Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Similar content being viewed by others
Abbreviations
- Aβ:
-
Beta-amyloid
- ACTH:
-
Adrenocorticotropin hormone
- AD:
-
Alzheimer’s disease
- ADAMS:
-
Aging, Demographics, and Memory Study
- APP:
-
Amyloid precursor protein
- BACE:
-
Beta-site APP-cleaving enzyme
- CNS:
-
Central nervous system
- CSF:
-
Cerebrospinal fluid
- CaMKII:
-
Ca2+/calmodulin-dependent protein kinase II
- DOR:
-
Delta-opioid receptor
- DAGO:
-
Tyr-D-Ala-Gly- (Me) Phe-Gly-ol
- DADPE:
-
D-Ala2, D-Leu5 enkephalin
- DSLET:
-
D-Ser2, Thr6 Leu5 enkephalin
- GABA:
-
Gamma aminobutyric acid
- KOR:
-
Kappa-opioid receptor
- LC:
-
Locus ceruleus
- LPH:
-
α, β, and γ-Lipotropin
- LTP:
-
Long-term potentiation
- MDMA:
-
3,4-Methylenedioxymethamphetamine
- MEK:
-
Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase
- MSH:
-
α- and β-Melanotropin
- MOR:
-
Mu-opioid receptor
- NMDA:
-
N-methyl-d-aspartate
- NOP:
-
Nociceptin receptor
- NFT:
-
Neurofibrillary tangles
- OR:
-
Opioid receptor
- OGFr:
-
Opioid growth factor receptor
- ORL1:
-
Opioid receptor-like receptor
- PHF:
-
Paired helical
- PI3K:
-
Phosphatidilinositol-3 kinase
- PNOC:
-
Prepronociceptin PNS: peripheral nervous system
- PET:
-
Positron Emission Tomography
- SPECT:
-
Single Photon Emission Computed Tomography
References
Ahmed, M. S., & Horst, M. A. (1986). Opioid receptors of human placental villi modulate acetylcholine release. Life Sciences, 39, 535–540.
Ahmed, M. S., Schoof, T., Zhou, D. H., & Quarles, C. (1989). Kappa opioid receptors of human placental villi modulate acetylcholine release. Life Sciences, 45, 2383–2393.
Akuzawa, N., Takeda, S., & Ishiguro, M. (2007). Structural modelling and mutation analysis of a nociceptin receptor and its ligand complexes. Journal of Biochemistry, 141, 907–916.
Alfaras-Melainis, K., Gomes, I., Rozenfeld, R., Zachariou, V., & Devi, L. (2009). Modulation of opioid receptor function by protein–protein interactions. Frontiers in Bioscience, 14, 3594–3607.
Anthony, I. C., Norrby, K. E., Dingwall, T., Carnie, F. W., Millar, T., Arango, J. C., et al. (2010). Predisposition to accelerated Alzheimer-related changes in the brains of human immunodeficiency virus negative opiate abusers. Brain, 133, 3685–3698.
Antonini, V., Marrazzo, A., Kleiner, G., Coradazzi, M., Ronsisvalle, S., Prezzavento, O., et al. (2011). Anti-amnesic and neuroprotective actions of the sigma-1 receptor agonist (-)-MR22 in rats with selective cholinergic lesion and amyloid infusion. Journal of Alzheimers Disease, 24, 569–586.
Arendt, T. (2004). Neurodegeneration and plasticity. International Journal of Developmental Neuroscience, 22, 507–514.
Avella, D. M., Kimchi, E. T., Donahue, R. N., Tagaram, H. R., McLaughlin, P. J., Zagon, I. S., et al. (2010). The opioid growth factor-opioid growth factor receptor axis regulates cell proliferation of human hepatocellular cancer. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298, R459–R466.
Bagetta, G., De Sarro, G. B., Sakurada, S., Rispoli, V., & Nistico, G. (1990). Different profile of electrocortical power spectrum changes after micro-infusion into the locus coeruleus of selective agonists at various opioid receptor subtypes in rats. British Journal of Pharmacology, 101, 655–661.
Bales, K. R., Tzavara, E. T., Wu, S., Wade, M. R., Bymaster, F. P., Paul, S. M., et al. (2006). Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-A beta antibody. The Journal of Clinical Investigation, 116, 825–832.
Barber, A. (1993). Mu- and kappa-opioid receptor agonists produce peripheral inhibition of neurogenic plasma extravasation in rat skin. European Journal of Pharmacology, 236, 113–120.
Barg, J., Belcheva, M., Rowinski, J., Ho, A., Burke, W. J., Chung, H. D., et al. (1993). Opioid receptor density changes in Alzheimer amygdala and putamen. Brain Research, 632, 209–215.
Bartsch, T., Akerman, S., & Goadsby, P. J. (2002). The ORL-1 (NOP1) receptor ligand nociceptin/orphanin FQ (N/OFQ) inhibits neurogenic dural vasodilatation in the rat. Neuropharmacology, 43, 991–998.
Baum, L., Masliah, E., Iimoto, D. S., Hansen, L. A., Halliday, W. C., & Saitoh, T. (1992). Casein kinase II is associated with neurofibrillary tangles but is not an intrinsic component of paired helical filaments. Brain Research, 573, 126–132.
Benamar, K., Yondorf, M., Barreto, V. T., Geller, E. B., & Adler, M. W. (2007). Deletion of mu-opioid receptor in mice alters the development of acute neuroinflammation. Journal of Pharmacology and Experimental Therapeutics, 323, 990–994.
Bergstrom, J., Ahmed, M., Li, J., Ahmad, T., Kreicbergs, A., & Spetea, M. (2006). Opioid peptides and receptors in joint tissues: Study in the rat. Journal of Orthopaedic Research, 24, 1193–1199.
Bhalla, S., Zhang, Z., Patterson, N., & Gulati, A. (2010). Effect of endothelin-A receptor antagonist on mu, delta and kappa opioid receptor-mediated antinociception in mice. European Journal of Pharmacology, 635, 62–71.
Birkas, E., Bakota, L., Gulya, K., Wen, T., Pintar, J., Toth, G., et al. (2011). A comprehensive study on the putative delta-opioid receptor (sub)types using the highly selective delta-antagonist, Tyr-Tic-(2S,3R)-beta-MePhe-Phe-OH. Neurochemistry International, 59, 192–201.
Blake, A. D., Bot, G., Tallent, M., Law, S. F., Li, S., Freeman, J. C., et al. (1997). Molecular regulation of opioid receptors. Receptors and Channels, 5, 231–235.
Blebea, J., Mazo, J. E., Kihara, T. K., Vu, J. H., McLaughlin, P. J., Atnip, R. G., et al. (2000). Opioid growth factor modulates angiogenesis. Journal of Vascular Surgery, 32, 364–373.
Boddeke, H. W., Meigel, I., Swoboda, R., & Boeijinga, P. H. (1994). The amyloid precursor protein fragment His 657-Lys 676 inhibits noradrenaline- and enkephaline-induced suppression of voltage sensitive calcium currents in NG108-15 hybrid cells. Neuroscience, 62, 631–634.
Bot, N., Schweizer, C., Ben Halima, S., & Fraering, P. C. (2011). Processing of the synaptic cell adhesion molecule neurexin-3beta by Alzheimer disease alpha- and gamma-secretases. Journal of Biological Chemistry, 286, 2762–2773.
Brion, J. P., Anderton, B. H., Authelet, M., Dayanandan, R., Leroy, K., Lovestone, S., et al. (2001). Neurofibrillary tangles and tau phosphorylation. Biochemical Society Symposium, 81–88.
Bruijnzeel, A. W. (2009). kappa-Opioid receptor signaling and brain reward function. Brain Research Reviews, 62, 127–146.
Brunden, K. R., Trojanowski, J. Q., & Lee, V. M. (2009). Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nature Reviews Drug Discovery, 8, 783–793.
Buoso, E., Lanni, C., Schettini, G., Govoni, S., & Racchi, M. (2010). beta-Amyloid precursor protein metabolism: Focus on the functions and degradation of its intracellular domain. Pharmacological Research, 62, 308–317.
Burchinsky, S. G. (1984). Neurotransmitter receptors in the central nervous system and aging: Pharmacological aspect (review). Experimental Gerontology, 19, 227–239.
Callahan, P., & Pasternak, G. W. (1987). Opiates, opioid peptides, and their receptors. Journal of Cardiothoracic Anesthesia, 1, 569–576.
Candore, G., Bulati, M., Caruso, C., Castiglia, L., Colonna-Romano, G., Di Bona, D., et al. (2010). Inflammation, cytokines, immune response, apolipoprotein E, cholesterol, and oxidative stress in Alzheimer disease: Therapeutic implications. Rejuvenation Research, 13, 301–313.
Caraci, F., Molinaro, G., Battaglia, G., Giuffrida, M. L., Riozzi, B., Traficante, A., et al. (2011). Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: Selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Molecular Pharmacology, 79, 618–626.
Carr, J. A., & Gregg, K. J. (1995). Opioid peptide inhibition of endogenous norepinephrine release from the A2 noradrenergic cell group in vitro. Neuropeptides, 28, 219–225.
Casamenti, F., Prosperi, C., Scali, C., Giovannelli, L., Colivicchi, M. A., Faussone-Pellegrini, M. S., et al. (1999). Interleukin-1beta activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: Implications for Alzheimer’s disease. Neuroscience, 91, 831–842.
