (2011). Expression of nuclear receptor corepressors and class I histone deacetylases in astrocytic gliomas. Cancer Science, 102, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Canettieri, G., Di Marcotullio, L., Greco, A., Coni, S., Antonucci, L., Infante, P., et al. (2010). Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nature Cell Biology, 12, 132–142.

    Article  PubMed  CAS  Google Scholar 

  • Caren, H., Djos, A., Nethander, M., Sjoberg, R. M., Kogner, P., Enstrom, C., et al. (2011). Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma. BMC Cancer, 11, 66.

    Article  PubMed  CAS  Google Scholar 

  • Cecener, G., Tunca, B., Egeli, U., Bekar, A., Tezcan, G., Erturk, E., et al. (2012). The promoter hypermethylation status of GATA6, MGMT, and FHIT in glioblastoma. Cellular and Molecular Neurobiology, 32, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Chernov, A. V., Sounni, N. E., Remacle, A. G., & Strongin, A. Y. (2009). Epigenetic control of the invasion-promoting MT1-MMP/MMP-2/TIMP-2 axis in cancer cells. Journal of Biological Chemistry, 284, 12727–12734.

    Article  PubMed  CAS  Google Scholar 

  • Chernov, A. V., Baranovskaya, S., Golubkov, V. S., Wakeman, D. R., Snyder, E. Y., Williams, R., et al. (2010). Microarray-based transcriptional and epigenetic profiling of matrix metalloproteinases, collagens, and related genes in cancer. The Journal of Biological Chemistry, 285, 19647–19659.

    Article  PubMed  CAS  Google Scholar 

  • Cho, K. S., Elizondo, L. I., & Boerkoel, C. F. (2004). Advances in chromatin remodeling and human disease. Current Opinion in Genetics & Development, 14, 308–315.

    Article  CAS  Google Scholar 

  • Chodavarapu, R. K., Feng, S., Bernatavichute, Y. V., Chen, P. Y., Stroud, H., Yu, Y., et al. (2010). Relationship between nucleosome positioning and DNA methylation. Nature, 466, 388–392.

    Article  PubMed  CAS  Google Scholar 

  • Cogdell, D., Chung, W., Liu, Y., McDonald, J. M., Aldape, K., Issa, J. P., et al. (2011). Tumor-associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased AJAP1 expression and shorter survival in patients with glioma. Chinese Journal of Cancer, 30, 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Costa, F. F. (2008). Non-coding RNAs, epigenetics and complexity. Gene, 410, 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Costa, B. M., Smith, J. S., Chen, Y., Chen, J., Phillips, H. S., Aldape, K. D., et al. (2010). Reversing HOXA9 oncogene activation by PI3 K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma. Cancer Research, 70, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Dallol, A., Krex, D., Hesson, L., Eng, C., Maher, E. R., & Latif, F. (2003). Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene, 22, 4611–4616.

    Article  PubMed  CAS  Google Scholar 

  • Das, C. M., Aguilera, D., Vasquez, H., Prasad, P., Zhang, M., Wolff, J. E., et al. (2007). Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. Journal of Neuro-oncology, 85, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Davis, F. G., McCarthy, B. J., Freels, S., Kupelian, V., & Bondy, M. L. (1999). The conditional probability of survival of patients with primary malignant brain tumors: Surveillance, epidemiology, and end results (SEER) data. Cancer, 85, 485–491.

    Article  PubMed  CAS  Google Scholar 

  • de Bono, J. S., Kristeleit, R., Tolcher, A., Fong, P., Pacey, S., Karavasilis, V., et al. (2008). Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clinical Cancer Research, 14, 6663–6673.

    Article  PubMed  CAS  Google Scholar 

  • DeCristofaro, M. F., Betz, B. L., Wang, W., & Weissman, B. E. (1999). Alteration of hSNF5/INI1/BAF47 detected in rhabdoid cell lines and primary rhabdomyosarcomas but not Wilms’ tumors. Oncogene, 18, 7559–7565.

    Article  PubMed  CAS  Google Scholar 

  • Diede, S. J., Guenthoer, J., Geng, L. N., Mahoney, S. E., Marotta, M., Olson, J. M., et al. (2010). DNA methylation of developmental genes in pediatric medulloblastomas identified by denaturation analysis of methylation differences. Proceedings of the National Academy of Sciences of the United States of America, 107, 234–239.

    Article  PubMed  CAS  Google Scholar 

  • Dou, Y., Milne, T. A., Tackett, A. J., Smith, E. R., Fukuda, A., Wysocka, J., et al. (2005). Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell, 121, 873–885.

