Abstract
Sleep disturbances are contributing factors to health risk for several diseases including hypertension, diabetes, obesity, depression, and stroke. On a molecular level, sleep disturbances that incur sleep loss and sleep fragmentation result in cellular stress, inflammation, and an impaired immune system. It has been hypothesized that sleep deprivation or prolonged waking leads to increased energy demand and thus energetic stress. Sleep loss and sleep fragmentation are also known to lead to cellular stress specifically endoplasmic reticulum (ER) stress. This review will summarize the current knowledge of the roles of ER and energetic stress during sleep loss and fragmentation that are characteristics of many sleep disturbances. Sleep research pertinent to these specific pathways will be discussed.
Similar content being viewed by others
References
Andrews, Z. B., Diano, S., & Horvath, T. L. (2005). Mitochondrial uncoupling proteins in the CNS: In support of function and survival. Nature Reviews Neuroscience, 6(11), 829–840.
Arsenijevic, D., Onuma, H., Pecqueur, C., Raimbault, S., Manning, B. S., Miroux, B., et al. (2000). Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genetics, 26(4), 435–439.
Basheer, R., Porkka-Heiskanen, T., Stenberg, D., & McCarley, R. W. (1999). Adenosine and behavioral state control: Adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Research. Molecular Brain Research, 73(1–2), 1–10.
Benedict, C., Hallschmid, M., Lassen, A., Mahrike, C., Schutes, B., Schioth, H. E., et al. (2011). American Journal of Clinical Nutrition, 93, 1229–1236.
Benington, J. H., & Heller, H. C. (1995). Restoration of brain energy metabolism as the function of sleep. Progress in Neurobiology, 45(4), 347–360.
Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., et al. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. [erratum appears in Nature 2002 Nov 14;420(6912):202]. Nature, 415(6867), 92–96.
Cirelli, C., & Tononi, G. (1998). Differences in gene expression between sleep and waking as revealed by mRNA differential display. Brain Research. Molecular Brain Research, 56(1–2), 293–305.
Cirelli, C., & Tononi, G. (1999a). Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology. Journal of Sleep Research, 8(Suppl 1), 44–52.
Cirelli, C., & Tononi, G. (1999b). Differences in gene expression during sleep and wakefulness. Annals of Medicine, 31(2), 117–124.
Cirelli, C., & Tononi, G. (2000). Gene expression in the brain across the sleep-waking cycle. Brain Research, 885(2), 303–321.
Cirelli, C., & Tononi, G. (2004). Uncoupling proteins and sleep deprivation. Archives Italiennes de Biologie, 142(4), 541–549.
Cirelli, C., Gutierrez, C. M., & Tononi, G. (2004). Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron, 41(1), 35–43.
Colten, H., & Altevogt, B. (2006). Sleep disorders and sleep deprivation (pp. 1–111). Washington: Institute of Medicine of the National Academies (The National Academies Press).
Dhawan, V., Healy, D. G., Pal, S., & Chaudhuri, K. R. (2006). Sleep-related problems of Parkinson’s disease. Age and Ageing, 35, 220–228.
Dworak, M., McCarley, R. W., Kim, T., Kalinchuk, A. V., & Basheer, R. (2010). Sleep and brain energy levels: ATP changes during sleep. The Journal of Neuroscience, 30(26), 9007–9016.
Everson, C. A., Gilliland, M. A., Kushida, C. A., Pilcher, J. J., Fang, V. S., Refetoff, S., et al. (1989). Sleep deprivation in the rat: IX. Recovery. Sleep, 12(1), 60–67.
Ferri, K. F., & Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nature Cell Biology, 3(11), E255–E263.
Hardie, D. G., Hawley, S. A., & Scott, J. W. (2006). AMP-activated protein kinase–development of the energy sensor concept. The Journal of Physiology, 574(Pt 1), 7–15.
Harding, H. P., Calfon, M., Urano, F., Novoa, I., & Ron, D. (2002). Transcriptional and translational control in the Mammalian unfolded protein response. Annual Review of Cell and Developmental Biology, 18, 575–599.
Hevner, R. F., Duff, R. S., & Wong-Riley, M. T. (1992). Coordination of ATP production and consumption in brain: Parallel regulation of cytochrome oxidase and Na+, K(+)-ATPase. Neuroscience Letters, 138(1), 188–192.
