Skip to main content
Log in

Hypothalamic Control of Sleep in Aging

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The timing of sleep and its duration are affected by circadian and homeostatic factors. Physiological and behavioral attributes such as the duration of previous wake period, food availability, temperature, and stress all affect sleep and its quality. As many of these physiological inputs are integrated in the hypothalamus, it is not surprising that this brain structure plays a crucial role in the regulation of sleep. I will discuss this role also in the context of aging, which is associated with changes in both hypothalamic function and the composition of sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuna-Goycolea, C., Tamamaki, N., et al. (2005). Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. Journal of Neuroscience, 25(32), 7406–7419.

    Article  PubMed  CAS  Google Scholar 

  • Adamantidis, A., Salvert, D., et al. (2008). Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. European Journal of Neuroscience, 27(7), 1793–1800.

    Article  PubMed  Google Scholar 

  • Adamantidis, A. R., Zhang, F., et al. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 450(7168), 420–424.

    Article  PubMed  CAS  Google Scholar 

  • Allen, L. S., Hines, M., et al. (1989). Two sexually dimorphic cell groups in the human brain. Journal of Neuroscience, 9(2), 497–506.

    PubMed  CAS  Google Scholar 

  • Anaclet, C., Parmentier, R., et al. (2009). Orexin/hypocretin and histamine: Distinct roles in the control of wakefulness demonstrated using knock-out mouse models. Journal of Neuroscience, 29(46), 14423–14438.

    Article  PubMed  CAS  Google Scholar 

  • Aujard, F., Dkhissi-Benyahya, O., et al. (2001). Artificially accelerated aging by shortened photoperiod alters early gene expression (Fos) in the suprachiasmatic nucleus and sulfatoxymelatonin excretion in a small primate, Microcebus murinus. Neuroscience, 105(2), 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Baldo, B. A., Gual-Bonilla, L., et al. (2004). Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. European Journal of Neuroscience, 19(2), 376–386.

    Article  PubMed  Google Scholar 

  • Bayer, L., Eggermann, E., et al. (2005). Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience, 130(4), 807–811.

    Article  PubMed  CAS  Google Scholar 

  • Benington, J. H., Kodali, S. K., et al. (1995). Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Research, 692(1–2), 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Biello, S. M. (2009). Circadian clock resetting in the mouse changes with age. Age (Dordr), 31(4), 293–303.

    Article  Google Scholar 

  • Blanton, C. A., Horwitz, B. A., et al. (2001). Reduced feeding response to neuropeptide Y in senescent Fischer 344 rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 280(4), R1052–R1060.

    PubMed  CAS  Google Scholar 

  • Bliwise, D. L., Bliwise, N. G., et al. (1988). Sleep apnea and mortality in an aged cohort. American Journal of Public Health, 78(5), 544–547.

    Article  PubMed  CAS  Google Scholar 

  • Broberger, C., De Lecea, L., et al. (1998). Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: Relationship to the neuropeptide Y and agouti gene-related protein systems. The Journal of Comparative Neurology, 402(4), 460–474.

    Article  PubMed  CAS  Google Scholar 

  • Bushey, D., Huber, R., et al. (2007). Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. Journal of Neuroscience, 27(20), 5384–5393.

    Article  PubMed  CAS  Google Scholar 

  • Buysse, D. J. (2004). Insomnia, depression and aging. Assessing sleep and mood interactions in older adults. Geriatrics, 59(2), 47–51; quiz 52.

    Google Scholar 

  • Buysse, D. J., Browman, K. E., et al. (1992). Napping and 24-hour sleep/wake patterns in healthy elderly and young adults. Journal of the American Geriatrics Society, 40(8), 779–786.

    PubMed  CAS  Google Scholar 

  • Byne, W., Lasco, M. S., et al. (2000). The interstitial nuclei of the human anterior hypothalamus: An investigation of sexual variation in volume and cell size, number and density. Brain Research, 856(1–2), 254–258.