    Article  PubMed  CAS  Google Scholar 

  • Drappatz, J., Lee, E. Q., Hammond, S., Grimm, S. A., Norden, A. D., Beroukhim, R., et al. (2012). Phase I study of panobinostat in combination with bevacizumab for recurrent high-grade glioma. Journal of Neuro-oncology, 107, 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Egler, V., Korur, S., Failly, M., Boulay, J. L., Imber, R., Lino, M. M., et al. (2008). Histone deacetylase inhibition and blockade of the glycolytic pathway synergistically induce glioblastoma cell death. Clinical Cancer Research, 14, 3132–3140.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, L., Pan, Y., Smyth, G. K., George, D. J., McCormack, C., Williams-Truax, R., et al. (2008). Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clinical Cancer Research, 14, 4500–4510.

    Article  PubMed  CAS  Google Scholar 

  • Elsheikh, S. E., Green, A. R., Rakha, E. A., Powe, D. G., Ahmed, R. A., Collins, H. M., et al. (2009). Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Research, 69, 3802–3809.

    Article  PubMed  CAS  Google Scholar 

  • Entin-Meer, M., Yang, X., VandenBerg, S. R., Lamborn, K. R., Nudelman, A., Rephaeli, A., et al. (2007). In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro-oncology, 9, 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Esteller, M. (2002). CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 21, 5427–5440.

    Article  PubMed  CAS  Google Scholar 

  • Esteller, M. (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Reviews Genetics, 8, 286–298.

    Article  PubMed  CAS  Google Scholar 

  • Farioli-Vecchioli, S., Tanori, M., Micheli, L., Mancuso, M., Leonardi, L., Saran, A., et al. (2007). Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-differentiative gene PC3. FASEB Journal, 21, 2215–2225.

    Article  PubMed  CAS  Google Scholar 

  • Felsberg, J., Yan, P. S., Huang, T. H., Milde, U., Schramm, J., Wiestler, O. D., et al. (2006). DNA methylation and allelic losses on chromosome arm 14q in oligodendroglial tumours. Neuropathology and Applied Neurobiology, 32, 517–524.

    Article  PubMed  CAS  Google Scholar 

  • Foltz, G., Ryu, G. Y., Yoon, J. G., Nelson, T., Fahey, J., Frakes, A., et al. (2006). Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Research, 66, 6665–6674.

    Article  PubMed  CAS  Google Scholar 

  • Fotheringham, S., Epping, M. T., Stimson, L., Khan, O., Wood, V., Pezzella, F., et al. (2009). Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell, 15, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Fouladi, M., Park, J. R., Stewart, C. F., Gilbertson, R. J., Schaiquevich, P., Sun, J., et al. (2010). Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. Journal of Clinical Oncology, 28, 3623–3629.

    Article  PubMed  CAS  Google Scholar 

  • Friday, B. B., Anderson, S. K., Buckner, J., Yu, C., Giannini, C., Geoffroy, F., et al. (2012). Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-oncology, 14, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa, H., Takabatake, Y., Fukusato, T., Tachibana, O., Tsuchiya, Y., & Yamashita, J. (2003). Molecular analysis of the rhabdoid predisposition syndrome in a child: A novel germline hSNF5/INI1 mutation and absence of c-myc amplification. Journal of Neuro-oncology, 63, 257–262.

    Article  PubMed  Google Scholar 

  • Fujita, T., Igarashi, J., Okawa, E. R., Gotoh, T., Manne, J., Kolla, V., et al. (2008). CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. Journal of the National Cancer Institute, 100, 940–949.

    Article  PubMed  CAS  Google Scholar 

  • Furchert, S. E., Lanvers-Kaminsky, C., Juurgens, H., Jung, M., Loidl, A., & Fruhwald, M. C. (2007). Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. International Journal of Cancer, 120, 1787–1794.

    Article  CAS  Google Scholar 

  • Galanis, E., Jaeckle, K. A., Maurer, M. J., Reid, J. M., Ames, M. M., Hardwick, J. S., et al. (2009). Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. Journal of Clinical Oncology, 27, 2052–2058.

    Article  PubMed  CAS  Google Scholar 

  • Gao, J., Chen, T., Liu, J., Liu, W., Hu, G., Guo, X., et al. (2009). Loss of NECL1, a novel tumor suppressor, can be restored in glioma by HDAC inhibitor-Trichostatin A through Sp1 binding site. Glia, 57, 989–999.

    Article  PubMed  Google Scholar 

  • Gartel, A. L., & Kandel, E. S. (2008). miRNAs: Little known mediators of oncogenesis. Seminars in Cancer Biology, 18, 103–110.