Cerpa-Poljak, A., Lahnstein, J., Mason, K. E., Smythe, G. A., & Duncan, M. W. (1997). Mass spectrometric identification and quantification of hemorphins extracted from human adrenal and pheochromocytoma tissue. Journal of Neurochemistry, 68, 1712–1719.
Cesselin, F. (1991). Endorphins, opioid receptors and site of action of morphinomimetics. Agressologie, 32, 310–317.
Champion, H. C., Pierce, R. L., & Kadowitz, P. J. (1998). Nociceptin, a novel endogenous ligand for the ORL1 receptor, dilates isolated resistance arteries from the rat. Regulatory Peptides, 78, 69–74.
Chandrakumar, N. S., Stapelfeld, A., Beardsley, P. M., Lopez, O. T., Drury, B., Anthony, E., et al. (1992). Analogs of the delta opioid receptor selective cyclic peptide [2-D-penicillamine,5-D-penicillamine]-enkephalin: 2′,6′-dimethyltyrosine and Gly3-Phe4 amide bond isostere substitutions. Journal of Medicinal Chemistry, 35, 2928–2938.
Chapman, I. M., & Willoughby, J. O. (1993). Interactions between the effects of opioid, serotonin and alpha-2-adrenergic receptor agonists on growth hormone release in the male rat. Intravenous administration. Neuroendocrinology, 57, 912–920.
Chaturvedi, K. (2003). Opioid peptides, opioid receptors and mechanism of down regulation. Indian Journal of Experimental Biology, 41, 5–13.
Chavkin, C., McLaughlin, J. P., & Celver, J. P. (2001). Regulation of opioid receptor function by chronic agonist exposure: Constitutive activity and desensitization. Molecular Pharmacology, 60, 20–25.
Christov, A., Ottman, J. T., & Grammas, P. (2004). Vascular inflammatory, oxidative and protease-based processes: Implications for neuronal cell death in Alzheimer’s disease. Neurological Research, 26, 540–546.
Chu, D. C., Penney, J. B., Jr, & Young, A. B. (1987). Quantitative autoradiography of hippocampal GABAB and GABAA receptor changes in Alzheimer’s disease. Neuroscience Letters, 82, 246–252.
Church, J. (1991). Opioid receptors—the role of the sigma receptor? British Journal of Anaesthesia, 67, 361–362.
Clark, W. G., Bernardini, G. L., & Ponder, S. W. (1981). Central injection of a sigma opioid receptor agonist alters body temperature of cats. Brain Research Bulletin, 7, 279–281.
Codd, E. E., Yellin, T., & Walker, R. F. (1988). Binding of growth hormone-releasing hormones and enkephalin-derived growth hormone-releasing peptides to mu and delta opioid receptors in forebrain of rat. Neuropharmacology, 27, 1019–1025.
Cohen, R. M., Andreason, P. J., Doudet, D. J., Carson, R. E., & Sunderland, T. (1997). Opiate receptor avidity and cerebral blood flow in Alzheimer’s disease. Journal of the Neurological Sciences, 148, 171–180.
Collier, T. L., Waterhouse, R. N., & Kassiou, M. (2007). Imaging sigma receptors: Applications in drug development. Current Pharmaceutical Design, 13, 51–72.
Conason, A. H., & Sher, L. (2006). Alcohol use in adolescents with eating disorders. International Journal of Adolescent Medicine and health, 18, 31–36.
Connor, M., Vaughan, C. W., Jennings, E. A., Allen, R. G., & Christie, M. J. (1999). Nociceptin, Phe(1)psi-nociceptin(1 - 13), nocistatin and prepronociceptin(154 - 181) effects on calcium channel currents and a potassium current in rat locus coeruleus in vitro. British Journal of Pharmacology, 128, 1779–1787.
Conway, E. L., Brown, M. J., & Dollery, C. T. (1984). No evidence for involvement of endogenous opioid peptides in effects of clonidine on blood pressure, heart rate and plasma norepinephrine in anesthetized rats. Journal of Pharmacology and Experimental Therapeutics, 229, 803–808.
Coralli, M. V., Zanotti, E., & Salsi, A. (1986). Current concepts on the hypothesis of the cholinergic etiology of Alzheimer’s disease. Recenti Progressi in Medicina, 77, 436–439.
Costentin, J., Florin, S., Suaudeau, C., & Meunier, J. C. (1998). Cloning of prepronociceptin has led to the discovery of other biologically active peptides. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 192, 1099–1109.
D’Addario, C., Di Benedetto, M., Izenwasser, S., Candeletti, S., & Romualdi, P. (2007). Role of serotonin in the regulation of the dynorphinergic system by a kappa-opioid agonist and cocaine treatment in rat CNS. Neuroscience, 144, 157–164.
Davis, R. L., Buck, D. J., Saffarian, N., Mohan, S., DeSilva, U., Fernando, S. C., et al. (2008). Beta-funaltrexamine inhibits inducible nitric-oxide synthase expression in human astroglial cells. Journal of Neuroimmune Pharmacology, 3, 150–153.
Davis, R. L., Buck, D. J., Saffarian, N., & Stevens, C. W. (2007). The opioid antagonist, beta-funaltrexamine, inhibits chemokine expression in human astroglial cells. Journal of Neuroimmunology, 186, 141–149.
de la Monte, S. M., & Wands, J. R. (2001). Alzheimer-associated neuronal thread protein-induced apoptosis and impaired mitochondrial function in human central nervous system-derived neuronal cells. Journal of Neuropathology and Experimental Neurology, 60, 195–207.
DeLeo, J. A., Tanga, F. Y., & Tawfik, V. L. (2004). Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist, 10, 40–52.
Dhikav, V., & Anand, K. (2011). Potential predictors of hippocampal atrophy in Alzheimer’s disease. Drugs and Aging, 28, 1–11.
Diamant, M., Henricks, P. A., Nijkamp, F. P., & de Wied, D. (1989). Beta-endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes. Life Sciences, 45, 1537–1545.
Dietl, M. M., Cortes, R., & Palacios, J. M. (1988). Neurotransmitter receptors in the avian brain. III. GABA-benzodiazepine receptors. Brain Research, 439, 366–371.
Diez, M., Danner, S., Frey, P., Sommer, B., Staufenbiel, M., Wiederhold, K. H., et al. (2003). Neuropeptide alterations in the hippocampal formation and cortex of transgenic mice overexpressing beta-amyloid precursor protein (APP) with the Swedish double mutation (APP23). Neurobiology of Diseases, 14, 579–594.
Earl, J. R., Grootveld, M. C., Blake, D. R., & Morris, C. J. (1996). Effect of mu, delta and kappa opioid receptor agonists on a reactive oxygen species mediated model of skin inflammation. Skin Pharmacology, 9, 250–258.
Ernst, A., Buerger, K., Hartmann, O., Dodel, R., Noelker, C., Sommer, N., et al. (2010). Midregional Proenkephalin A and N-terminal Protachykinin A are decreased in the cerebrospinal fluid of patients with dementia disorders and acute neuroinflammation. Journal of Neuroimmunology, 221, 62–67.
Facchinetti, F., Storchi, A. R., Pacchetti, C., Martignoni, E., & Genazzani, A. R. (1987). Abnormal pro-opiomelanocortin processing in Alzheimer’s disease. A case report. Functional Neurology, 2, 349–353.
Feuerstein, T. J., Gleichauf, O., Peckys, D., Landwehrmeyer, G. B., Scheremet, R., & Jackisch, R. (1996). Opioid receptor-mediated control of acetylcholine release in human neocortex tissue. Naunyn Schmiedebergs Archives of Pharmacology, 354, 586–592.
Finder, V. H. (2010). Alzheimer’s disease: A general introduction and pathomechanism. Journal of Alzheimers Disease, 22(Suppl 3), 5–19.
Fischetti, C., Rizzi, A., Gavioli, E. C., Marzola, G., Trapella, C., Guerrini, R., et al. (2009). Further studies on the pharmacological features of the nociceptin/orphanin FQ receptor ligand ZP120. Peptides, 30, 248–255.
Florin, S., Leblond, F., Suaudeau, C., Meunier, J. C., & Costentin, J. (1999). Comparison of behavioural effects of NocII or NocIII, two related pronociceptin-derived peptides. Life Sciences, 65, 2727–2733.
Florin, S., Meunier, J., & Costentin, J. (2000). Autoradiographic localization of [3H]nociceptin binding sites in the rat brain. Brain Research, 880, 11–16.
Foddi, M. C., & Mennini, T. (1997). [125I][Tyr14]Orphanin binding to rat brain: Evidence for labelling the opioid-receptor-like 1 (ORL1). Neuroscience Letters, 230, 105–108.
Freeman, M. P., Freeman, S. A., & McElroy, S. L. (2002). The comorbidity of bipolar and anxiety disorders: Prevalence, psychobiology, and treatment issues. Journal of Affective Disorders, 68, 1–23.
Frost, J. J. (1993). Receptor imaging by PET and SPECT: Focus on the opiate receptor. Journal of Receptor Research, 13, 39–53.
Fujisawa, H., Dawson, D., Browne, S. E., MacKay, K. B., Bullock, R., & McCulloch, J. (1993). Pharmacological modification of glutamate neurotoxicity in vivo. Brain Research, 629, 73–78.
Gallagher, M., & Nicolle, M. M. (1993). Animal models of normal aging: Relationship between cognitive decline and markers in hippocampal circuitry. Behavioural Brain Research, 57, 155–162.
