Abstract
Alzheimer’s disease (AD) has been shown to involve desensitised insulin receptor (IR) signalling. Liraglutide, a novel glucagon-like peptide 1 (GLP-1) analogue that facilitates insulin signalling, is currently approved for use in type 2 diabetes mellitus. In the present study, we show that distinctive alterations in the localisation and distribution of the IR and increased levels of insulin receptor substrate (IRS)-1 phosphorylated at serine 616 (IRS-1 pS616), a key marker of insulin resistance, are associated with amyloid-β plaque pathology in the frontal cortex of a mouse model of AD, APPSWE/PS1dE9. Altered IR status in APPSWE/PS1dE9 is most evident in extracellular deposits with the appearance of dystrophic neurites, with significantly increased IRS-1 pS616 levels detected within neurons and neurites. The IR and IRS-1 pS616 changes occur in the vicinity of all plaques in the APPSWE/PS1dE9 brain, and a significant upregulation of astrocytes and microglia surround this pathology. We show that liraglutide treatment for 8 weeks at 25 nmol/kg body weight i.p. once daily in 7-month-old mice significantly decreases IR aberrations in conjunction with a concomitant decrease in amyloid plaque load and levels of IRS-1 pS616. Liraglutide also induces a highly significant reduction in astrocytosis and microglial number associated with both plaques and IR pathology. The amelioration of IR aberrations and attenuation of IRS-1 pS616 upregulation, plaque and glial activation in APPSWE/PS1dE9 mice treated with liraglutide support the investigation of the therapeutic potential of liraglutide and long-lasting GLP-1 agonists in patients with AD.
This is a preview of subscription content, access via your institution.





References
Abbas, T., Faivre, E., & Holscher, C. (2009). Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: Interaction between type 2 diabetes and Alzheimer’s disease. Behavioural Brain Research, 205(1), 265–271.
Aisen, P. S. (2002). The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurology, 1(5), 279–284.
Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383–421.
An, W. L., Cowburn, R. F., Li, L., Braak, H., Alafuzoff, I., Iqbal, K., et al. (2003). Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. American Journal of Pathology, 163(2), 591–607.
Baggio, L. L., & Drucker, D. J. (2007). Biology of incretin: GLP-1 and GIP. Gastroenterology, 132(6), 2131–2157.
Bhaskar, K., Miller, M., Chludzinski, A., Herrup, K., Zagorski, M., & Lamb, B. T. (2009). The PI3 K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Molecular Neurodegeneration, 4, 14.
Bomfim, T. R., Forny-Germano, L., Sathler, L. B., Brito-Moreira, J., Houzel, J. C., Decker, H., et al. (2012). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. Journal of Clinical Investigation, 122(4), 1339–1353.
Caccamo, A., Majumder, S., Richardson, A., Strong, R., & Oddo, S. (2010a). Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: Effects on cognitive impairments. Journal of Biological Chemistry, 285(17), 13107–13120.
Caccamo, A., Maldonado, M. A., Bokov, A. F., Majumder, S., & Oddo, S. (2010b). CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 107(52), 22687–22692.
Caccamo, A., Maldonado, M. A., Majumder, S., Medina, D. X., Holbein, W., Magri, A., et al. (2011). Naturally secreted amyloid-beta increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. Journal of Biological Chemistry, 286(11), 8924–8932.
Carlsson, C. M. (2010). Type 2 diabetes mellitus, dyslipidemia, and Alzheimer’s disease. Journal of Alzheimer’s Disease, 20(3), 711–722.
Craft, S. (2005). Insulin resistance syndrome and Alzheimer’s disease: Age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiology of Aging, 26(Suppl 1), 65–69.
Craft, S. (2007). Insulin resistance and Alzheimer’s disease pathogenesis: Potential mechanisms and implications for treatment. Current Alzheimer Research, 4(2), 147–152.