    Article  PubMed  CAS  Google Scholar 

  • Cai, A., Scarbrough, K., et al. (1997). Fetal grafts containing suprachiasmatic nuclei restore the diurnal rhythm of CRH and POMC mRNA in aging rats. American Journal of Physiology, 273(5 Pt 2), R1764–R1770.

    PubMed  CAS  Google Scholar 

  • Cameron, A. A., Khan, I. A., et al. (1995). The efferent projections of the periaqueductal gray in the rat: A Phaseolus vulgaris-leucoagglutinin study. I. Ascending projections. The Journal of Comparative Neurology, 351(4), 568–584.

    Article  PubMed  CAS  Google Scholar 

  • Carter, M. E., Adamantidis, A., et al. (2009). Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. Journal of Neuroscience, 29(35), 10939–10949.

    Article  PubMed  CAS  Google Scholar 

  • Chemelli, R. M., Willie, J. T., et al. (1999). Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell, 98(4), 437–451.

    Article  PubMed  CAS  Google Scholar 

  • Chester, J. G., & Rudolph, J. L. (2011). Vital signs in older patients: Age-related changes. Journal of the American Medical Directors Association, 12(5), 337–343.

    Article  PubMed  Google Scholar 

  • Chou, T. C., Bjorkum, A. A., et al. (2002). Afferents to the ventrolateral preoptic nucleus. Journal of Neuroscience, 22(3), 977–990.

    PubMed  CAS  Google Scholar 

  • Chou, T. C., Scammell, T. E., et al. (2003). Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(33), 10691–10702.

    CAS  Google Scholar 

  • Cirelli, C., Bushey, D., et al. (2005). Reduced sleep in Drosophila Shaker mutants. Nature, 434(7037), 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, I. R., & Wise, P. M. (1988). Age-related changes in the diurnal rhythm of serotonin turnover in microdissected brain areas of estradiol-treated ovariectomized rats. Endocrinology, 122(6), 2626–2633.

    Article  PubMed  CAS  Google Scholar 

  • Czeisler, C. A., Allan, J. S., et al. (1986). Bright light resets the human circadian pacemaker independent of the timing of the sleep–wake cycle. Science, 233(4764), 667–671.

    Article  PubMed  CAS  Google Scholar 

  • de Lecea, L., Kilduff, T. S., et al. (1998). The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the USA, 95(1), 322–327.

    Article  PubMed  Google Scholar 

  • Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126.

    PubMed  CAS  Google Scholar 

  • Diniz Behn, C. G., Klerman, E. B., et al. (2010). Abnormal sleep/wake dynamics in orexin knockout mice. Sleep, 33(3), 297–306.

    PubMed  Google Scholar 

  • Duffy, J. F., & Czeisler, C. A. (2002). Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neuroscience Letters, 318(3), 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, M. J., Herron, J. M., et al. (2001). Aging selectively suppresses vasoactive intestinal peptide messenger RNA expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Research. Molecular Brain Research, 87(2), 196–203.

    Article  PubMed  CAS  Google Scholar 

  • Elias, C. F., Saper, C. B., et al. (1998). Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. The Journal of Comparative Neurology, 402(4), 442–459.

    Article  PubMed  CAS  Google Scholar 

  • Ericson, H., Blomqvist, A., et al. (1991). Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. The Journal of Comparative Neurology, 311(1), 45–64.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, K. S., Sergeeva, O., et al. (2001). Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 21(23), 9273–9279.

    CAS  Google Scholar 

  • Eriksson, K. S., Sergeeva, O. A., et al. (2004). Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. European Journal of Neuroscience, 19(5), 1278–1284.

    Article  PubMed  Google Scholar 

  • Everson, C. A., Bergmann, B. M., et al. (1989). Sleep deprivation in the rat: III. Total sleep deprivation. Sleep, 12(1), 13–21.

    PubMed  CAS  Google Scholar 

  • Fellin, T., Halassa, M. M., et al. (2009). Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proceedings of the National Academy of Sciences of the USA, 106(35), 15037–15042.

    Article  PubMed  CAS  Google Scholar 

  • Fu, L. Y., Acuna-Goycolea, C., et al. (2004). Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: Tonic depression of the hypothalamic arousal system. Journal of Neuroscience, 24(40), 8741–8751.