Gannon, R. L., & Terrian, D. M. (1991). U-50,488H inhibits dynorphin and glutamate release from guinea pig hippocampal mossy fiber terminals. Brain Research, 548, 242–247.
Garlind, A., Cowburn, R. F., Wiehager, B., Ravid, R., Winblad, B., & Fowler, C. J. (1995). Preservation of kappa 1 opioid receptor recognition site density and regulation by G-proteins in the temporal cortex of patients with Alzheimer’s disease. Neuroscience Letters, 185, 131–134.
Garreau, I., Cucumel, K., Dagouassat, N., Zhao, Q., Cupo, A., & Piot, J. M. (1997). Hemorphin peptides are released from hemoglobin by cathepsin D. Radioimmunoassay against the C-part of V-V-hemorphin-7: An alternative assay for the cathepsin D activity. Peptides, 18, 293–300.
Garuba, M., Mostek, D. E., & Burke, W. J. (2009). Opioid-induced hyperalgesia in a patient with dementia. Journal of the American Geriatrics Society, 57, 748–749.
Garzon, J., Hollt, V., Sanchez-Blazquez, P., & Herz, A. (1987). Neural activation of opioid mechanisms in guinea pig ileum by excitatory peptides. Journal of Pharmacology and Experimental Therapeutics, 240, 642–649.
Garzon, J., Schulz, R., & Herz, A. (1984). Application of receptor theory provides further evidence for the existence of the epsilon-opioid receptor in rat vas deferens. Neuropeptides, 5, 101–104.
Gazulla, J., & Cavero-Nagore, M. (2006). Glutamate and Alzheimer’s disease. Revista de neurologia, 42, 427–432.
Giros, B., Gros, C., Llorens-Cortes, C., & Schwartz, J. C. (1987). Opioid peptides: Metabolism and receptors. Gastroenterologie Clinique et Biologique, 11, 7B–13B.
Giuliani, S., Lecci, A., Tramontana, M., & Maggi, C. A. (1996). Role of kappa opioid receptors in modulating cholinergic twitches in the circular muscle of guinea-pig colon. British Journal of Pharmacology, 119, 985–989.
Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., & Gage, F. H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140, 918–934.
Godridge, H., Reynolds, G. P., Czudek, C., Calcutt, N. A., & Benton, M. (1987). Alzheimer-like neurotransmitter deficits in adult Down’s syndrome brain tissue. Journal of Neurology, Neurosurgery and Psychiatry, 50, 775–778.
Goeldner, C., Reiss, D., Wichmann, J., Meziane, H., Kieffer, B. L., & Ouagazzal, A. M. (2008). Nociceptin receptor impairs recognition memory via interaction with NMDA receptor-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in the hippocampus. Journal of Neuroscience, 28, 2190–2198.
Gonzalez Nunez, V., Gonzalez Sarmiento, R., & Rodriguez, R. E. (2003). Characterization of zebrafish proenkephalin reveals novel opioid sequences. Brain Research. Molecular Brain Research, 114, 31–39.
Grassel, S., Opolka, A., Anders, S., Straub, R. H., Grifka, J., Luger, T. A., et al. (2009). The melanocortin system in articular chondrocytes: Melanocortin receptors, pro-opiomelanocortin, precursor proteases, and a regulatory effect of alpha-melanocyte-stimulating hormone on proinflammatory cytokines and extracellular matrix components. Arthritis and Rheumatism, 60, 3017–3027.
Greenamyre, J. T., Maragos, W. F., Albin, R. L., Penney, J. B., & Young, A. B. (1988). Glutamate transmission and toxicity in Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 12, 421–430.
Gulya, K., Gehlert, D. R., Wamsley, J. K., Mosberg, H., Hruby, V. J., & Yamamura, H. I. (1986). Light microscopic autoradiographic localization of delta opioid receptors in the rat brain using a highly selective bis-penicillamine cyclic enkephalin analog. Journal of Pharmacology and Experimental Therapeutics, 238, 720–726.
Hadjiconstantinou, M., & Neff, N. H. (2011). Nicotine and endogenous opioids: Neurochemical and pharmacological evidence. Neuropharmacology, 60, 1209–1220.
Haroutunian, V., Santucci, A. C., & Davis, K. L. (1990). Implications of multiple transmitter system lesions for cholinomimetic therapy in Alzheimer’s disease. Progress in Brain Research, 84, 333–346.
Heilig, M., & Egli, M. (2006). Pharmacological treatment of alcohol dependence: Target symptoms and target mechanisms. Pharmacology & Therapeutics, 111, 855–876.
Heiss, W. D., & Herholz, K. (2006). Brain receptor imaging. Journal of Nuclear Medicine, 47, 302–312.
Heneka, M. T., Nadrigny, F., Regen, T., Martinez-Hernandez, A., Dumitrescu-Ozimek, L., Terwel, D., et al. (2010). Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proceedings of the National Academy of Sciences of the U S A, 107, 6058–6063.
Hiller, J. M., Itzhak, Y., & Simon, E. J. (1986). Limbic regions of the brain of Alzheimer’s disease patients show selective changes in mu, delta and kappa opioid receptor binding. NIDA Research Monograph, 75, 559–562.
Hiller, J. M., Itzhak, Y., & Simon, E. J. (1987). Selective changes in mu, delta and kappa opioid receptor binding in certain limbic regions of the brain in Alzheimer’s disease patients. Brain Research, 406, 17–23.
Hiramatsu, M., Inoue, K., & Kameyama, T. (2000). Dynorphin A-(1-13) and (2-13) improve beta-amyloid peptide-induced amnesia in mice. NeuroReport, 11, 431–435.
Hirota, K., Okawa, H., Appadu, B. L., Grandy, D. K., Devi, L. A., & Lambert, D. G. (1999). Stereoselective interaction of ketamine with recombinant mu, kappa, and delta opioid receptors expressed in Chinese hamster ovary cells. Anesthesiology, 90, 174–182.
Hjorth, S. A., Thirstrup, K., & Schwartz, T. W. (1996). Radioligand-dependent discrepancy in agonist affinities enhanced by mutations in the kappa-opioid receptor. Molecular Pharmacology, 50, 977–984.
Holden, J. E., Jeong, Y., & Forrest, J. M. (2005). The endogenous opioid system and clinical pain management. AACN Clinical Issues, 16, 291–301.
Homberg, J. R., Mul, J. D., de Wit, E., & Cuppen, E. (2009). Complete knockout of the nociceptin/orphanin FQ receptor in the rat does not induce compensatory changes in mu, delta and kappa opioid receptors. Neuroscience, 163, 308–315.
Hook, V. Y. (2006). Protease pathways in peptide neurotransmission and neurodegenerative diseases. Cellular and Molecular Neurobiology, 26, 449–469.
Howe, E. G. (2006). Do we undervalue feelings in patients who are cognitively impaired? Journal of Clinical Ethics, 17, 291–301.
Howell, O., Atack, J. R., Dewar, D., McKernan, R. M., & Sur, C. (2000). Density and pharmacology of alpha5 subunit-containing GABA(A) receptors are preserved in hippocampus of Alzheimer’s disease patients. Neuroscience, 98, 669–675.
Hruby, V. J., & Agnes, R. S. (1999). Conformation-activity relationships of opioid peptides with selective activities at opioid receptors. Biopolymers, 51, 391–410.
Hu, S., Sheng, W. S., & Rock, R. B. (2011). Immunomodulatory properties of kappa opioids and synthetic cannabinoids in HIV-1 neuropathogenesis. Journal of Neuroimmune Pharmacology, 6, 528–539.
Hugon, J., Esclaire, F., Terro, F., & Yardin, C. (2000). Apoptosis and Alzheimer disease. Contribution of cellular and transgenic models. Revue neurologique, 156, 123–125.
Hui, K. S. (2007). Brain-specific aminopeptidase: From enkephalinase to protector against neurodegeneration. Neurochemical Research, 32, 2062–2071.
Hyman, B. T., Eslinger, P. J., & Damasio, A. R. (1985). Effect of naltrexone on senile dementia of the Alzheimer type. Journal of Neurology, Neurosurgery and Psychiatry, 48, 1169–1171.
Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45, 583–595.
Hytrek, S. D., Smith, J. P., McGarrity, T. J., McLaughlin, P. J., Lang, C. M., & Zagon, I. S. (1996). Identification and characterization of zeta-opioid receptor in human colon cancer. American Journal of Physiology, 271, R115–R121.
Ianzer, D., Konno, K., Xavier, C. H., Stocklin, R., Santos, R. A., de Camargo, A. C., et al. (2006). Hemorphin and hemorphin-like peptides isolated from dog pancreas and sheep brain are able to potentiate bradykinin activity in vivo. Peptides, 27, 2957–2966.
Ibba, M., Kitayama, M., McDonald, J., Calo, G., Guerrini, R., Farkas, J., et al. (2008). Binding of the novel radioligand [(3)H]UFP-101 to recombinant human and native rat nociceptin/orphanin FQ receptors. Naunyn-Schmiedeberg’s Archives of Pharmacology, 378, 553–561.
Ionov, I. D., & Pushinskaya, I. I. (2010). Amyloid-beta production in aged guinea pigs: Atropine-induced enhancement is reversed by naloxone. Neuroscience Letters, 480, 83–86.
Israel, Y., Kandov, Y., Khaimova, E., Kest, A., Lewis, S. R., Pasternak, G. W., et al. (2005). NPY-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. Peptides, 26, 1167–1175.