D’Amico, M., Di Filippo, C., Marfella, R., Abbatecola, A. M., Ferraraccio, F., Rossi, F., et al. (2010). Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Experimental Gerontology, 45(3), 202–207.
De Felice, F. G., Vieira, M. N., Bomfim, T. R., Decker, H., Velasco, P. T., Lambert, M. P., et al. (2009). Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1971–1976.
de la Monte, S. M., & Wands, J. R. (2005). Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: Relevance to Alzheimer’s disease. Journal of Alzheimer’s Disease, 7(1), 45–61.
de la Monte, S. M., & Wands, J. R. (2008). Alzheimer’s disease is type 3 diabetes-evidence reviewed. Journal of Diabetes Science and Technology, 2(6), 1101–1113.
Drucker, D. J., & Nauck, M. A. (2006). The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 368(9548), 1696–1705.
During, M. J., Cao, L., Zuzga, D. S., Francis, J. S., Fitzsimons, H. L., Jiao, X., et al. (2003). Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nature Medicine, 9(9), 1173–1179.
Ferreira, S. T., & Klein, W. L. (2011). The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiology of Learning and Memory, 96(4), 529–543.
Garcia-Alloza, M., Dodwell, S. A., Meyer-Luehmann, M., Hyman, B. T., & Bacskai, B. J. (2006). Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. Journal of Neuropathology and Experimental Neurology, 65(11), 1082–1089.
Gengler, S., Hamilton, A., & Holscher, C. (2010). Synaptic plasticity in the hippocampus of a APP/PS1 mouse model of Alzheimer’s disease is impaired in old but not young mice. PLoS One, 5(3), e9764.
Gengler, S., McClean, P. L., McCurtin, R., Gault, V. A., & Holscher, C. (2012). Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiology of Aging, 33(2), 265–276.
Goke, R., Larsen, P. J., Mikkelsen, J. D., & Sheikh, S. P. (1995). Distribution of GLP-1 binding sites in the rat brain: Evidence that exendin-4 is a ligand of brain GLP-1 binding sites. European Journal of Neuroscience, 7(11), 2294–2300.
Gordon, M. N., Holcomb, L. A., Jantzen, P. T., DiCarlo, G., Wilcock, D., Boyett, K. W., et al. (2002). Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1 + APP mouse. Experimental Neurology, 173(2), 183–195.
Greenberg, D. A., & Jin, K. (2006). Neurodegeneration and neurogenesis: Focus on Alzheimer’s disease. Current Alzheimer Research, 3(1), 25–28.
Griffin, R. J., Moloney, A., Kelliher, M., Johnston, J. A., Ravid, R., Dockery, P., et al. (2005). Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. Journal of Neurochemistry, 93(1), 105–117.
Hamilton, A., & Holscher, C. (2009). Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. NeuroReport, 20(13), 1161–1166.
Holscher, C. (2011). Diabetes as a risk factor for Alzheimer’s disease: Insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochemical Society Transactions, 39(4), 891–897.
Holscher, C., & Li, L. (2010). New roles for insulin-like hormones in neuronal signalling and protection: New hopes for novel treatments of Alzheimer’s disease? Neurobiology of Aging, 31(9), 1495–1502.
Holst, J. J. (2007). The physiology of glucagon-like peptide 1. Physiological Reviews, 87(4), 1409–1439.
Hoyer, S. (1998). Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. Journal of Neural Transmission, 105(4–5), 415–422.
Hoyer, S. (2004). Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. European Journal of Pharmacology, 490(1–3), 115–125.
Iwai, T., Ito, S., Tanimitsu, K., Udagawa, S., & Oka, J. (2006). Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neuroscience Research, 55(4), 352–360.
Jankowsky, J. L., Slunt, H. H., Gonzales, V., Jenkins, N. A., Copeland, N. G., & Borchelt, D. R. (2004). APP processing and amyloid deposition in mice haplo-insufficient for presenilin 1. Neurobiology of Aging, 25(7), 885–892.