    Article  PubMed  CAS  Google Scholar 

  • Gallopin, T., Fort, P., et al. (2000). Identification of sleep-promoting neurons in vitro. Nature, 404(6781), 992–995.

    Article  PubMed  CAS  Google Scholar 

  • Gaus, S. E., Strecker, R. E., et al. (2002). Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience, 115(1), 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Gerashchenko, D., Wisor, J. P., et al. (2008). Identification of a population of sleep-active cerebral cortex neurons. Proceedings of the National Academy of Sciences of the USA, 105(29), 10227–10232.

    Article  PubMed  CAS  Google Scholar 

  • Gong, H., McGinty, D., et al. (2004). Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. Journal of Physiology, 556(Pt 3), 935–946.

    Article  PubMed  CAS  Google Scholar 

  • Greco, M. A., Fuller, P. M., et al. (2008). Opioidergic projections to sleep-active neurons in the ventrolateral preoptic nucleus. Brain Research, 1245, 96–107.

    Article  PubMed  CAS  Google Scholar 

  • Gvilia, I., Angara, C., et al. (2005). Different neuronal populations of the rat median preoptic nucleus express c-fos during sleep and in response to hypertonic saline or angiotensin-II. Journal of Physiology, 569(Pt 2), 587–599.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L., & Reiner, P. B. (1988). Membrane properties of histaminergic tuberomammillary neurones of the rat hypothalamus in vitro. Journal of Physiology, 399, 633–646.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., Sergeeva, O. A., et al. (2008). Histamine in the nervous system. Physiological Reviews, 88(3), 1183–1241.

    Article  PubMed  CAS  Google Scholar 

  • Halassa, M. M., Florian, C., et al. (2009). Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 61(2), 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Hallanger, A. E., Levey, A. I., et al. (1987). The origins of cholinergic and other subcortical afferents to the thalamus in the rat. The Journal of Comparative Neurology, 262(1), 105–124.

    Article  PubMed  CAS  Google Scholar 

  • Hassani, O. K., Henny, P., et al. (2010). GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. European Journal of Neuroscience, 32(3), 448–457.

    Article  PubMed  Google Scholar 

  • Hassani, O. K., Lee, M. G., et al. (2009a). Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep–wake cycle. Journal of Neuroscience, 29(38), 11828–11840.

    Article  PubMed  CAS  Google Scholar 

  • Hassani, O. K., Lee, M. G., et al. (2009b). Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proceedings of the National Academy of Sciences of the USA, 106(7), 2418–2422.

    Article  PubMed  CAS  Google Scholar 

  • Horvath, T. L., Diano, S., et al. (1999). Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. Journal of Neuroscience, 19(3), 1072–1087.

    PubMed  CAS  Google Scholar 

  • Hoshino, K. (1996). Food deprivation and hypothermia in desynchronized sleep-deprived rats. Brazilian Journal of Medical and Biological Research (Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica … [et al.]), 29(1), 41–46.

  • Ishizuka, T., Yamamoto, Y., et al. (2002). The effect of orexin-A and -B on the histamine release in the anterior hypothalamus in rats. Neuroscience Letters, 323(2), 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga, K., Yamada, M., et al. (1996). A newly discovered age-related synaptic change in the human locus ceruleus: Morphometric and ultrastructural studies. Acta Neuropathologica, 91(4), 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Jagota, A., & Kalyani, D. (2008). Daily serotonin rhythms in rat brain during postnatal development and aging. Biogerontology, 9(4), 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C. H., Tsien, J. Z., et al. (2001). The effects of aging on gene expression in the hypothalamus and cortex of mice. Proceedings of the National Academy of Sciences of the USA, 98(4), 1930–1934.

    Article  PubMed  CAS  Google Scholar 

  • John, J., Wu, M. F., et al. (2004). Cataplexy-active neurons in the hypothalamus: Implications for the role of histamine in sleep and waking behavior. Neuron, 42(4), 619–634.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B. E., & Yang, T. Z. (1985). The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. The Journal of Comparative Neurology, 242(1), 56–92.