Iwamoto, E. T. (1981). Locomotor activity and antinociception after putative mu, kappa and sigma opioid receptor agonists in the rat: Influence of dopaminergic agonists and antagonists. Journal of Pharmacology and Experimental Therapeutics, 217, 451–460.
Jackson, H. C., Ripley, T. L., & Nutt, D. J. (1989). Exploring delta-receptor function using the selective opioid antagonist naltrindole. Neuropharmacology, 28, 1427–1430.
James, R. C., Wessinger, W. D., Roberts, S. M., Millner, G. C., & Paule, M. G. (1988). Centrally mediated opioid induced depression of hepatic glutathione: Effects of intracerebroventricular administration of mu, kappa, sigma and delta agonists. Toxicology, 51, 267–279.
Jansen, K. L., Faull, R. L., Dragunow, M., & Synek, B. L. (1990). Alzheimer’s disease: changes in hippocampal N-methyl-d-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors—an autoradiographic study. Neuroscience, 39, 613–627.
Jeftinija, S. (1988). Enkephalins modulate excitatory synaptic transmission in the superficial dorsal horn by acting at mu-opioid receptor sites. Brain Research, 460, 260–268.
Jenab, S., Kest, B., Franklin, S. O., & Inturrisi, C. E. (1995). Quantitative distribution of the delta opioid receptor mRNA in the mouse and rat CNS. Life Sciences, 56, 2343–2355.
Jimenez-Corral, C., Moran-Sanchez, J. C., & Alonso-Navarro, H. (2006). Neuropeptides in Alzheimer’s disease. Revista de neurologia, 42, 354–359.
Jinsmaa, Y., & Yoshikawa, M. (2002). Release of hemorphin-5 from human hemoglobin by pancreatic elastase. Bioscience, Biotechnology, and Biochemistry, 66, 1130–1132.
Jones, E. G. (1986). Neurotransmitters in the cerebral cortex. Journal of Neurosurgery, 65, 135–153.
Kalman, J., Bjelik, A., Hugyecz, M., Timar, J., Gyarmati, Z., Zana, M., et al. (2007). 3,4-Methylenedioxymethamphetamine (MDMA), but not morphine, alters APP processing in the rat brain. International Journal of Neuropsychopharmacology, 10, 183–190.
Kalyuzhny, A. E., Dooyema, J., & Wessendorf, M. W. (2000). Opioid- and GABA(A)-receptors are co-expressed by neurons in rat brain. NeuroReport, 11, 2625–2628.
Kapusta, D. R., Burmeister, M. A., Calo, G., Guerrini, R., Gottlieb, H. B., & Kenigs, V. A. (2005). Functional selectivity of nociceptin/orphanin FQ peptide receptor partial agonists on cardiovascular and renal function. Journal of Pharmacology and Experimental Therapeutics, 314, 643–651.
Kapusta, D. R., & Obih, J. C. (1993). Central kappa opioid receptor-evoked changes in renal function in conscious rats: Participation of renal nerves. Journal of Pharmacology and Experimental Therapeutics, 267, 197–204.
Kasakov, L., Nashar, M., Naydenova, E., Vezenkov, L., & Vlaskovska, M. (2010). In vitro studies of the activity of newly synthesized nociceptin/orphanin FQ receptor ligand analogues. Protein and Peptide Letters, 17, 616–620.
Kawano, S., Ambo, A., & Sasaki, Y. (2006). Synthesis and receptor binding properties of chimeric peptides containing a mu-opioid receptor ligand and nociceptin/orphanin FQ receptor ligand Ac-RYYRIK-amide. Bioorganic & Medicinal Chemistry Letters, 16, 4839–4841.
Kirvell, S. L., Esiri, M., & Francis, P. T. (2006). Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease. Journal of Neurochemistry, 98, 939–950.
Kitayama, M., McDonald, J., Barnes, T. A., Calo, G., Guerrini, R., Rowbotham, D. J., et al. (2007). In vitro pharmacological characterisation of a novel cyclic nociceptin/orphanin FQ analogue c[Cys(7,10)]N/OFQ(1-13)NH (2. Naunyn-Schmiedeberg’s Archives of Pharmacology, 375, 369–376.
Kitchen, I., Leslie, F. M., Kelly, M., Barnes, R., Crook, T. J., Hill, R. G., et al. (1995). Development of delta-opioid receptor subtypes and the regulatory role of weaning: Radioligand binding, autoradiography and in situ hybridization studies. Journal of Pharmacology and Experimental Therapeutics, 275, 1597–1607.
Klunk, W. E., Debnath, M. L., McClure, R. J., & Pettegrew, J. W. (1995). Inactivity of phosphoethanolamine, an endogenous GABA analog decreased in Alzheimer’s disease, at GABA binding sites. Life Sciences, 56, 2377–2383.
Knapp, R. J., & Yamamura, H. I. (1990). [3H][D-Pen2, D-Pen5]enkephalin binding to delta opioid receptors on intact neuroblastoma-glioma (NG 108-15) hybrid cells. Life Sciences, 46, 1457–1463.
Kong, H., Raynor, K., Yano, H., Takeda, J., Bell, G. I., & Reisine, T. (1994). Agonists and antagonists bind to different domains of the cloned kappa opioid receptor. Proceedings of the National Academy of Sciences of the U S A, 91, 8042–8046.
Kosterlitz, H. W. (1980). Opioid peptides and their receptors. Progress in Biochemical Pharmacology, 16, 3–10.
Kurt, M. A., Davies, D. C., & Kidd, M. (1997). Paired helical filament morphology varies with intracellular location in Alzheimer’s disease brain. Neuroscience Letters, 239, 41–44.
Kuzmin, A., Madjid, N., Terenius, L., Ogren, S. O., & Bakalkin, G. (2006). Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice. Neuropsychopharmacology, 31, 1928–1937.
Law, A., Gauthier, S., & Quirion, R. (2001). Say NO to Alzheimer’s disease: The putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Research. Brain Research Reviews, 35, 73–96.
Lemaire, S., Day, R., Dumont, M., Chouinard, L., & Calvert, R. (1984). Dynorphin and enkephalins in adrenal paraneurones. Opiates in the adrenal medulla. Canadian Journal of Physiology and Pharmacology, 62, 484–492.
Lengauer, E. (2007). Drug dependent adolescents have Alzheimer disease-like brains. Kinderkrankenschwester, 26, 37.
Leskela, T. T., Markkanen, P. M., Alahuhta, I. A., Tuusa, J. T., & Petaja-Repo, U. E. (2009). Phe27Cys polymorphism alters the maturation and subcellular localization of the human delta opioid receptor. Traffic, 10, 116–129.
Lester, P. A., & Traynor, J. R. (2006). Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes. Brain Research, 1073–1074, 290–296.
Leung, K. (2004a). [6-O-methyl-11C]Diprenorphine.
Leung, K. (2004b). (20R)-4,5-alpha-Epoxy-17-methyl-3-hydroxy-6-[11C]methoxy-alpha,17-dimethyl -alpha-(2-phenylethyl)-6,14-ethenomorphinan-7-methanol.
Leung, K. (2004c). DY-675-g7-Poly(lactic-co-glycolic acid) nanoparticles.
Lew, G. M. (1997). Changes in microtubular tau protein after morphine in a cultured human neuroblastoma cell line. General Pharmacology, 29, 869–872.
Li, J. Q., Huang, L. Y., Chen, X. J., Weng, Z. J., & Zhang, C. N. (2008). Synthesis and central none-opioid analgesic activity of SIPI5047. Yao Xue Xue Bao, 43, 611–618.
Lin, S. L., Tsai, R. Y., Tai, Y. H., Cherng, C. H., Wu, C. T., Yeh, C. C., et al. (2010). Ultra-low dose naloxone upregulates interleukin-10 expression and suppresses neuroinflammation in morphine-tolerant rat spinal cords. Behavioural Brain Research, 207, 30–36.
Liu, C. H., Cherng, C. H., Lin, S. L., Yeh, C. C., Wu, C. T., Tai, Y. H., et al. (2011). N-methyl-d-aspartate receptor antagonist MK-801 suppresses glial pro-inflammatory cytokine expression in morphine-tolerant rats. Pharmacology, Biochemistry and Behavior, 99, 371–380.
Liu, B., & Hong, J. S. (2003). Neuroprotective effect of naloxone in inflammation-mediated dopaminergic neurodegeneration. Dissociation from the involvement of opioid receptors. Methods in Molecular Medicine, 79, 43–54.
Liu, Y., Qin, L., Wilson, B. C., An, L., Hong, J. S., & Liu, B. (2002). Inhibition by naloxone stereoisomers of beta-amyloid peptide (1-42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons. Journal of Pharmacology and Experimental Therapeutics, 302, 1212–1219.
Loeb, C., Albano, C., & Serrati, C. (1984). Cerebrospinal fluid levels of leucine enkephalin and methionine enkephalin in patients with altered behavior. Schweizer Archiv für Neurologie, Neurochirurgie und Psychiatrie, 134, 29–40.
Lolait, S. J., Clements, J. A., Markwick, A. J., Cheng, C., McNally, M., Smith, A. I., et al. (1986). Pro-opiomelanocortin messenger ribonucleic acid and posttranslational processing of beta endorphin in spleen macrophages. Journal of Clinical Investigation, 77, 1776–1779.