Jankowsky, J. L., Slunt, H. H., Ratovitski, T., Jenkins, N. A., Copeland, N. G., & Borchelt, D. R. (2001). Co-expression of multiple transgenes in mouse CNS: A comparison of strategies. Biomolecular Engineering, 17(6), 157–165.
Kim, S., Moon, M., & Park, S. (2009). Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. Journal of Endocrinology, 202(3), 431–439.
Klinge, P. M., Harmening, K., Miller, M. C., Heile, A., Wallrapp, C., Geigle, P., et al. (2011). Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer’s disease. Neuroscience Letters, 497(1), 6–10.
Lee, C. H., Yan, B., Yoo, K. Y., Choi, J. H., Kwon, S. H., Her, S., et al. (2011). Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia. Journal of Neuroscience Research, 89(7), 1103–1113.
Li, Y., Duffy, K. B., Ottinger, M. A., Ray, B., Bailey, J. A., Holloway, H. W., et al. (2010). GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. Journal of Alzheimer’s Disease, 19(4), 1205–1219.
Li, Y., Perry, T., Kindy, M. S., Harvey, B. K., Tweedie, D., Holloway, H. W., et al. (2009). GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1285–1290.
Lovshin, J. A., & Drucker, D. J. (2009). Incretin-based therapies for type 2 diabetes mellitus. Nature Reviews Endocrinology, 5(5), 262–269.
Luchsinger, J. A., & Gustafson, D. R. (2009). Adiposity, type 2 diabetes, and Alzheimer’s disease. Journal of Alzheimer’s Disease, 16(4), 693–704.
Ma, Q. L., Yang, F., Rosario, E. R., Ubeda, O. J., Beech, W., Gant, D. J., et al. (2009). Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin. Journal of Neuroscience, 29(28), 9078–9089.
McClean, P. L., Parthsarathy, V., Faivre, E., & Holscher, C. (2011). The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 31(17), 6587–6594.
McGeer, P. L., Rogers, J., & McGeer, E. G. (2006). Inflammation, anti-inflammatory agents and Alzheimer disease: The last 12 years. Journal of Alzheimer’s Disease, 9(3 Suppl), 271–276.
Merchenthaler, I., Lane, M., & Shughrue, P. (1999). Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. The Journal of Comparative Neurology, 403(2), 261–280.
Moloney, A. M., Griffin, R. J., Timmons, S., O’Connor, R., Ravid, R., & O’Neill, C. (2010). Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiology of Aging, 31(2), 224–243.
Oka, J., Suzuki, E., Goto, N., & Kameyama, T. (1999). Endogenous GLP-1 modulates hippocampal activity in beta-amyloid protein-treated rats. NeuroReport, 10(14), 2961–2964.
Oka, J., Suzuki, E., & Kondo, Y. (2000). Endogenous GLP-1 is involved in beta-amyloid protein-induced memory impairment and hippocampal neuronal death in rats. Brain Research, 878(1–2), 194–198.
O’Neill, C., Kiely, A. P., Coakley, M. F., Manning, S., & Long-Smith, C. M. (2012). Insulin and IGF-1 signalling: Longevity, protein homoeostasis and Alzheimer’s disease. Biochemical Society Transactions, 40(4), 721–727.
Paxinos, G., & Franklin, K. B. J. (2001). The mouse brain in stereotaxic coordinates (2nd ed.). London, UK: Academic Press.
Pei, J. J., Bjorkdahl, C., Zhang, H., Zhou, X., & Winblad, B. (2008). p70 S6 kinase and tau in Alzheimer’s disease. Journal of Alzheimer’s Disease, 14(4), 385–392.
Perry, T., & Greig, N. H. (2003). The glucagon-like peptides: A double-edged therapeutic sword? Trends in Pharmacological Sciences, 24(7), 377–383.
Perry, T., Haughey, N. J., Mattson, M. P., Egan, J. M., & Greig, N. H. (2002). Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. Journal of Pharmacology and Experimental Therapeutics, 302(3), 881–888.