Jing, M., & Ismail-Beigi, F. (2006). Role of 5′-AMP-activated protein kinase in stimulation of glucose transport in response to inhibition of oxidative phosphorylation. American Journal of Physiology. Cell Physiology, 290(2), C484–C491.
Jones, S., Pfister-Genskow, M., Benca, R. M., & Cirelli, C. (2008). Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. Journal of Neurochemistry, 105(1), 46–62.
Jung, C. M., Melanson, E. L., Frydendall, E. J., Perreault, L., Eckel, R. H., & Wright, K. P. (2011). Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. The Journal of Physiology, 589(Pt 1), 235–244.
Kadenbach, B., Napiwotzki, J., Frank, V., Arnold, S., Exner, S., & Huttemann, M. (1998). Regulation of energy transduction and electron transfer in cytochrome c oxidase by adenine nucleotides. Journal of Bioenergetics and Biomembranes, 30(1), 25–33.
Kaufman, R. J. (2002). Orchestrating the unfolded protein response in health and disease. Journal of Clinical Investigation, 110(10), 1389–1398.
Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., et al. (2002). IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes & Development, 16(4), 452–466.
Lee, K., Neigeborn, L., & Kaufman, R. J. (2003). The unfolded protein response is required for haploid tolerance in yeast. Journal of Biological Chemistry, 278(14), 11818–11827.
Lengacher, S., Magistretti, P. J., & Pellerin, L. (2004). Quantitative rt-PCR analysis of uncoupling protein isoforms in mouse brain cortex: Methodological optimization and comparison of expression with brown adipose tissue and skeletal muscle. Journal of Cerebral Blood Flow and Metabolism, 24(7), 780–788.
Ludwig, B., Bender, E., Arnold, S., Huttemann, M., Lee, I., & Kadenbach, B. (2001). Cytochrome C oxidase and the regulation of oxidative phosphorylation. ChemBioChem, 2(6), 392–403.
Mackiewicz, M., Shockley, K. R., Romer, M. A., Galante, R. J., Zimmerman, J. E., Naidoo, N., et al. (2007). Macromolecule biosynthesis—a key function of sleep. Physiological Genomics, 31, 441–457.
Menza, M. A., & Rosen, R. C. (1995). Sleep in Parkinson’s disease. The role of depression and anxiety. Psychosomatics, 36(3), 262–266.
Naidoo, N., Giang, W., Galante, R., & Pack, A. I. (2005). Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. Journal of Neurochemistry, 92, 1150–1157.
Naidoo, N., Ferber, M., Master, M., Zhu, Y., & Pack, A. I. (2008). Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. Journal of Neuroscience, 28(26), 6539–6548.
Naidoo, N., Zhu, J., Zhu, Y., Fenik, P., Lian, J., Galante, R., et al. (2011). Endoplasmic reticulum stress in wake-active neurons progresses with aging. Aging Cell, 10(4), 640–649.
Nikonova, E. V., Vijayasarathy, C., Zhang, L., Cater, J. R., Galante, R. J., Ward, S. E., et al. (2005). Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness. Sleep, 28(1), 21–27.
Nikonova, E. V., Naidoo, N., Zhang, L., Romer, M., Cater, J. R., Scharf, M. T., et al. (2010). Changes in components of energy regulation in mouse cortex with increases in wakefulness. Sleep, 33(7), 889–900.
Okada, T., Yoshida, H., Akazawa, R., Negishi, M., & Mori, K. (2002). Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response.”. Biochemical Journal, 366(Pt 2), 585–594.
Pellerin, L., & Magistretti, P. J. (2004). Neuroscience. Let there be (NADH) light. Science, 305(5680), 50–52.
Porkka-Heiskanen, T., & Kalinchuk, A. V. (2011). Adenosine, energy metabolism and sleep homeostasis. Sleep Medicine Reviews, 15(2), 123–135.
Porkka-Heiskanen, T., Strecker, R. E., Thakkar, M., Bjorkum, A. A., Greene, R. W., & McCarley, R. W. (1997). Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science, 276(5316), 1265–1268.
Porkka-Heiskanen, T., Strecker, R. E., & McCarley, R. W. (2000). Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: An in vivo microdialysis study. Neuroscience, 99(3), 507–517.