Lomas, L. M., Barrett, A. C., Terner, J. M., Lysle, D. T., & Picker, M. J. (2007). Sex differences in the potency of kappa opioids and mixed-action opioids administered systemically and at the site of inflammation against capsaicin-induced hyperalgesia in rats. Psychopharmacology (Berl), 191, 273–285.
Mackay, K. B., Dewar, D., & McCulloch, J. (1994). kappa-1 Opioid receptors of the temporal cortex are preserved in Alzheimer’s disease. Journal of Neural Transmission. Parkinson’s Disease and Dementia Section, 7, 73–79.
Maggi, R., Pimpinelli, F., Martini, L., & Piva, F. (1995). Inhibition of luteinizing hormone-releasing hormone secretion by delta-opioid agonists in GT1-1 neuronal cells. Endocrinology, 136, 5177–5181.
Maire, J. C., & Wurtman, R. J. (1984). Choline production from choline-containing phospholipids: A hypothetical role in Alzheimer’s disease and aging. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 8, 637–642.
Makman, M. H. (1994). Morphine receptors in immunocytes and neurons. Advances in Neuroimmunology, 4, 69–82.
Mancuso, M., Orsucci, D., LoGerfo, A., Calsolaro, V., & Siciliano, G. (2010). Clinical features and pathogenesis of Alzheimer’s disease: Involvement of mitochondria and mitochondrial DNA. Advances in Experimental Medicine and Biology, 685, 34–44.
Mansour, A., Fox, C. A., Burke, S., Meng, F., Thompson, R. C., Akil, H., et al. (1994). Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: An in situ hybridization study. The Journal of Comparative Neurology, 350, 412–438.
Mansour, A., Thompson, R. C., Akil, H., & Watson, S. J. (1993). Delta opioid receptor mRNA distribution in the brain: Comparison to delta receptor binding and proenkephalin mRNA. Journal of Chemical Neuroanatomy, 6, 351–362.
Marki, A., Monory, K., Otvos, F., Toth, G., Krassnig, R., Schmidhammer, H., et al. (1999). Mu-opioid receptor specific antagonist cyprodime: Characterization by in vitro radioligand and [35S]GTPgammaS binding assays. European Journal of Pharmacology, 383, 209–214.
Marti, M., Mela, F., Fantin, M., Zucchini, S., Brown, J. M., Witta, J., et al. (2005). Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. Journal of Neuroscience, 25, 9591–9601.
Massino Iu, S., Tsibezov, V. V., Dmitriev, A. D., Vostrikov, V. M., & Soldatova, I. A. (1988). Monoclonal antibodies to alpha-endorphin effective in immunohistochemistry and immunoblotting. Biulleten Eksperimentalnoi Biologii I Meditsiny, 106, 578–581.
Mathieu-Kia, A. M., Fan, L. Q., Kreek, M. J., Simon, E. J., & Hiller, J. M. (2001). Mu-, delta- and kappa-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer’s disease patients. Brain Research, 893, 121–134.
Maurice, T., Su, T. P., & Privat, A. (1998). Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience, 83, 413–428.
May, E. L. (1992). Leads to current therapy, to opioid receptor subtypes and to sigma receptors. NIDA Research Monograph, 119, 59–70.
McDonald, J., & Lambert, D. G. (2010). Binding of GTPgamma[35S] is regulated by GDP and receptor activation. Studies with the nociceptin/orphanin FQ receptor. British Journal of Pharmacology, 159, 1286–1293.
McGeer, P. L., & McGeer, E. G. (1980). Chemistry of mood and emotion. Annual Review of Psychology, 31, 273–307.
McLaughlin, P. J., Sassani, J. W., Klocek, M. S., & Zagon, I. S. (2010). Diabetic keratopathy and treatment by modulation of the opioid growth factor (OGF)-OGF receptor (OGFr) axis with naltrexone: A review. Brain Research Bulletin, 81, 236–247.
McLaughlin, P. J., & Wu, Y. (1997). Identification and characterization of the zeta-opioid receptor in developing rat heart. American Journal of Physiology, 272, R1841–R1846.
Meilandt, W. J., Yu, G. Q., Chin, J., Roberson, E. D., Palop, J. J., Wu, T., et al. (2008). Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer’s disease. Journal of Neuroscience, 28, 5007–5017.
Mellor, J. R., & Randall, A. D. (2001). Synaptically released neurotransmitter fails to desensitize postsynaptic GABA(A) receptors in cerebellar cultures. Journal of Neurophysiology, 85, 1847–1857.
Melzack, R. (1999). From the gate to the neuromatrix. Pain Supplement, 6, S121–S126.
Mendelsohn, L. G., Kalra, V., Johnson, B. G., & Kerchner, G. A. (1985). Sigma opioid receptor: Characterization and co-identity with the phencyclidine receptor. Journal of Pharmacology and Experimental Therapeutics, 233, 597–602.
Menschik, E. D., & Finkel, L. H. (1998). Neuromodulatory control of hippocampal function: Towards a model of Alzheimer’s disease. Artificial Intelligence in Medicine, 13, 99–121.
Merg, F., Filliol, D., Usynin, I., Bazov, I., Bark, N., Hurd, Y. L., et al. (2006). Big dynorphin as a putative endogenous ligand for the kappa-opioid receptor. Journal of Neurochemistry, 97, 292–301.
Meucci, E., Delay-Goyet, P., Roques, B. P., & Zajac, J. M. (1989). Binding in vivo of selective mu and delta opioid receptor agonists: Opioid receptor occupancy by endogenous enkephalins. European Journal of Pharmacology, 171, 167–178.
Meunier, J. C. (1986). The opioid peptides and their receptors. Biochimie, 68, 1153–1158.
Meunier, J., Ieni, J., & Maurice, T. (2006). The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. British Journal of Pharmacology, 149, 998–1012.
Minami, M., Onogi, T., Toya, T., Katao, Y., Hosoi, Y., Maekawa, K., et al. (1994). Molecular cloning and in situ hybridization histochemistry for rat mu-opioid receptor. Neuroscience Research, 18, 315–322.
Mizukami, K., Ikonomovic, M. D., Grayson, D. R., Sheffield, R., & Armstrong, D. M. (1998). Immunohistochemical study of GABAA receptor alpha1 subunit in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Brain Research, 799, 148–155.
Mohr, E., Bruno, G., Foster, N., Gillespie, M., Cox, C., Hare, T. A., et al. (1986). GABA-agonist therapy for Alzheimer’s disease. Clinical Neuropharmacology, 9, 257–263.
Mollereau, C., & Mouledous, L. (2000). Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides, 21, 907–917.
Mollereau, C., Parmentier, M., Mailleux, P., Butour, J. L., Moisand, C., Chalon, P., et al. (1994). ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Letters, 341, 33–38.
Mollereau, C., Roumy, M., & Zajac, J. M. (2005). Opioid-modulating peptides: mechanisms of action. Current Topics in Medicinal Chemistry, 5, 341–355.
Mori, T., Yoshizawa, K., Nomura, M., Isotani, K., Torigoe, K., Tsukiyama, Y., et al. (2011). Sigma-1 receptor function is critical for both the discriminative stimulus and aversive effects of the kappa-opioid receptor agonist U-50488H. Addiction Biology. doi:10.1111/j.1369-1600.2010.00306.x.
Morin-Surun, M. P., Boudinot, E., Dubois, C., Matthes, H. W., Kieffer, B. L., Denavit-Saubie, M., et al. (2001). Respiratory function in adult mice lacking the mu-opioid receptor: Role of delta-receptors. European Journal of Neuroscience, 13, 1703–1710.
Morley, J. E. (1986). Neuropeptides, behavior, and aging. Journal of the American Geriatrics Society, 34, 52–62.
Moron, J. A., Gullapalli, S., Taylor, C., Gupta, A., Gomes, I., & Devi, L. A. (2010). Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: Conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology, 35, 955–966.
Muhlbauer, M., Metcalf, J. C., Jr, Robertson, J. T., Fridland, G., & Desiderio, D. M. (1986). Opioid peptides in the cerebrospinal fluid of Alzheimer patients. Biomedical Chromatography, 1, 155–158.
Multhaup, G. (2006). Amyloid precursor protein and BACE function as oligomers. Neurodegenerative Disease, 3, 270–274.
Muyllaert, D., Kremer, A., Jaworski, T., Borghgraef, P., Devijver, H., Croes, S., et al. (2008). Glycogen synthase kinase-3beta, or a link between amyloid and tau pathology? Genes, Brain and Behavior, 7(Suppl 1), 57–66.
Nagga, K., Bogdanovic, N., & Marcusson, J. (1999). GABA transporters (GAT-1) in Alzheimer’s disease. Journal of Neural Transmission, 106, 1141–1149.
Nakayama, S., Taniyama, K., Matsuyama, S., Ohgushi, N., Tsunekawa, K., & Tanaka, C. (1990). Regulatory role of enteric mu and kappa opioid receptors in the release of acetylcholine and norepinephrine from guinea pig ileum. Journal of Pharmacology and Experimental Therapeutics, 254, 792–798.
Narita, M., Aoki, T., & Suzuki, T. (2001). Mechanisms of morphine-induced rewarding effect: Involvement of NMDA receptor subunits. Nippon Yakurigaku Zasshi, 117, 13–19.
Narita, M., Kuzumaki, N., Miyatake, M., Sato, F., Wachi, H., Seyama, Y., et al. (2006). Role of delta-opioid receptor function in neurogenesis and neuroprotection. Journal of Neurochemistry, 97, 1494–1505.