    Article  PubMed  CAS  Google Scholar 

  • Kallo, I., Kalamatianos, T., et al. (2004). Ageing and the diurnal expression of mRNAs for vasoactive intestinal peptide and for the VPAC2 and PAC1 receptors in the suprachiasmatic nucleus of male rats. Journal of Neuroendocrinology, 16(9), 758–766.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda, T., Makino, S., et al. (2001). Differential neuropeptide responses to starvation with ageing. Journal of Neuroendocrinology, 13(12), 1066–1075.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, F., Okamura, H., et al. (1997). Loss of day–night differences in VIP mRNA levels in the suprachiasmatic nucleus of aged rats. Neuroscience Letters, 222(2), 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, B. A., Stanley, E. M., et al. (2011). Age-related loss of orexin/hypocretin neurons. Neuroscience, 178, 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Kmiec, Z. (2010). Central control of food intake in aging. Interdisciplinary Topics in Gerontology, 37, 37–50.

    Article  PubMed  CAS  Google Scholar 

  • Knutson, K. L., & Van Cauter, E. (2008). Associations between sleep loss and increased risk of obesity and diabetes. Annals of the New York Academy of Sciences, 1129, 287–304.

    Article  PubMed  Google Scholar 

  • Koban, M., & Swinson, K. L. (2005). Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. American Journal of Physiology. Endocrinology and Metabolism, 289(1), E68–E74.

    Article  PubMed  CAS  Google Scholar 

  • Koh, K., Joiner, W. J., et al. (2008). Identification of SLEEPLESS, a sleep-promoting factor. Science, 321(5887), 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C., Swanson, L. W., et al. (1985). The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat. Neuroscience, 16(1), 85–110.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, Y., & Hayaishi, O. (1994). Firing of neurons in the preoptic/anterior hypothalamic areas in rat: Its possible involvement in slow wave sleep and paradoxical sleep. Neuroscience Research, 19(1), 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Kripke, D. F., Garfinkel, L., et al. (2002). Mortality associated with sleep duration and insomnia. Archives of General Psychiatry, 59(2), 131–136.

    Article  PubMed  Google Scholar 

  • Krout, K. E., Belzer, R. E., et al. (2002). Brainstem projections to midline and intralaminar thalamic nuclei of the rat. The Journal of Comparative Neurology, 448(1), 53–101.

    Article  PubMed  Google Scholar 

  • Krout, K. E., & Loewy, A. D. (2000). Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. The Journal of Comparative Neurology, 424(1), 111–141.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. G., Hassani, O. K., et al. (2005a). Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. Journal of Neuroscience, 25(28), 6716–6720.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. S., Kim, M. A., et al. (2005b). Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat. The Journal of Comparative Neurology, 481(2), 179–193.

    Article  PubMed  Google Scholar 

  • Leproult, R., & Van Cauter, E. (2010). Role of sleep and sleep loss in hormonal release and metabolism. Endocrine Development, 17, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J. S. (2000). Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Medicine Reviews, 4(5), 471–503.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J. S., Anaclet, C., et al. (2011). The waking brain: An update. Cellular and Molecular Life Sciences, 68(15), 2499–2512.

    Article  PubMed  CAS  Google Scholar 

  • Lin, L., Faraco, J., et al. (1999). The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell, 98(3), 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J. S., Hou, Y., et al. (1996). Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. Journal of Neuroscience, 16(4), 1523–1537.

    PubMed  CAS  Google Scholar 

  • Lohr, J. B., & Jeste, D. V. (1988). Locus ceruleus morphometry in aging and schizophrenia. Acta Psychiatrica Scandinavica, 77(6), 689–697.

    Article  PubMed  CAS  Google Scholar 

  • Loughlin, S. E., Foote, S. L., et al. (1982). Locus coeruleus projections to cortex: Topography, morphology and collateralization. Brain Research Bulletin, 9(1–6), 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., Bjorkum, A. A., et al. (2002). Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. Journal of Neuroscience, 22(11), 4568–4576.