    Article  PubMed  CAS  Google Scholar 

  • George, P., Bali, P., Annavarapu, S., Scuto, A., Fiskus, W., Guo, F., et al. (2005). Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood, 105, 1768–1776.

    Article  PubMed  CAS  Google Scholar 

  • Getun, I. V., Wu, Z. K., Khalil, A. M., & Bois, P. R. (2010). Nucleosome occupancy landscape and dynamics at mouse recombination hotspots. EMBO Reports, 11, 555–560.

    Article  PubMed  CAS  Google Scholar 

  • Gojo, I., Jiemjit, A., Trepel, J. B., Sparreboom, A., Figg, W. D., Rollins, S., et al. (2007). Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood, 109, 2781–2790.

    PubMed  CAS  Google Scholar 

  • Guidi, C. J., Sands, A. T., Zambrowicz, B. P., Turner, T. K., Demers, D. A., Webster, W., et al. (2001). Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Molecular and Cellular Biology, 21, 3598–3603.

    Article  PubMed  CAS  Google Scholar 

  • Guidi, C. J., Mudhasani, R., Hoover, K., Koff, A., Leav, I., Imbalzano, A. N., et al. (2006). Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis. Cancer Research, 66, 8076–8082.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, D. W., Lusher, M. E., Lindsey, J. C., Ellison, D. W., & Clifford, S. C. (2005). Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Letters, 227, 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Hayry, V., Tanner, M., Blom, T., Tynninen, O., Roselli, A., Ollikainen, M., et al. (2008). Copy number alterations of the polycomb gene BMI1 in gliomas. Acta Neuropathologica, 116, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, Y. F., Sheu, J. R., Hsiao, G., Lin, C. H., Chang, T. H., Chiu, P. T., et al. (2011). p53 in trichostatin A induced C6 glioma cell death. Biochimica et Biophysica Acta, 1810, 504–513.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Chen, K., Gong, W., Dunlop, N. M., Howard, O. M., Bian, X., et al. (2009). Regulation of the leucocyte chemoattractant receptor FPR in glioblastoma cells by cell differentiation. Carcinogenesis, 30, 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Huang, W. J., Lin, C. W., Lee, C. Y., Chi, L. L., Chao, Y. C., Wang, H. N., et al. (2011). NBM-HD-3, a novel histone deacetylase inhibitor with anticancer activity through modulation of PTEN and AKT in brain cancer cells. Journal of Ethnopharmacology, 136, 156–167.

    Article  PubMed  CAS  Google Scholar 

  • Inda, M. M., Munoz, J., Coullin, P., Fauvet, D., Danglot, G., Tunon, T., et al. (2006). High promoter hypermethylation frequency of p14/ARF in supratentorial PNET but not in medulloblastoma. Histopathology, 48, 579–587.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, E. M., Sievert, A. J., Gai, X., Hakonarson, H., Judkins, A. R., Tooke, L., et al. (2009). Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clinical Cancer Research, 15, 1923–1930.

    Article  PubMed  CAS  Google Scholar 

  • Jane, E. P., Premkumar, D. R., Addo-Yobo, S. O., & Pollack, I. F. (2009). Abrogation of mitogen-activated protein kinase and Akt signaling by vandetanib synergistically potentiates histone deacetylase inhibitor-induced apoptosis in human glioma cells. The Journal of Pharmacology and Experimental Therapeutics, 331, 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, R. W. (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nature Reviews Drug Discovery, 1, 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Jung, Y., Park, J., Bang, Y. J., & Kim, T. Y. (2008). Gene silencing of TSPYL5 mediated by aberrant promoter methylation in gastric cancers. Laboratory Investigation, 88, 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Khan, O., & La Thangue, N. B. (2012). HDAC inhibitors in cancer biology: Emerging mechanisms and clinical applications. Immunology and Cell Biology, 90, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T. Y., Zhong, S., Fields, C. R., Kim, J. H., & Robertson, K. D. (2006). Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Research, 66, 7490–7501.

    Article  PubMed  CAS  Google Scholar 

  • Knobbe, C. B., Reifenberger, J., Blaschke, B., & Reifenberger, G. (2004). Hypermethylation and transcriptional downregulation of the carboxyl-terminal modulator protein gene in glioblastomas. Journal of the National Cancer Institute, 96, 483–486.

    Article  PubMed  CAS  Google Scholar 

  • Konduri, S. D., Srivenugopal, K. S., Yanamandra, N., Dinh, D. H., Olivero, W. C., Gujrati, M., et al. (2003). Promoter methylation and silencing of the tissue factor pathway inhibitor-2 (TFPI-2), a gene encoding an inhibitor of matrix metalloproteinases in human glioma cells. Oncogene, 22, 4509–4516.