Nemeroff, C. B., & Bissette, G. (1985). Involvement of non-opioid peptides in the pathogenesis of neurological and psychiatric disorders: Evidence from CSF and post-mortem studies. Progress in Clinical and Biological Research, 192, 333–341.
Ni, Y., Zhao, X., Bao, G., Zou, L., Teng, L., Wang, Z., et al. (2006). Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nature Medicine, 12, 1390–1396.
Nielsen, C. K., Simms, J. A., Bito-Onon, J. J., Li, R., Ananthan, S., & Bartlett, S. E. (2011). The delta opioid receptor antagonist, SoRI-9409, decreases yohimbine stress-induced reinstatement of ethanol-seeking. Addiction Biology, 17, 224–234.
Nielsen, C. K., Simms, J. A., Pierson, H. B., Li, R., Saini, S. K., Ananthan, S., et al. (2008). A novel delta opioid receptor antagonist, SoRI-9409, produces a selective and long-lasting decrease in ethanol consumption in heavy-drinking rats. Biological Psychiatry, 64, 974–981.
Nissen, J. B., & Kragballe, K. (1997). Enkephalins modulate differentiation of normal human keratinocytes in vitro. Experimental Dermatology, 6, 222–229.
Norn, S., Kruse, P. R., & Kruse, E. (2005). History of opium poppy and morphine. Dan Medicinhist Arbog, 33, 171–184.
Ong, W. Y., & Farooqui, A. A. (2005). Iron, neuroinflammation, and Alzheimer’s disease. Journal of Alzheimers Disease, 8, 183–200; discussion 209-115.
Pakaski, M., & Kalman, J. (2008). Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochemistry International, 53, 103–111.
Parihar, M. S., & Hemnani, T. (2004). Alzheimer’s disease pathogenesis and therapeutic interventions. Journal of Clinical Neuroscience, 11, 456–467.
Paterlini, M. G. (2005). The function of the extracellular regions in opioid receptor binding: Insights from computational biology. Current Topics in Medicinal Chemistry, 5, 357–367.
Paul, D., Gauthier, C. A., Minor, L. D., & Gonzales, G. R. (1997). The effects of postmortem delay on mu, delta and kappa opioid receptor subtypes in rat brain and guinea pig cerebellum evaluated by radioligand receptor binding. Life Sciences, 61, 1993–1998.
Perry, E. (1988). Acetylcholine and Alzheimer’s disease. British Journal of Psychiatry, 152, 737–740.
Perry, E. K., Tomlinson, B. E., Blessed, G., Perry, R. H., Cross, A. J., & Crow, T. J. (1981). Neuropathological and biochemical observations on the noradrenergic system in Alzheimer’s disease. Journal of the Neurological Sciences, 51, 279–287.
Petaja-Repo, U. E., Hogue, M., Laperriere, A., Walker, P., & Bouvier, M. (2000). Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. Journal of Biological Chemistry, 275, 13727–13736.
Petty, F., Davis, L. L., Kabel, D., & Kramer, G. L. (1996). Serotonin dysfunction disorders: A behavioral neurochemistry perspective. Journal of Clinical Psychiatry, 57(Suppl 8), 11–16.
Pike, V. W., Rash, K. S., Chen, Z., Pedregal, C., Statnick, M. A., Kimura, Y., et al. (2011). Synthesis and evaluation of radioligands for imaging brain nociceptin/orphanin FQ peptide (NOP) receptors with positron emission tomography. Journal of Medicinal Chemistry, 54, 2687–2700.
Pitkanen, A., Jolkkonen, J., & Riekkinen, P. (1987). Beta-endorphin, somatostatin, and prolactin levels in cerebrospinal fluid of epileptic patients after generalised convulsion. Journal of Neurology, Neurosurgery and Psychiatry, 50, 1294–1297.
Poisnel, G., Oueslati, F., Dhilly, M., Delamare, J., Perrio, C., Debruyne, D., et al. (2008). [11C]-MeJDTic: A novel radioligand for kappa-opioid receptor positron emission tomography imaging. Nuclear Medicine and Biology, 35, 561–569.
Poljak, A., McLean, C. A., Sachdev, P., Brodaty, H., & Smythe, G. A. (2004). Quantification of hemorphins in Alzheimer’s disease brains. Journal of Neuroscience Research, 75, 704–714.
Porthe, G., Frances, B., Verrier, B., Cros, J., & Meunier, J. C. (1988). The kappa-opioid receptor from human placenta: Hydrodynamic characteristics and evidence for its association with a G protein. Life Sciences, 43, 559–567.
Price, D. L., Kitt, C. A., Struble, R. G., Whitehouse, P. J., Cork, L. C., & Walker, L. C. (1985). Neurobiological studies of transmitter systems in aging and in Alzheimer-type dementia. Annals of the New York Academy of Sciences, 457, 35–51.
Price, D. L., Sisodia, S. S., & Gandy, S. E. (1995). Amyloid beta amyloidosis in Alzheimer’s disease. Current Opinion in Neurology, 8, 268–274.
Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer’s disease. New England Journal of Medicine, 362, 329–344.
Quirarte, G. L., Galvez, R., Roozendaal, B., & McGaugh, J. L. (1998). Norepinephrine release in the amygdala in response to footshock and opioid peptidergic drugs. Brain Research, 808, 134–140.
Rainero, I., May, C., Kaye, J. A., Friedland, R. P., & Rapoport, S. I. (1988). CSF alpha-MSH in dementia of the Alzheimer type. Neurology, 38, 1281–1284.
Ranganathan, P., Chen, H., Adelman, M. K., & Schluter, S. F. (2009). Autoantibodies to the delta-opioid receptor function as opioid agonists and display immunomodulatory activity. Journal of Neuroimmunology, 217, 65–73.
Raut, A., Iglewski, M., & Ratka, A. (2006). Differential effects of impaired mitochondrial energy production on the function of mu and delta opioid receptors in neuronal SK-N-SH cells. Neuroscience Letters, 404, 242–246.
Raymon, H. K., & Leslie, F. M. (1994). Opioid effects on [3H]norepinephrine release from dissociated embryonic locus coeruleus cell cultures. Journal of Neurochemistry, 62, 1015–1024.
Rinne, J. O., Lonnberg, P., Marjamaki, P., Molsa, P., Sako, E., & Paljarvi, L. (1993). Brain methionine- and leucine-enkephalin receptors in patients with dementia. Neuroscience Letters, 161, 77–80.
Rissman, R. A., De Blas, A. L., & Armstrong, D. M. (2007). GABA(A) receptors in aging and Alzheimer’s disease. Journal of Neurochemistry, 103, 1285–1292.
Rizzi, A., Rizzi, D., Marzola, G., Regoli, D., Larsen, B. D., Petersen, J. S., et al. (2002). Pharmacological characterization of the novel nociceptin/orphanin FQ receptor ligand, ZP120: in vitro and in vivo studies in mice. British Journal of Pharmacology, 137, 369–374.
Roane, D. S., Iadarola, M. J., & Porter, J. R. (1988). Decreased [3H]-naloxone binding and elevated dynorphin-A(1-8) content in Zucker rat brain. Physiology & Behavior, 43, 371–374.
Roberts, E., & Sherman, M. A. (1993). GABA–the quintessential neurotransmitter: Electroneutrality, fidelity, specificity, and a model for the ligand binding site of GABAA receptors. Neurochemical Research, 18, 365–376.
Roberts, E., Shoureshi, P., Kozak, K., Szynskie, L., Baron, A., Lecaude, S., et al. (2007). Tracking the evolution of the proenkephalin gene in tetrapods. General and Comparative Endocrinology, 153, 189–197.
Roggo, S. (2002). Inhibition of BACE, a promising approach to Alzheimer’s disease therapy. Current Topics in Medicinal Chemistry, 2, 359–370.
Roth, K. A. (2001). Caspases, apoptosis, and Alzheimer disease: Causation, correlation, and confusion. Journal of Neuropathology and Experimental Neurology, 60, 829–838.
Roy, S., Charboneau, R. G., Barke, R. A., & Loh, H. H. (2001). Role of mu-opioid receptor in immune function. Advances in Experimental Medicine and Biology, 493, 117–126.
Rubaj, A., Zgodzinski, W., Gustaw, K., & Sieklucka-Dziuba, M. (2002). Nociceptin, OP4 receptor ligand in different models of experimental epilepsy. Peptides, 23, 497–505.
Sandyk, R. (1987). Opioid neuronal denervation in Gilles de la Tourette syndrome. International Journal of Neuroscience, 35, 95–98.
Sandyk, R. (1989). Abnormal opiate receptor functions in Tourette’s syndrome. International Journal of Neuroscience, 44, 209–214.
Sarajarvi, T., Tuusa, J. T., Haapasalo, A., Lackman, J. J., Sormunen, R., Helisalmi, S., et al. (2011). Cysteine 27 variant of the {delta}-opioid receptor affects amyloid precursor protein processing through altered endocytic trafficking. Molecular and Cellular Biology, 31, 2326–2340.
Schmidt, R., Bach, M., Dal-Bianco, P., Holzer, P., Pluta-Fuerst, A., Assem-Hilger, E., et al. (2010). Dementia and pain. Neuropsychiatrie, 24, 1–13.
Schmitt, H. P. (2005). Pouring oil into the fire? On the conundrum of the beneficial effects of NMDA receptor antagonists in Alzheimer disease. Psychopharmacology (Berl), 179, 151–153.