    PubMed  CAS  Google Scholar 

  • Lu, J., Greco, M. A., et al. (2000). Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. Journal of Neuroscience, 20(10), 3830–3842.

    PubMed  CAS  Google Scholar 

  • Lu, J., Zhang, Y. H., et al. (2001). Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep–wake cycle and temperature regulation. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 21(13), 4864–4874.

    CAS  Google Scholar 

  • Ma, X., Zubcevic, L., et al. (2007). Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 27(7), 1529–1533.

    Article  CAS  Google Scholar 

  • Madeira, M. D., Andrade, J. P., et al. (2000). Hypertrophy of the ageing rat medial preoptic nucleus. Journal of Neurocytology, 29(3), 173–197.

    Article  PubMed  CAS  Google Scholar 

  • Manaye, K. F., McIntire, D. D., et al. (1995). Locus coeruleus cell loss in the aging human brain: A non-random process. The Journal of Comparative Neurology, 358(1), 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, J. N., Aschkenasi, C. J., et al. (2001). Differential expression of orexin receptors 1 and 2 in the rat brain. The Journal of Comparative Neurology, 435(1), 6–25.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, D. J., Weingarth, D. T., et al. (2002). Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proceedings of the National Academy of Sciences of the USA, 99(5), 3240–3245.

    Article  PubMed  CAS  Google Scholar 

  • McBride, R. L., & Sutin, J. (1976). Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. The Journal of Comparative Neurology, 165(3), 265–284.

    Article  PubMed  CAS  Google Scholar 

  • Mesas, A. E., Lopez-Garcia, E., et al. (2010). Sleep duration and mortality according to health status in older adults. Journal of the American Geriatrics Society, 58(10), 1870–1877.

    Article  PubMed  Google Scholar 

  • Mileykovskiy, B. Y., Kiyashchenko, L. I., et al. (2005). Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron, 46(5), 787–798.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M. A., Kolb, P. E., et al. (1999). Preservation of noradrenergic neurons in the locus ceruleus that coexpress galanin mRNA in Alzheimer’s disease. Journal of Neurochemistry, 73(5), 2028–2036.

    PubMed  CAS  Google Scholar 

  • Mochizuki, T., Arrigoni, E., et al. (2011). Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proceedings of the National Academy of Sciences of the USA, 108(11), 4471–4476.

    Article  PubMed  CAS  Google Scholar 

  • Modirrousta, M., Mainville, L., et al. (2004). Gabaergic neurons with alpha2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience, 129(3), 803–810.

    Article  PubMed  CAS  Google Scholar 

  • Monti, J. M. (1993). Involvement of histamine in the control of the waking state. Life Sciences, 53(17), 1331–1338.

    Article  PubMed  CAS  Google Scholar 

  • Morley, J. E. (2007). The aging gut: physiology. Clinics in Geriatric Medicine, 23(4), 757–767, v–vi.

  • Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1(4), 455–473.

    PubMed  CAS  Google Scholar 

  • Muroya, S., Funahashi, H., et al. (2004). Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: Orexigenic neuronal pathways in the mediobasal hypothalamus. European Journal of Neuroscience, 19(6), 1524–1534.

    Article  PubMed  Google Scholar 

  • Nakamura, T. J., Nakamura, W., et al. (2011). Age-related decline in circadian output. Journal of Neuroscience, 31(28), 10201–10205.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W. J. (1946). Hypothalamic regulation of sleep in rats: An experimental study. Journal of Neurophysiology, 9, 285–316.

    PubMed  CAS  Google Scholar 

  • Nishino, S., Ripley, B., et al. (2000). Hypocretin (orexin) deficiency in human narcolepsy. Lancet, 355(9197), 39–40.

    Article  PubMed  CAS  Google Scholar 

  • Osorio, R. S., Pirraglia, E., et al. (2011). Greater risk of Alzheimer’s disease in older adults with insomnia. Journal of the American Geriatrics Society, 59(3), 559–562.

    Article  PubMed  Google Scholar 

  • Panossian, L., Fenik, P., et al. (2011). SIRT1 regulation of wakefulness and senescence-like phenotype in wake neurons. Journal of Neuroscience, 31(11), 4025–4036.