    Article  PubMed  CAS  Google Scholar 

  • Kongkham, P. N., Northcott, P. A., Ra, Y. S., Nakahara, Y., Mainprize, T. G., Croul, S. E., et al. (2008). An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Research, 68, 9945–9953.

    Article  PubMed  CAS  Google Scholar 

  • Kongkham, P. N., Northcott, P. A., Croul, S. E., Smith, C. A., Taylor, M. D., & Rutka, J. T. (2010). The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene, 29, 3017–3024.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, K. S., Sonnemann, J., & Beck, J. F. (2006). Histone deacetylase inhibitors induce cell death in supratentorial primitive neuroectodermal tumor cells. Oncology Reports, 16, 1047–1052.

    PubMed  CAS  Google Scholar 

  • Lehnertz, B., Ueda, Y., Derijck, A. A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., et al. (2003). Suv39 h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Current Biology, 13, 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  • Lindsey, J. C., Anderton, J. A., Lusher, M. E., & Clifford, S. C. (2005). Epigenetic events in medulloblastoma development. Neurosurgical Focus, 19, E10.

    Article  PubMed  Google Scholar 

  • Lindsey, J. C., Lusher, M. E., Strathdee, G., Brown, R., Gilbertson, R. J., Bailey, S., et al. (2006). Epigenetic inactivation of MCJ (DNAJD1) in malignant paediatric brain tumours. International Journal of Cancer, 118, 346–352.

    Article  CAS  Google Scholar 

  • Liu, B. L., Cheng, J. X., Zhang, X., Wang, R., Zhang, W., Lin, H., et al. (2010). Global histone modification patterns as prognostic markers to classify glioma patients. Cancer Epidemiology, Biomarkers and Prevention, 19, 2888–2896.

    Article  PubMed  CAS  Google Scholar 

  • Lo, W. S., Duggan, L., Emre, N. C., Belotserkovskya, R., Lane, W. S., Shiekhattar, R., et al. (2001). Snf1–a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science, 293, 1142–1146.

    Article  PubMed  CAS  Google Scholar 

  • Loeffler, J. S., Alexander, E., 3rd, Shea, W. M., Wen, P. Y., Fine, H. A., Kooy, H. M., et al. (1992). Radiosurgery as part of the initial management of patients with malignant gliomas. Journal of Clinical Oncology, 10, 1379–1385.

    PubMed  CAS  Google Scholar 

  • Lopez, C. A., Feng, F. Y., Herman, J. M., Nyati, M. K., Lawrence, T. S., & Ljungman, M. (2007). Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation. International Journal of Radiation Oncology Biology Physics, 69, 214–220.

    Article  CAS  Google Scholar 

  • Lucio-Eterovic, A. K., Cortez, M. A., Valera, E. T., Motta, F. J., Queiroz, R. G., Machado, H. R., et al. (2008). Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer, 8, 243.

    Article  PubMed  CAS  Google Scholar 

  • Maegawa, S., Yoshioka, H., Itaba, N., Kubota, N., Nishihara, S., Shirayoshi, Y., et al. (2001). Epigenetic silencing of PEG3 gene expression in human glioma cell lines. Molecular Carcinogenesis, 31, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Marino, A. M., Sofiadis, A., Baryawno, N., Johnsen, J. I., Larsson, C., Vukojevic, V., et al. (2011). Enhanced effects by 4-phenylbutyrate in combination with RTK inhibitors on proliferation in brain tumor cell models. Biochemical and Biophysical Research Communications, 411, 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, R., & Esteller, M. (2010). The DNA methylome of glioblastoma multiforme. Neurobiology of Disease, 39, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Masoudi, A., Elopre, M., Amini, E., Nagel, M. E., Ater, J. L., Gopalakrishnan, V., et al. (2008). Influence of valproic acid on outcome of high-grade gliomas in children. Anticancer Research, 28, 2437–2442.

    PubMed  Google Scholar 

  • McDonald, J. M., Dunlap, S., Cogdell, D., Dunmire, V., Wei, Q., Starzinski-Powitz, A., et al. (2006). The SHREW1 gene, frequently deleted in oligodendrogliomas, functions to inhibit cell adhesion and migration. Cancer Biology & Therapy, 5, 300–304.

    Article  CAS  Google Scholar 

  • Mehnert, J. M., & Kelly, W. K. (2007). Histone deacetylase inhibitors: biology and mechanism of action. The Cancer Journal, 13, 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454, 766–770.