Perry, T., Holloway, H. W., Weerasuriya, A., Mouton, P. R., Duffy, K., Mattison, J. A., et al. (2007). Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Experimental Neurology, 203(2), 293–301.
Perry, T., Lahiri, D. K., Sambamurti, K., Chen, D., Mattson, M. P., Egan, J. M., et al. (2003). Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. Journal of Neuroscience Research, 72(5), 603–612.
Pugazhenthi, S., Wang, M., Pham, S., Sze, C. I., & Eckman, C. B. (2011). Downregulation of CREB expression in Alzheimer’s brain and in Abeta-treated rat hippocampal neurons. Molecular Neurodegeneration, 6, 60.
Riederer, P., Bartl, J., Laux, G., & Grunblatt, E. (2011). Diabetes type II: A risk factor for depression–Parkinson–Alzheimer? Neurotoxicity Research, 19(2), 253–265.
Ronnemaa, E., Zethelius, B., Sundelof, J., Sundstrom, J., Degerman-Gunnarsson, M., Lannfelt, L., et al. (2009). Glucose metabolism and the risk of Alzheimer’s disease and dementia: A population-based 12 year follow-up study in 71-year-old men. Diabetologia, 52(8), 1504–1510.
Ruan, L., Kang, Z., Pei, G., & Le, Y. (2009). Amyloid deposition and inflammation in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Current Alzheimer Research, 6(6), 531–540.
Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R., et al. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? Journal of Alzheimer’s Disease, 7(1), 63–80.
Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., et al. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. Journal of Clinical Investigation, 122(4), 1316–1338.
Townsend, M., Mehta, T., & Selkoe, D. J. (2007). Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. Journal of Biological Chemistry, 282(46), 33305–33312.
Van de Velde, S., Hogan, M. F., & Montminy, M. (2011). mTOR links incretin signaling to HIF induction in pancreatic beta cells. Proceedings of the National Academy of Sciences of the United States of America, 108(41), 16876–16882.
Vitolo, O. V., Sant’Angelo, A., Costanzo, V., Battaglia, F., Arancio, O., & Shelanski, M. (2002). Amyloid beta-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13217–13221.
Wu, H. Y., Hudry, E., Hashimoto, T., Kuchibhotla, K., Rozkalne, A., Fan, Z., et al. (2010). Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. Journal of Neuroscience, 30(7), 2636–2649.
Zhang, W., Bai, M., Xi, Y., Hao, J., Zhang, Z., Su, C., et al. (2012). Multiple inflammatory pathways are involved in the development and progression of cognitive deficits in APPswe/PS1dE9 mice. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2011.12.023.
Zhao, W. Q., De Felice, F. G., Fernandez, S., Chen, H., Lambert, M. P., Quon, M. J., et al. (2008). Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB Journal, 22(1), 246–260.
Zhao, W. Q., Lacor, P. N., Chen, H., Lambert, M. P., Quon, M. J., Krafft, G. A., et al. (2009). Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. Journal of Biological Chemistry, 284(28), 18742–18753.
Acknowledgments
Financial support was provided by The Health Research Board of Ireland, Science Foundation Ireland (Research Frontiers Programme), Sanofi-Aventis and the Alzheimer’s Society (UK).
Author information
Authors and Affiliations
Corresponding author
Additional information
Caitriona M. Long-Smith and Sean Manning equally contributed to this manuscript.
Rights and permissions
About this article
Cite this article
Long-Smith, C.M., Manning, S., McClean, P.L. et al. The Diabetes Drug Liraglutide Ameliorates Aberrant Insulin Receptor Localisation and Signalling in Parallel with Decreasing Both Amyloid-β Plaque and Glial Pathology in a Mouse Model of Alzheimer’s Disease. Neuromol Med 15, 102–114 (2013). https://doi.org/10.1007/s12017-012-8199-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12017-012-8199-5
Keywords
- Alzheimer’s disease
- Diabetes
- GLP-1
- Liraglutide
- Insulin receptor
- Inflammation