    Article  PubMed  CAS  Google Scholar 

  • Panula, P., Yang, H. Y., et al. (1984). Histamine-containing neurons in the rat hypothalamus. Proceedings of the National Academy of Sciences of the USA, 81(8), 2572–2576.

    Article  PubMed  CAS  Google Scholar 

  • Petervari, E., Soos, S., et al. (2011). Alterations in the peptidergic regulation of energy balance in the course of aging. Current Protein and Peptide Science, 12(4), 316–324.

    Article  PubMed  CAS  Google Scholar 

  • Peyron, C., Sapin, E., et al. (2009). Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides, 30(11), 2052–2059.

    Article  PubMed  CAS  Google Scholar 

  • Peyron, C., Tighe, D. K., et al. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. Journal of Neuroscience, 18(23), 9996–10015.

    PubMed  CAS  Google Scholar 

  • Piper, D. C., Upton, N., et al. (2000). The novel brain neuropeptide, orexin-A, modulates the sleep–wake cycle of rats. European Journal of Neuroscience, 12(2), 726–730.

    Article  PubMed  CAS  Google Scholar 

  • Porkka-Heiskanen, T., Alanko, L., et al. (2004). The effect of age on prepro-orexin gene expression and contents of orexin A and B in the rat brain. Neurobiology of Aging, 25(2), 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, M. H., Vetrivelan, R., et al. (2010). Basal ganglia control of sleep–wake behavior and cortical activation. European Journal of Neuroscience, 31(3), 499–507.

    Article  PubMed  Google Scholar 

  • Qu, D., Ludwig, D. S., et al. (1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 380(6571), 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Rechtschaffen, A., & Bergmann, B. M. (1995). Sleep deprivation in the rat by the disk-over-water method. Behavioural Brain Research, 69(1–2), 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Rolls, A., Colas, D., et al. (2011). Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci USA, 108,13305–13310.

    Google Scholar 

  • Saito, Y., Cheng, M., et al. (2001). Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. The Journal of Comparative Neurology, 435(1), 26–40.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, T., Amemiya, A., et al. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4), 573–585.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, T., Nagata, R., et al. (2005). Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron, 46(2), 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Sallanon, M., Denoyer, M., et al. (1989). Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience, 32(3), 669–683.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, A., Ojala, J., et al. (2011). Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. European Journal of Neuroscience, 34(1), 3–11.

    Article  PubMed  Google Scholar 

  • Saper, C. B., Cano, G., et al. (2005a). Homeostatic, circadian, and emotional regulation of sleep. The Journal of Comparative Neurology, 493(1), 92–98.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C. B., Chou, T. C., et al. (2001). The sleep switch: hypothalamic control of sleep and wakefulness. Trends in Neurosciences, 24(12), 726–731.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C. B., Fuller, P. M., et al. (2010). Sleep state switching. Neuron, 68(6), 1023–1042.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C. B., Scammell, T. E., et al. (2005b). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263.

    Article  PubMed  CAS  Google Scholar 

  • Satinoff, E., Li, H., et al. (1993). Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones? American Journal of Physiology, 265(5 Pt 2), R1216–R1222.

    PubMed  CAS  Google Scholar 

  • Sawai, N., Ueta, Y., et al. (2010). Developmental and aging change of orexin-A and -B immunoreactive neurons in the male rat hypothalamus. Neuroscience Letters, 468(1), 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Seals, D. R., & Esler, M. D. (2000). Human ageing and the sympathoadrenal system. Journal of Physiology, 528(Pt 3), 407–417.

    Article  PubMed  CAS  Google Scholar 

  • Sehgal, A., & Mignot, E. (2011). Genetics of sleep and sleep disorders. Cell, 146(2), 194–207.

    Article  PubMed  CAS  Google Scholar 

  • Senut, M. C., de Bilbao, F., et al. (1989). Age-related loss of galanin-immunoreactive cells in the rat septal area. Neuroscience Letters, 105(3), 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Sherin, J. E., Elmquist, J. K., et al. (1998). Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. Journal of Neuroscience, 18(12), 4705–4721.