    PubMed  CAS  Google Scholar 

  • Michalowski, M. B., de Fraipont, F., Michelland, S., Entz-Werle, N., Grill, J., Pasquier, B., et al. (2006). Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genetics and Cytogenetics, 166, 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Milde, T., Oehme, I., Korshunov, A., Kopp-Schneider, A., Remke, M., Northcott, P., et al. (2010). HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clinical Cancer Research, 16, 3240–3252.

    Article  PubMed  CAS  Google Scholar 

  • Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Reviews Cancer, 6, 38–51.

    Article  PubMed  CAS  Google Scholar 

  • Miyanaga, A., Gemma, A., Noro, R., Kataoka, K., Matsuda, K., Nara, M., et al. (2008). Antitumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model. Molecular Cancer Therapeutics, 7, 1923–1930.

    Article  PubMed  CAS  Google Scholar 

  • Mottet, D., Pirotte, S., Lamour, V., Hagedorn, M., Javerzat, S., Bikfalvi, A., et al. (2009). HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene, 28, 243–256.

    Article  PubMed  CAS  Google Scholar 

  • Muchardt, C., Sardet, C., Bourachot, B., Onufryk, C., & Yaniv, M. (1995). A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Research, 23, 1127–1132.

    Article  PubMed  CAS  Google Scholar 

  • Muhlisch, J., Schwering, A., Grotzer, M., Vince, G. H., Roggendorf, W., Hagemann, C., et al. (2006). Epigenetic repression of RASSF1A but not CASP8 in supratentorial PNET (sPNET) and atypical teratoid/rhabdoid tumors (AT/RT) of childhood. Oncogene, 25, 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  • Murr, R. (2010). Interplay between different epigenetic modifications and mechanisms. Advances in Genetics, 70, 101–141.

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan, R. P., & Costello, J. F. (2009). Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics, 6, 436–446.

    Article  PubMed  CAS  Google Scholar 

  • Nakahara, Y., Northcott, P. A., Li, M., Kongkham, P. N., Smith, C., Yan, H., et al. (2010). Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia, 12, 20–27.

    PubMed  CAS  Google Scholar 

  • Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D., & Grewal, S. I. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science, 292, 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Nikaki, A., Piperi, C., & Papavassiliou, A. G. (2012). Role of microRNAs in gliomagenesis: targeting miRNAs in glioblastoma multiforme therapy. Expert Opinion on Investigational Drugs, 21, 1475–1488.

    Google Scholar 

  • Northcott, P. A., Nakahara, Y., Wu, X., Feuk, L., Ellison, D. W., Croul, S., et al. (2009). Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genetics, 41, 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Oppel, F., Muller, N., Schackert, G., Hendruschk, S., Martin, D., Geiger, K. D., et al. (2011). SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells. Molecular Cancer, 10, 137.

    Article  PubMed  CAS  Google Scholar 

  • Palavalli, L. H., Prickett, T. D., Wunderlich, J. R., Wei, X., Burrell, A. S., Porter-Gill, P., et al. (2009). Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nature Genetics, 41, 518–520.

    Article  PubMed  CAS  Google Scholar 

  • Pang, J. C., Chang, Q., Chung, Y. F., Teo, J. G., Poon, W. S., Zhou, L. F., et al. (2005). Epigenetic inactivation of DLC-1 in supratentorial primitive neuroectodermal tumor. Human Pathology, 36, 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Pang, J. C., Li, K. K., Lau, K. M., Ng, Y. L., Wong, J., Chung, N. Y., et al. (2010). KIAA0495/PDAM is frequently downregulated in oligodendroglial tumors and its knockdown by siRNA induces cisplatin resistance in glioma cells. Brain Pathology, 20, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  • Papi, A., Ferreri, A. M., Rocchi, P., Guerra, F., & Orlandi, M. (2010). Epigenetic modifiers as anticancer drugs: effectiveness of valproic acid in neural crest-derived tumor cells. Anticancer Research, 30, 535–540.

    PubMed  CAS  Google Scholar 

  • Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807–1812.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, D. W., Li, M., Zhang, X., Jones, S., Leary, R. J., Lin, J. C., et al. (2011). The genetic landscape of the childhood cancer medulloblastoma. Science, 331, 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Peyre, M., Commo, F., Dantas-Barbosa, C., Andreiuolo, F., Puget, S., Lacroix, L., et al. (2010). Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS ONE, 5, e12932.

    Article  PubMed  CAS  Google Scholar 

  • Pfister, S., Schlaeger, C., Mendrzyk, F., Wittmann, A., Benner, A., Kulozik, A., et al. (2007). Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Research, 35, e51.