Porkka-Heiskanen, T., Alanko, L., Kalinchuk, A., & Stenberg, D. (2002). Adenosine and sleep. Sleep Medicine Reviews, 6(4), 321–332.
Porter, B., Macfarlane, R., & Walker, R. (2008). The frequency and nature of sleep disorders in a community-based population of patients with Parkinson’s disease. European Journal of Neurology, 15(1), 50–54.
Rae, C., Bartlett, D. J., Yang, Q., Walton, D., Denotti, A., Sachinwalla, T., et al. (2009). Dynamic changes in brain bioenergetics during obstructive sleep apnea. Journal of Cerebral Blood Flow and Metabolism, 29(8), 1421–1428.
Richard, D., Rivest, R., Huang, Q., Bouillaud, F., Sanchis, D., Champigny, O., et al. (1998). Distribution of the uncoupling protein 2 mRNA in the mouse brain. The Journal of Comparative Neurology, 397(4), 549–560.
Ron, D. (2002). Translational control in the endoplasmic reticulum stress response. Journal of Clinical Investigation, 110, 1383–1388.
Saraste, M. (1999). Oxidative phosphorylation at the fin de siecle. Science, 283(5407), 1488–1493.
Scheffler, I. E. (2001). A century of mitochondrial research: achievements and perspectives. Mitochondrion, 1(1), 3–31.
Schroder, M., & Kaufman, R. J. (2005). ER stress and the unfolded protein response. Mutation Research, 569(1–2), 29–63.
Shaw, P. J., & Eggett, C. J. (2000). Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. Journal of Neurology, 247(Suppl 1), I17–I27.
Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287(5459), 1834–1837.
Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of Neurophysiology, 86(1), 1–39.
Szegezdi, E., Logue, S. E., Gorman, A. M., & Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Reports, 7(9), 880–885.
Terao, A., Steininger, T. L., Hyder, K., Apte-Deshpande, A., Ding, J., Rishipathak, D., et al. (2003). Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience, 116(1), 187–200.
Thomas, M., Sing, H., Belenky, G., Holcomb, H., Mayberg, H., Dannals, R., et al. (2000). Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. Journal of Sleep Research, 9(4), 335–352.
Timofeev, I., Grenier, F., & Steriade, M. (2001). Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: An intracellular study. Proceedings of the National academy of Sciences of the United States of America, 98(4), 1924–1929.
Viollet, B., Andreelli, F., Jørgensen, S. B., Perrin, C., Flamez, D., Mu, J., et al. (2003a). Physiological role of AMP-activated protein kinase (AMPK): Insights from knockout mouse models. Biochemical Society Transactions, 31(Pt 1), 216–219.
Viollet, B., Andreelli, F., Jørgensen, S. B., Perrin, C., Geloen, A., Flamez, D., et al. (2003b). The AMP-activated protein kinase alpha 2 catalytic subunit controls whole-body insulin sensitivity. The Journal of Clinical Investigation, 111(1), 91–98.
Xu, C., Bailly-Maitre, B., & Reed, J. C. (2005). Endoplasmic reticulum stress: cell life and death decisions. Journal of Clinical Investigation, 115(10), 2656–2664.
Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. [erratum appears in J Biol Chem 1999 Jan 22;274(4):2592]. Journal of Biological Chemistry, 273(50), 33741–33749.
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–891.
Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., & Mori, K. (2003). A time-dependent phase shift in the mammalian unfolded protein response.[see comment]. Developmental Cell, 4(2), 265–271.
Zhang, K., & Kaufman, R. J. (2006). The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology, 66(2 Suppl 1), S102–S109.
Zhu, Y., Fenik, P., Zhan, G., Sanfillipo-Cohn, B., Naidoo, N., & Veasey, S. C. (2008). Eif-2a protects brainstem motoneurons in a murine model of sleep apnea. Journal of Neuroscience, 28(9), 2168–2178.
Acknowledgments
I am grateful to Dr. Marishka Brown for helpful comments during the writing of this manuscript. I would also like to thank Dr. John Zimmerman for assistance with the illustrations.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Naidoo, N. Roles of Endoplasmic Reticulum and Energetic Stress in Disturbed Sleep. Neuromol Med 14, 213–219 (2012). https://doi.org/10.1007/s12017-012-8179-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12017-012-8179-9