    PubMed  CAS  Google Scholar 

  • Sherin, J. E., Shiromani, P. J., et al. (1996). Activation of ventrolateral preoptic neurons during sleep. Science, 271(5246), 216–219.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, M., Tritos, N. A., et al. (1998). Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature, 396(6712), 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Shiromani, P. J., Lu, J., et al. (2000). Compensatory sleep response to 12 h wakefulness in young and old rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 278(1), R125–R133.

    PubMed  CAS  Google Scholar 

  • Sibille, E., Su, J., et al. (2007). Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity. Mol Psychiatry, 12(11), 1042–1056, 1975.

    Google Scholar 

  • Siegel, J. (2004a). Brain mechanisms that control sleep and waking. Die Naturwissenschaften, 91(8), 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, J. M. (2004b). Hypocretin (orexin): Role in normal behavior and neuropathology. Annual Review of Psychology, 55, 125–148.

    Article  PubMed  Google Scholar 

  • Silva, A. P., Carvalho, A. P., et al. (2003). Functional interaction between neuropeptide Y receptors and modulation of calcium channels in the rat hippocampus. Neuropharmacology, 44(2), 282–292.

    Article  PubMed  CAS  Google Scholar 

  • Sobel, E., & Corbett, D. (1984). Axonal branching of ventral tegmental and raphe projections to the frontal cortex in the rat. Neuroscience Letters, 48(2), 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Sohn, E. H., Wolden-Hanson, T., et al. (2002). Testosterone (T)-induced changes in arcuate nucleus cocaine-amphetamine-regulated transcript and NPY mRNA are attenuated in old compared to young male brown Norway rats: Contribution of T to age-related changes in cocaine-amphetamine-regulated transcript and NPY gene expression. Endocrinology, 143(3), 954–963.

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis, K. A., & Punjabi, N. M. (2007). Long sleep duration: A risk to health or a marker of risk? Sleep Medicine Reviews, 11(5), 337–339.

    Article  PubMed  Google Scholar 

  • Steriade, M., & Hobson, J. (1976). Neuronal activity during the sleep-waking cycle. Progress in Neurobiology, 6(3–4), 155–376.

    PubMed  CAS  Google Scholar 

  • Stevens, D. R., Kuramasu, A., et al. (2004). Alpha 2-adrenergic receptor-mediated presynaptic inhibition of GABAergic IPSPs in rat histaminergic neurons. Neuropharmacology, 46(7), 1018–1022.

    Article  PubMed  CAS  Google Scholar 

  • Suntsova, N., Szymusiak, R., et al. (2002). Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. Journal of Physiology, 543(Pt 2), 665–677.

    Article  PubMed  CAS  Google Scholar 

  • Swaab, D. F., & Hofman, M. A. (1988). Sexual differentiation of the human hypothalamus: Ontogeny of the sexually dimorphic nucleus of the preoptic area. Brain Research. Developmental Brain Research, 44(2), 314–318.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., & Cwan, W. M. (1975). A note on the connections and development of the nucleus accumbens. Brain Research, 92(2), 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Swett, C. P., & Hobson, J. A. (1968). The effects of posterior hypothalamic lesions on behavioral and electrographic manifestations of sleep and waking in cats. Archives Italiennes de Biologie, 106(3), 283–293.

    PubMed  CAS  Google Scholar 

  • Szymusiak, R., Alam, N., et al. (1998). Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Research, 803(1–2), 178–188.

    Article  PubMed  CAS  Google Scholar 

  • Szymusiak, R., & McGinty, D. (1986). Sleep-related neuronal discharge in the basal forebrain of cats. Brain Research, 370(1), 82–92.

    Article  PubMed  CAS  Google Scholar 

  • Szymusiak, R., & McGinty, D. (2008). Hypothalamic regulation of sleep and arousal. Annals of the New York Academy of Sciences, 1129, 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Lin, J. S., et al. (2008). Neuronal activity of orexin and non-orexin waking-active neurons during wake–sleep states in the mouse. Neuroscience, 153(3), 860–870.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Lin, J. S., et al. (2009). Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience, 161(1), 269–292.