    Article  PubMed  CAS  Google Scholar 

  • Pfister, S. M., Korshunov, A., Kool, M., Hasselblatt, M., Eberhart, C., & Taylor, M. D. (2010). Molecular diagnostics of CNS embryonal tumors. Acta Neuropathologica, 120, 553–566.

    Article  PubMed  CAS  Google Scholar 

  • Piperi, C., Themistocleous, M. S., Papavassiliou, G. A., Farmaki, E., Levidou, G., Korkolopoulou, P., et al. (2010). High incidence of MGMT and RARbeta promoter methylation in primary glioblastomas: association with histopathological characteristics, inflammatory mediators and clinical outcome. Molecular Medicine, 16, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Portela, A., & Esteller, M. (2010). Epigenetic modifications and human disease. Nature Biotechnology, 28, 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  • Potts, C. B., Albitar, X. M., Anderson, C. K., Baritaki, S., Berkers, C., Bonavida, B., et al. (2011a). Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Current Cancer Drug Targets, 11, 254–284.

    Article  CAS  Google Scholar 

  • Potts, R. C., Zhang, P., Wurster, A. L., Precht, P., Mughal, M. R., Wood, W. H., 3rd, et al. (2011b). CHD5, a brain-specific paralog of Mi2 chromatin remodeling enzymes, regulates expression of neuronal genes. PLoS ONE, 6, e24515.

    Article  PubMed  CAS  Google Scholar 

  • Premkumar, D. R., Jane, E. P., Agostino, N. R., Didomenico, J. D., & Pollack, I. F. (2011). Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Molecular Carcinogenesis,. doi:10.1002/mc.21835.

    Google Scholar 

  • Ramalingam, S. S., Kummar, S., Sarantopoulos, J., Shibata, S., LoRusso, P., Yerk, M., et al. (2010). Phase I study of vorinostat in patients with advanced solid tumors and hepatic dysfunction: a National Cancer Institute Organ Dysfunction Working Group study. Journal of Clinical Oncology, 28, 4507–4512.

    Article  PubMed  CAS  Google Scholar 

  • Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406, 593–599.

    Article  PubMed  CAS  Google Scholar 

  • Restrepo, A., Smith, C. A., Agnihotri, S., Shekarforoush, M., Kongkham, P. N., Seol, H. J., et al. (2011). Epigenetic regulation of glial fibrillary acidic protein by DNA methylation in human malignant gliomas. Neuro-oncology, 13, 42–50.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D., & Orkin, S. H. (2000). Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 97, 13796–13800.

    Article  PubMed  CAS  Google Scholar 

  • Rottach, A., Frauer, C., Pichler, G., Bonapace, I. M., Spada, F., & Leonhardt, H. (2010). The multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Research, 38, 1796–1804.

    Article  PubMed  CAS  Google Scholar 

  • Rousseau, E., Ruchoux, M. M., Scaravilli, F., Chapon, F., Vinchon, M., De Smet, C., et al. (2003). CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathology and Applied Neurobiology, 29, 574–583.

    Article  PubMed  CAS  Google Scholar 

  • Rutka, J. T., Hubbard, S. L., Fukuyama, K., Matsuzawa, K., Dirks, P. B., & Becker, L. E. (1994). Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion, and adhesion of human astrocytoma cells. Cancer Research, 54, 3267–3272.

    PubMed  CAS  Google Scholar 

  • Ryan, Q. C., Headlee, D., Acharya, M., Sparreboom, A., Trepel, J. B., Ye, J., et al. (2005). Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. Journal of Clinical Oncology, 23, 3912–3922.

    Article  PubMed  CAS  Google Scholar 

  • Sarcar, B., Kahali, S., & Chinnaiyan, P. (2010). Vorinostat enhances the cytotoxic effects of the topoisomerase I inhibitor SN38 in glioblastoma cell lines. Journal of Neuro-oncology, 99, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Sawa, H., Murakami, H., Kumagai, M., Nakasato, M., Yamauchi, S., Matsuyama, N., et al. (2004). Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo. Acta Neuropathologica, 107, 523–531.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, N., Windmann, S., Reifenberger, G., & Riemenschneider, M. J. (2012). DNA hypermethylation and histone modifications downregulate the candidate tumor suppressor gene RRP22 on 22q12 in human gliomas. Brain Pathology, 22, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, M., Temme, A., Senner, V., Ebner, R., Schwind, S., Stevanovic, S., et al. (2007). Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. British Journal of Cancer, 96, 1293–1301.

    Article  PubMed  CAS  Google Scholar 

  • Schneppenheim, R., Fruhwald, M. C., Gesk, S., Hasselblatt, M., Jeibmann, A., Kordes, U., et al. (2010). Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. American Journal of Human Genetics, 86, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, J. M., Longo, M., & Nelson, P. S. (2003). Differential expression of bikunin (HAI-2/PB), a proposed mediator of glioma invasion, by demethylation treatment. Journal of Neuro-oncology, 64, 219–225.