Schramm, C. L., & Honda, C. N. (2010). Co-administration of delta- and mu-opioid receptor agonists promotes peripheral opioid receptor function. Pain, 151, 763–770.
Schunk, E., Aigner, C., Stefanova, N., Wenning, G., Herzog, H., & Schwarzer, C. (2010). Kappa opioid receptor activation blocks progressive neurodegeneration after kainic acid injection. Hippocampus. doi:10.1002/hipo.20813.
Scott, H. A., Gebhardt, F. M., Mitrovic, A. D., Vandenberg, R. J., & Dodd, P. R. (2011). Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiology of Aging, 32(3), 553.e1–553.e11.
Seidl, R., Cairns, N., Singewald, N., Kaehler, S. T., & Lubec, G. (2001). Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology. Naunyn-Schmiedeberg’s Archives of Pharmacology, 363, 139–145.
Shen, C. H., Tsai, R. Y., Shih, M. S., Lin, S. L., Tai, Y. H., Chien, C. C., et al. (2011). Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesthesia and Analgesia, 112, 454–459.
Sherif, F., Gottfries, C. G., Alafuzoff, I., & Oreland, L. (1992). Brain gamma-aminobutyrate aminotransferase (GABA-T) and monoamine oxidase (MAO) in patients with Alzheimer’s disease. Journal of Neural Transmission. Parkinson’s Disease and Dementia Section, 4, 227–240.
Shiah, I. S., & Yatham, L. N. (1998). GABA function in mood disorders: An update and critical review. Life Sciences, 63, 1289–1303.
Simmons, M. L., Wagner, J. J., Caudle, R. M., & Chavkin, C. (1992). Endogenous opioid regulation of norepinephrine release in guinea pig hippocampus. Neuroscience Letters, 141, 84–88.
Simonds, W. F. (1988). The molecular basis of opioid receptor function. Endocrine Reviews, 9, 200–212.
Simpson, M. D., Cross, A. J., Slater, P., & Deakin, J. F. (1988). Loss of cortical GABA uptake sites in Alzheimer’s disease. Journal of Neural Transmission, 71, 219–226.
Singh, I. N., Goody, R. J., Goebel, S. M., Martin, K. M., Knapp, P. E., Marinova, Z., et al. (2003). Dynorphin A (1-17) induces apoptosis in striatal neurons in vitro through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor-mediated cytochrome c release and caspase-3 activation. Neuroscience, 122, 1013–1023.
Sisodia, S. S., & Price, D. L. (1995). Role of the beta-amyloid protein in Alzheimer’s disease. FASEB Journal, 9, 366–370.
Snyder, S. H., & Childers, S. R. (1979). Opiate receptors and opioid peptides. Annual Review of Neuroscience, 2, 35–64.
Su, T. P., Shukla, K., & Gund, T. (1990). Steroid binding at sigma receptors: CNS and immunological implications. Ciba Foundation Symposium, 153, 107–113; discussion 113-106.
Subiran, N., Casis, L., & Irazusta, J. (2011). Regulation of male fertility by the opioid system. Molecular Medicine, 17, 846–853.
Sugino, T., Shimazoe, T., Ikeda, M., & Watanabe, S. (2006). Role of nociceptin and opioid receptor like 1 on entrainment function in the rat suprachiasmatic nucleus. Neuroscience, 137, 537–544.
Sulkava, R., Erkinjuntti, T., & Laatikainen, T. (1985). CSF beta-endorphin and beta-lipotropin in Alzheimer’s disease and multi-infarct dementia. Neurology, 35, 1057–1058.
Summers, W. K. (2004). Alzheimer’s disease, oxidative injury, and cytokines. Journal of Alzheimers Disease, 6, 651–657; discussion 673-681.
Szegedi, V., Juhasz, G., Rozsa, E., Juhasz-Vedres, G., Datki, Z., Fulop, L., et al. (2006). Endomorphin-2, an endogenous tetrapeptide, protects against Abeta1-42 in vitro and in vivo. FASEB Journal, 20, 1191–1193.
Takada-Takatori, Y., Kume, T., Sugimoto, M., Katsuki, H., Sugimoto, H., & Akaike, A. (2006). Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology, 51, 474–486.
Taniguchi, H., Yomota, E., Nogi, K., Onoda, Y., & Ikezawa, K. (1998). The effect of nociceptin, an endogenous ligand for the ORL1 receptor, on rat colonic contraction and transit. European Journal of Pharmacology, 353, 265–271.
Tan-No, K., Esashi, A., Nakagawasai, O., Niijima, F., Tadano, T., Sakurada, C., et al. (2002). Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Research, 952, 7–14.
Tanovic, A., & Alfaro, V. (2006). Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer’s disease and vascular dementia. Revista de neurologia, 42, 607–616.
Tao, R., & Auerbach, S. B. (2002). Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system. Journal of Pharmacology and Experimental Therapeutics, 303, 549–556.
Tariot, P. N., Sunderland, T., Murphy, D. L., Cohen, M. R., Welkowitz, J. A., Weingartner, H., et al. (1986). Design and interpretation of opiate antagonist trials in dementia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 10, 611–626.
Tariot, P. N., Upadhyaya, A., Sunderland, T., Cox, C., Cohen, R. M., Murphy, D. L., et al. (1999). Physiologic and neuroendocrine responses to intravenous naloxone in subjects with Alzheimer’s disease and age-matched controls. Biological Psychiatry, 46, 412–419.
Taverna, F. A., Georgiou, J., McDonald, R. J., Hong, N. S., Kraev, A., Salter, M. W., et al. (2005). Defective place cell activity in nociceptin receptor knockout mice with elevated NMDA receptor-dependent long-term potentiation. Journal of Physiology, 565, 579–591.
Teng, L., Zhao, J., Wang, F., Ma, L., & Pei, G. (2010). A GPCR/secretase complex regulates beta- and gamma-secretase specificity for Abeta production and contributes to AD pathogenesis. Cell Research, 20, 138–153.
Terman, G. W., Drake, C. T., Simmons, M. L., Milner, T. A., & Chavkin, C. (2000). Opioid modulation of recurrent excitation in the hippocampal dentate gyrus. Journal of Neuroscience, 20, 4379–4388.
Tian, M., Broxmeyer, H. E., Fan, Y., Lai, Z., Zhang, S., Aronica, S., et al. (1997). Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. Journal of Experimental Medicine, 185, 1517–1522.
Tillakaratne, N. J., Medina-Kauwe, L., & Gibson, K. M. (1995). gamma-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comparative Biochemistry and Physiology Part A, Physiology, 112, 247–263.
Toll, L., Khroyan, T. V., Polgar, W. E., Jiang, F., Olsen, C., & Zaveri, N. T. (2009). Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociceptin receptor/mu-opioid receptor ligands: Implications for therapeutic applications. Journal of Pharmacology and Experimental Therapeutics, 331, 954–964.
Tongjaroenbungam, W., Jongkamonwiwat, N., Cunningham, J., Phansuwan-Pujito, P., Dodson, H. C., Forge, A., et al. (2004). Opioid modulation of GABA release in the rat inferior colliculus. BMC Neuroscience, 5, 31.
Town, T., Schinka, J., Tan, J., & Mullan, M. (2000). The opioid receptor system and alcoholism: A genetic perspective. European Journal of Pharmacology, 410, 243–248.
Tsai, R. Y., Jang, F. L., Tai, Y. H., Lin, S. L., Shen, C. H., & Wong, C. S. (2008). Ultra-low-dose naloxone restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in PTX-treated rats. Neuropsychopharmacology, 33, 2772–2782.
Tsai, R. Y., Tai, Y. H., Tzeng, J. I., Cherng, C. H., Yeh, C. C., & Wong, C. S. (2009). Ultra-low dose naloxone restores the antinociceptive effect of morphine in pertussis toxin-treated rats by reversing the coupling of mu-opioid receptors from Gs-protein to coupling to Gi-protein. Neuroscience, 164, 435–443.
Tseng, L. F. (2001). Evidence for epsilon-opioid receptor-mediated beta-endorphin-induced analgesia. Trends in Pharmacological Sciences, 22, 623–630.
Tunnicliff, G., Welborn, K. L., & Ngo, T. T. (1985). Identification of potential GABA-mimetics by their actions on brain GABA recognition sites. General Pharmacology, 16, 25–29.
Ueda, H., & Matsushita, Y. (2009). Anti-opioid action of glutamate-NMDA receptor systems underlying morphine analgesic tolerance. Masui, 58, 1136–1142.
Urani, A., Romieu, P., Roman, F. J., Yamada, K., Noda, Y., Kamei, H., et al. (2004). Enhanced antidepressant efficacy of sigma1 receptor agonists in rats after chronic intracerebroventricular infusion of beta-amyloid-(1-40) protein. European Journal of Pharmacology, 486, 151–161.
Urosevic, M., Oberholzer, P. A., Maier, T., Hafner, J., Laine, E., Slade, H., et al. (2004). Imiquimod treatment induces expression of opioid growth factor receptor: A novel tumor antigen induced by interferon-alpha? Clinical Cancer Research, 10, 4959–4970.
van Ree, J. M. (1983). The influence of neuropeptides related to pro-opiomelanocortin on acquisition of heroin self-administration of rats. Life Sciences, 33, 2283–2289.
van Waarde, A., Ramakrishnan, N. K., Rybczynska, A. A., Elsinga, P. H., Ishiwata, K., Nijholt, I. M., et al. (2011). The cholinergic system, sigma-1 receptors and cognition. Behavioural Brain Research, 221, 543–554.