    Article  PubMed  CAS  Google Scholar 

  • Takano, S., Kanai, S., et al. (2004). Orexin-A does not stimulate food intake in old rats. American Journal of Physiology. Gastrointestinal and Liver Physiology, 287(6), G1182–G1187.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, N., Inagaki, S., et al. (1984). Origins of histamine-containing fibers in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Research, 323(1), 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Thannickal, T. C., Moore, R. Y., et al. (2000). Reduced number of hypocretin neurons in human narcolepsy. Neuron, 27(3), 469–474.

    Article  PubMed  CAS  Google Scholar 

  • Tillet, Y. (1992). Serotoninergic projections from the raphe nuclei to the preoptic area in sheep as revealed by immunohistochemistry and retrograde labeling. The Journal of Comparative Neurology, 320(2), 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Uschakov, A., Gong, H., et al. (2007). Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience, 150(1), 104–120.

    Article  PubMed  CAS  Google Scholar 

  • van den Pol, A. N., Acuna-Goycolea, C., et al. (2004). Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron, 42(4), 635–652.

    Article  PubMed  Google Scholar 

  • Van Reeth, O., Zhang, Y., et al. (1994). Grafting fetal suprachiasmatic nuclei in the hypothalamus of old hamsters restores responsiveness of the circadian clock to a phase shifting stimulus. Brain Research, 643(1–2), 338–342.

    Article  PubMed  Google Scholar 

  • Verret, L., Goutagny, R., et al. (2003). A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience, 4, 19.

    Article  PubMed  Google Scholar 

  • Vertes, R. P., & Martin, G. F. (1988). Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. The Journal of Comparative Neurology, 275(4), 511–541.

    Article  PubMed  CAS  Google Scholar 

  • Vgontzas, A. N., Liao, D., et al. (2010). Insomnia with short sleep duration and mortality: The Penn State cohort. Sleep, 33(9), 1159–1164.

    PubMed  Google Scholar 

  • Viswanathan, N., & Davis, F. C. (1995). Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Research, 686(1), 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Gamo, N. J., et al. (2011). Neuronal basis of age-related working memory decline. Nature, 476(7359), 210–213.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, A., Shibata, S., et al. (1995). Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamster in vitro. Brain Research, 695(2), 237–239.

    Article  PubMed  CAS  Google Scholar 

  • Watts, A. G., & Swanson, L. W. (1987). Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. The Journal of Comparative Neurology, 258(2), 230–252.

    Article  PubMed  CAS  Google Scholar 

  • Weitzman, E. D., Moline, M. L., et al. (1982). Chronobiology of aging: Temperature, sleep–wake rhythms and entrainment. Neurobiology of Aging, 3(4), 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Willie, J. T., Sinton, C. M., et al. (2008). Abnormal response of melanin-concentrating hormone deficient mice to fasting: Hyperactivity and rapid eye movement sleep suppression. Neuroscience, 156(4), 819–829.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., & Gaykema, R. P. (1988). Innervation of histaminergic neurons in the posterior hypothalamic region by medial preoptic neurons. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase in the rat. Brain Research, 455(1), 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M. N., Joiner, W. J., et al. (2010). SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nature Neuroscience, 13(1), 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, A., Beuckmann, C. T., et al. (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 38(5), 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky, Y., Li, S., et al. (2011). L-Dopa activates histaminergic neurons. Journal of Physiology, 589(Pt 6), 1349–1366.

    Article  PubMed  CAS  Google Scholar 

  • Zhdanova, I. V., Masuda, K., et al. (2011). Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate, Macaca mulatta. Journal of Biological Rhythms, 26(2), 149–159.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Luis de Lecea and Megha Makam for their comments and EMBO and the NARSAD for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asya Rolls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolls, A. Hypothalamic Control of Sleep in Aging. Neuromol Med 14, 139–153 (2012). https://doi.org/10.1007/s12017-012-8175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8175-0

Keywords

Navigation