    Article  PubMed  Google Scholar 

  • Schwartzentruber, J., Korshunov, A., Liu, X. Y., Jones, D. T., Pfaff, E., Jacob, K., et al. (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 482, 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Seligson, D. B., Horvath, S., Shi, T., Yu, H., Tze, S., Grunstein, M., et al. (2005). Global histone modification patterns predict risk of prostate cancer recurrence. Nature, 435, 1262–1266.

    Article  PubMed  CAS  Google Scholar 

  • Seligson, D. B., Horvath, S., McBrian, M. A., Mah, V., Yu, H., Tze, S., et al. (2009). Global levels of histone modifications predict prognosis in different cancers. The American Journal of Pathology, 174, 1619–1628.

    Article  PubMed  CAS  Google Scholar 

  • Sevenet, N., Lellouch-Tubiana, A., Schofield, D., Hoang-Xuan, K., Gessler, M., Birnbaum, D., et al. (1999a). Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Human Molecular Genetics, 8, 2359–2368.

    Article  PubMed  CAS  Google Scholar 

  • Sevenet, N., Sheridan, E., Amram, D., Schneider, P., Handgretinger, R., & Delattre, O. (1999b). Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. American Journal of Human Genetics, 65, 1342–1348.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, D. J., Clayton, R. N., & Farrell, W. E. (2002). Preferential loss of Death Associated Protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion. Oncogene, 21, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  • Singh, M. M., Manton, C. A., Bhat, K. P., Tsai, W. W., Aldape, K., Barton, M. C., et al. (2011). Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors. Neuro-oncology, 13, 894–903.

    Article  PubMed  CAS  Google Scholar 

  • Smits, M., Nilsson, J., Mir, S. E., van der Stoop, P. M., Hulleman, E., Niers, J. M., et al. (2010). miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget, 1, 710–720.

    PubMed  Google Scholar 

  • Spiller, S. E., Ditzler, S. H., Pullar, B. J., & Olson, J. M. (2008). Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA). Journal of Neuro-oncology, 87, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Steele, N. L., Plumb, J. A., Vidal, L., Tjornelund, J., Knoblauch, P., Rasmussen, A., et al. (2008). A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clinical Cancer Research, 14, 804–810.

    Article  PubMed  CAS  Google Scholar 

  • Tarasenko, N., Kessler-Icekson, G., Boer, P., Inbal, A., Schlesinger, H., Phillips, D. R., et al. (2012). The histone deacetylase inhibitor butyroyloxymethyl diethylphosphate (AN-7) protects normal cells against toxicity of anticancer agents while augmenting their anticancer activity. Investigational New Drugs, 30, 130–143.

    Article  PubMed  CAS  Google Scholar 

  • Teider, N., Scott, D. K., Neiss, A., Weeraratne, S. D., Amani, V. M., Wang, Y., et al. (2010). Neuralized1 causes apoptosis and downregulates Notch target genes in medulloblastoma. Neuro-oncology, 12, 1244–1256.

    PubMed  CAS  Google Scholar 

  • Tepel, M., Roerig, P., Wolter, M., Gutmann, D. H., Perry, A., Reifenberger, G., et al. (2008). Frequent promoter hypermethylation and transcriptional downregulation of the NDRG2 gene at 14q11.2 in primary glioblastoma. International Journal of Cancer, 123, 2080–2086.

    Article  CAS  Google Scholar 

  • Tsai, H. C., Wei, K. C., Tsai, C. N., Huang, Y. C., Chen, P. Y., Chen, S. M., et al. (2012). Effect of valproic acid on the outcome of glioblastoma multiforme. British Journal of Neurosurgery, 26, 347–354.

    Article  PubMed  Google Scholar 

  • Tzao, C., Tung, H. J., Jin, J. S., Sun, G. H., Hsu, H. S., Chen, B. H., et al. (2009). Prognostic significance of global histone modifications in resected squamous cell carcinoma of the esophagus. Modern Pathology, 22, 252–260.

    Article  PubMed  CAS  Google Scholar 

  • Ugur, H. C., Ramakrishna, N., Bello, L., Menon, L. G., Kim, S. K., Black, P. M., et al. (2007). Continuous intracranial administration of suberoylanilide hydroxamic acid (SAHA) inhibits tumor growth in an orthotopic glioma model. Journal of Neuro-oncology, 83, 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann, K., Rohde, K., Zeller, C., Szymas, J., Vogel, S., Marczinek, K., et al. (2003). Distinct methylation profiles of glioma subtypes. International Journal of Cancer, 106, 52–59.