Varani, K., Calo, G., Rizzi, A., Merighi, S., Toth, G., Guerrini, R., et al. (1998). Nociceptin receptor binding in mouse forebrain membranes: Thermodynamic characteristics and structure activity relationships. British Journal of Pharmacology, 125, 1485–1490.
Vassar, R. (2002). Beta-secretase (BACE) as a drug target for Alzheimer’s disease. Advanced Drug Delivery Reviews, 54, 1589–1602.
Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.
Vaughan, C. W., & Christie, M. J. (1996). Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. British Journal of Pharmacology, 117, 1609–1611.
Vaughan, C. W., Connor, M., Jennings, E. A., Marinelli, S., Allen, R. G., & Christie, M. J. (2001). Actions of nociceptin/orphanin FQ and other prepronociceptin products on rat rostral ventromedial medulla neurons in vitro. Journal of Physiology, 534, 849–859.
Vaughan, C. W., Ingram, S. L., Connor, M. A., & Christie, M. J. (1997). How opioids inhibit GABA-mediated neurotransmission. Nature, 390, 611–614.
Venugopal, C., Demos, C. M., Rao, K. S., Pappolla, M. A., & Sambamurti, K. (2008). Beta-secretase: Structure, function, and evolution. CNS & Neurological Disorders: Drug Targets, 7, 278–294.
Verdejo-Garcia, A., Perez-Garcia, M., Sanchez-Barrera, M., Rodriguez-Fernandez, A., & Gomez-Rio, M. (2007). Neuroimaging and drug addiction: neuroanatomical correlates of cocaine, opiates, cannabis and ecstasy abuse. Revista de neurologia, 44, 432–439.
Vogel, J., Anand, V. S., Ludwig, B., Nawoschik, S., Dunlop, J., & Braithwaite, S. P. (2009). The JNK pathway amplifies and drives subcellular changes in tau phosphorylation. Neuropharmacology, 57, 539–550.
Walton, H. S., & Dodd, P. R. (2007). Glutamate-glutamine cycling in Alzheimer’s disease. Neurochemistry International, 50, 1052–1066.
Wang, X., Dow-Edwards, D., Anderson, V., Minkoff, H., & Hurd, Y. L. (2006). Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use. Pharmacogenomics Journal, 6, 255–264.
Wang, Y. Q., Wang, S. B., Ma, J. L., Guo, J., Fang, Q., Sun, T., et al. (2011). Neuropeptide FF receptor antagonist, RF9, attenuates the fever induced by central injection of LPS in mice. Peptides, 32, 702–706.
Ward, H. G., Nicklous, D. M., Aloyo, V. J., & Simansky, K. J. (2006). Mu-opioid receptor cellular function in the nucleus accumbens is essential for hedonically driven eating. European Journal of Neuroscience, 23, 1605–1613.
Wen, H., Lu, Y., Yao, H., & Buch, S. (2011). Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: Implication for vascular permeability. PLoS ONE, 6, e21707.
Werling, L. L., Brown, S. R., & Cox, B. M. (1986). Effects of prior exposure to morphine on the opioid inhibition of the stimulated release of [3H]norepinephrine from guinea pig cortex slices. NIDA Research Monograph, 75, 587–590.
Werling, L. L., Brown, S. R., & Cox, B. M. (1987). Opioid receptor regulation of the release of norepinephrine in brain. Neuropharmacology, 26, 987–996.
Werling, L. L., McMahon, P. N., & Cox, B. M. (1988). Selective tolerance at mu and kappa opioid receptors modulating norepinephrine release in guinea pig cortex. Journal of Pharmacology and Experimental Therapeutics, 247, 1103–1106.
Werling, L. L., McMahon, P. N., Portoghese, P. S., Takemori, A. E., & Cox, B. M. (1989). Selective opioid antagonist effects on opioid-induced inhibition of release of norepinephrine in guinea pig cortex. Neuropharmacology, 28, 103–107.
Wilson, R. S., Weir, D. R., Leurgans, S. E., Evans, D. A., Hebert, L. E., Langa, K. M., et al. (2011). Sources of variability in estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7, 74–79.
Won, J. S., Lee, J. K., Song, D. K., Huh, S. O., Jung, J. S., Kim, Y. H., et al. (2000). Cycloheximide increases proenkephalin and tyrosine hydroxylase gene expression in rat adrenal medulla. Molecular Pharmacology, 57, 1173–1181.
Wu, S. Y., Ohtubo, Y., Brailoiu, G. C., & Dun, N. J. (2003). Effects of endomorphin on substantia gelatinosa neurons in rat spinal cord slices. British Journal of Pharmacology, 140, 1088–1096.
Xia, Y., & Haddad, G. G. (2001). Major difference in the expression of delta- and mu-opioid receptors between turtle and rat brain. The Journal of Comparative Neurology, 436, 202–210.
Xu, H., Lu, Y. F., & Rothman, R. B. (2003). Opioid peptide receptor studies. 16. Chronic morphine alters G-protein function in cells expressing the cloned mu opioid receptor. Synapse (New York, NY), 47, 1–9.
Xu, J. Y., Seyed-Mozaffari, A., Archer, S., & Bidlack, J. M. (1996). N-cyclobutylmethyl analog of normorphinone, N-CBM-TAMO: A short-term opioid agonist and long-term Mu-selective irreversible opioid antagonist. Journal of Pharmacology and Experimental Therapeutics, 279, 539–547.
Yakovleva, T., Marinova, Z., Kuzmin, A., Seidah, N. G., Haroutunian, V., Terenius, L., et al. (2007). Dysregulation of dynorphins in Alzheimer disease. Neurobiology of Aging, 28, 1700–1708.
Yao, Y., Chinnici, C., Tang, H., Trojanowski, J. Q., Lee, V. M., & Pratico, D. (2004). Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis. Journal of Neuroinflammation, 1, 21.
Yoburn, B. C., Purohit, V., Patel, K., & Zhang, Q. (2004). Opioid agonist and antagonist treatment differentially regulates immunoreactive mu-opioid receptors and dynamin-2 in vivo. European Journal of Pharmacology, 498, 87–96.
Zagon, I. S., Donahue, R. N., Bonneau, R. H., & McLaughlin, P. J. (2011). T lymphocyte proliferation is suppressed by the opioid growth factor ([Met(5)]-enkephalin)-opioid growth factor receptor axis: Implication for the treatment of autoimmune diseases. Immunobiology, 216, 579–590.
Zagon, I. S., Donahue, R. N., & McLaughlin, P. J. (2009). Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 297, R1154–R1161.
Zagon, I. S., Donahue, R. N., Rogosnitzky, M., & McLaughlin, P. J. (2008). Imiquimod upregulates the opioid growth factor receptor to inhibit cell proliferation independent of immune function. Experimental Biology and Medicine (Maywood), 233, 968–979.
Zagon, I. S., Goodman, S. R., & McLaughlin, P. J. (1993). Zeta (zeta), the opioid growth factor receptor: Identification and characterization of binding subunits. Brain Research, 605, 50–56.
Zagon, I. S., & McLaughlin, P. J. (1993). Production and characterization of polyclonal and monoclonal antibodies to the zeta (zeta) opioid receptor. Brain Research, 630, 295–302.
Zagon, I. S., Ruth, T. B., Leure-duPree, A. E., Sassani, J. W., & McLaughlin, P. J. (2003). Immunoelectron microscopic localization of the opioid growth factor receptor (OGFr) and OGF in the cornea. Brain Research, 967, 37–47.
Zagon, I. S., Smith, J. P., Conter, R., & McLaughlin, P. J. (2000). Identification and characterization of opioid growth factor receptor in human pancreatic adenocarcinoma. International Journal of Molecular Medicine, 5, 77–84.
Zagon, I. S., Verderame, M. F., & McLaughlin, P. J. (2002). The biology of the opioid growth factor receptor (OGFr). Brain Research. Brain Research Reviews, 38, 351–376.
Zagon, I. S., Wu, Y., & McLaughlin, P. J. (1996). The opioid growth factor, [Met5]-enkephalin, and the zeta opioid receptor are present in human and mouse skin and tonically act to inhibit DNA synthesis in the epidermis. The Journal of Investigative Dermatology, 106, 490–497.
Zernig, G., Issaevitch, T., Broadbear, J. H., Burke, T. F., Lewis, J. W., Brine, G. A., et al. (1995). Receptor reserve and affinity of mu opioid agonists in mouse antinociception: Correlation with receptor binding. Life Sciences, 57, 2113–2125.
Zhang, J., Haddad, G. G., & Xia, Y. (2000). delta-, but not mu- and kappa-, opioid receptor activation protects neocortical neurons from glutamate-induced excitotoxic injury. Brain Research, 885, 143–153.
Zhao, M., & Joo, D. T. (2008). Enhancement of spinal N-methyl-d-aspartate receptor function by remifentanil action at delta-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance. Anesthesiology, 109, 308–317.
Zhao, J., Zhang, Y., Xin, S. M., Ma, L., & Pei, G. (1998). Attenuation of nociceptin/orphanin FQ-induced signaling by N-methyl-d-aspartate in neuronal cells. NeuroReport, 9, 631–636.
Acknowledgments
This work was supported by the start-up funds from Texas A&M Health Science Center to Dr. Anna Ratka.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cai, Z., Ratka, A. Opioid System and Alzheimer’s Disease. Neuromol Med 14, 91–111 (2012). https://doi.org/10.1007/s12017-012-8180-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12017-012-8180-3