    Article  CAS  Google Scholar 

  • Unoki, M., Nishidate, T., & Nakamura, Y. (2004). ICBP90, an E2F–1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene, 23, 7601–7610.

    Article  PubMed  CAS  Google Scholar 

  • Versteege, I., Sevenet, N., Lange, J., Rousseau-Merck, M. F., Ambros, P., Handgretinger, R., et al. (1998). Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature, 394, 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Vibhakar, R., Foltz, G., Yoon, J. G., Field, L., Lee, H., Ryu, G. Y., et al. (2007). Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma. Neuro-oncology, 9, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Vladimirova, V., Mikeska, T., Waha, A., Soerensen, N., Xu, J., Reynolds, P. C., et al. (2009). Aberrant methylation and reduced expression of LHX9 in malignant gliomas of childhood. Neoplasia, 11, 700–711.

    PubMed  CAS  Google Scholar 

  • Wagner, J. M., Hackanson, B., Lubbert, M., & Jung, M. (2010). Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clinical Epigenetics, 1, 117–136.

    Article  PubMed  CAS  Google Scholar 

  • Waha, A., Koch, A., Hartmann, W., Mack, H., Schramm, J., Sorensen, N., et al. (2004). Analysis of HIC-1 methylation and transcription in human ependymomas. International Journal of Cancer, 110, 542–549.

    Article  CAS  Google Scholar 

  • Waha, A., Guntner, S., Huang, T. H., Yan, P. S., Arslan, B., Pietsch, T., et al. (2005). Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia, 7, 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Xue, Y., Zhou, S., Kuo, A., Cairns, B. R., & Crabtree, G. R. (1996). Diversity and specialization of mammalian SWI/SNF complexes. Genes & Development, 10, 2117–2130.

    Article  CAS  Google Scholar 

  • Wang, G. G., Allis, C. D., & Chi, P. (2007). Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends in Molecular Medicine, 13, 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H., Soejima, K., Yasuda, H., Kawada, I., Nakachi, I., Yoda, S., et al. (2008). Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell International, 8, 15.

    Article  PubMed  CAS  Google Scholar 

  • Wegener, D., Deubzer, H. E., Oehme, I., Milde, T., Hildmann, C., Schwienhorst, A., et al. (2008). HKI 46F08, a novel potent histone deacetylase inhibitor, exhibits antitumoral activity against embryonic childhood cancer cells. Anti-Cancer Drugs, 19, 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Wei, L., Hong, S., Yoon, Y., Hwang, S. N., Park, J. C., Zhang, Z., et al. (2012). Early prediction of response to Vorinostat in an orthotopic rat glioma model. NMR in Biomedicine, 25, 1104–1111.

    Article  PubMed  CAS  Google Scholar 

  • Weller, M., Gorlia, T., Cairncross, J. G., van den Bent, M. J., Mason, W., Belanger, K., et al. (2011). Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology, 77, 1156–1164.

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann, S. M., Mildner, S. N., Bönisch, C., Israel, L., Maiser, A., Matheisl, S., et al. (2010). Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. The Journal of Cell Biology, 190, 777–791.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, J. E., Kramm, C., Kortmann, R. D., Pietsch, T., Rutkowski, S., Jorch, N., et al. (2008). Valproic acid was well tolerated in heavily pretreated pediatric patients with high-grade glioma. Journal of Neuro-oncology, 90, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • National Library of Medicine, U.S. National Institutes of Health (NIH), Food and Drug Administration (FDA). (2012). Available at: http://clinicaltrials.gov/.

  • Yi, J. M., Tsai, H. C., Glockner, S. C., Lin, S., Ohm, J. E., Easwaran, H., et al. (2008). Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Research, 68, 8094–8103.

    Article  PubMed  CAS  Google Scholar 

  • Yin, D., Ong, J. M., Hu, J., Desmond, J. C., Kawamata, N., Konda, B. M., et al. (2007). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clinical Cancer Research, 13, 1045–1052.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C., Friday, B. B., Yang, L., Atadja, P., Wigle, D., Sarkaria, J., et al. (2008). Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells. Neuro-oncology, 10, 309–319.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Papavassiliou.

Additional information

Anastasia Spyropoulou and Christina Piperi: equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spyropoulou, A., Piperi, C., Adamopoulos, C. et al. Deregulated Chromatin Remodeling in the Pathobiology of Brain Tumors. Neuromol Med 15, 1–24 (2013). https://doi.org/10.1007/s12017-012-8205-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8205-y

Keywords

Navigation