Skip to main content
Log in

Neuronal Oscillations in Sleep: Insights from Functional Neuroimaging

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Recent functional neuroimaging studies have investigated brain activity patterns during sleep in humans, beyond the conventionally defined sleep stages. These works have characterized the neural activations related to the major brain oscillations of sleep, that is, spindles and slow waves during non-rapid-eye-movement sleep and ponto-geniculo-occipital waves during rapid-eye-movement sleep. These phasic events have been found associated with increases of brain activity in specific neural networks, which identify structures involved in the generation of sleep oscillations. Most importantly, these results confirm that, even during the deepest stages of sleep, neuronal network activities are sustained and organized by spontaneous brain oscillations of sleep. The understanding of the neural mechanisms underlying sleep oscillations is fundamental since increasing evidence suggests a pivotal role for these rhythms in the functional properties of sleep. In particular, interactions between the sleeping brain and the surrounding environment are closely modulated by neuronal oscillations of sleep. Functional neuroimaging studies have demonstrated that spindles distort the transmission of auditory information to the cortex, therefore isolating the brain from external disturbances during sleep. In contrast, slow waves evoked by acoustic stimulation—and also termed K-complexes—are associated with larger auditory cortex activation, thus reflecting an enhanced processing of external information during sleep. Future brain imaging studies of sleep should further explore the contribution of neuronal oscillations to the off-line consolidation of memory during sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achermann, P., & Borbely, A. A. (1997). Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience, 81(1), 213–222.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, J. L., Onoe, H., Hetta, J., Lidstrom, K., Valind, S., Lilja, A., et al. (1998). Brain networks affected by synchronized sleep visualized by positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 18(7), 701–715.

    PubMed  CAS  Google Scholar 

  • Andrade, K. C., Spoormaker, V. I., Dresler, M., Wehrle, R., Holsboer, F., Samann, P. G., et al. (2011). Sleep spindles and hippocampal functional connectivity in human NREM sleep. Journal of Neuroscience, 31(28), 10331–10339.

    Article  PubMed  CAS  Google Scholar 

  • Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868–1871.

    Article  PubMed  CAS  Google Scholar 

  • Barakat, M., Doyon, J., Debas, K., Vandewalle, G., Morin, A., Poirier, G., et al. (2011). Fast and slow spindle involvement in the consolidation of a new motor sequence. Behavioural Brain Research, 217(1), 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Blethyn, K. L., Hughes, S. W., Toth, T. I., Cope, D. W., & Crunelli, V. (2006). Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. Journal of Neuroscience, 26(9), 2474–2486.

    Article  PubMed  CAS  Google Scholar 

  • Boly, M., Balteau, E., Schnakers, C., Degueldre, C., Moonen, G., Luxen, A., et al. (2007). Baseline brain activity fluctuations predict somatosensory perception in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12187–12192.

    Article  PubMed  CAS  Google Scholar 

  • Bonjean, M., Baker, T., Lemieux, M., Timofeev, I., Sejnowski, T., & Bazhenov, M. (2011). Corticothalamic feedback controls sleep spindle duration in vivo. Journal of Neuroscience, 31(25), 9124–9134.

    Article  PubMed  CAS  Google Scholar 

  • Born, A. P., Law, I., Lund, T. E., Rostrup, E., Hanson, L. G., Wildschiodtz, G., et al. (2002). Cortical deactivation induced by visual stimulation in human slow-wave sleep. NeuroImage, 17(3), 1325–1335.

    Article  PubMed  Google Scholar 

  • Braun, A. R., Balkin, T. J., Wesenten, N. J., Carson, R. E., Varga, M., Baldwin, P., et al. (1997). Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain, 120(Pt 7), 1173–1197.

    Article  PubMed  Google Scholar 

  • Cash, S. S., Halgren, E., Dehghani, N., Rossetti, A. O., Thesen, T., Wang, C., et al. (2009). The human K-complex represents an isolated cortical down-state. Science, 324(5930), 1084–1087.

    Article  PubMed  CAS  Google Scholar 

  • Colrain, I. M. (2005). The K-complex: A 7-decade history. Sleep, 28(2), 255–273.

    PubMed  Google Scholar 

  • Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: A study of dynamic corticothalamic relationships. Journal of Neuroscience, 15(1 Pt 2), 604–622.

    PubMed  CAS  Google Scholar 

  • Cote, K. A., Epps, T. M., & Campbell, K. B. (2000). The role of the spindle in human information processing of high-intensity stimuli during sleep. Journal of Sleep Research, 9(1), 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Czisch, M., Wehrle, R., Kaufmann, C., Wetter, T. C., Holsboer, F., Pollmacher, T., et al. (2004). Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. European Journal of Neuroscience, 20(2), 566–574.

    Article  PubMed  Google Scholar 

  • Czisch, M., Wehrle, R., Stiegler, A., Peters, H., Andrade, K., Holsboer, F., et al. (2009). Acoustic oddball during NREM sleep: A combined EEG/fMRI study. PloS One, 4(8), e6749.

    Article  PubMed  Google Scholar 

  • Czisch, M., Wetter, T. C., Kaufmann, C., Pollmacher, T., Holsboer, F., & Auer, D. P. (2002). Altered processing of acoustic stimuli during sleep: Reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. NeuroImage, 16(1), 251–258.

    Article  PubMed  Google Scholar 

  • Dang Vu, T. T., Desseilles, M., Peigneux, P., Laureys, S., & Maquet, P. (2009). Sleep and sleep states: PET activation patterns. In L. R. Squire (Ed.), Encyclopedia of neuroscience (Vol. 8, pp. 955–961). Oxford: Academic Press.

    Google Scholar 

  • Dang-Vu, T. T., Bonjean, M., Schabus, M., Boly, M., Darsaud, A., Desseilles, M., et al. (2011). Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15438–15443.

    Article  PubMed  CAS  Google Scholar 

  • Dang-Vu, T. T., Desseilles, M., Laureys, S., Degueldre, C., Perrin, F., Phillips, C., et al. (2005). Cerebral correlates of delta waves during non-REM sleep revisited. NeuroImage, 28(1), 14–21.

    Article  PubMed  Google Scholar 

  • Dang-Vu, T. T., McKinney, S. M., Buxton, O. M., Solet, J. M., & Ellenbogen, J. M. (2010). Spontaneous brain rhythms predict sleep stability in the face of noise. Current Biology, 20(15), R626–R627.

    Article  PubMed  CAS  Google Scholar 

  • Dang-Vu, T. T., Schabus, M., Desseilles, M., Albouy, G., Boly, M., Darsaud, A., et al. (2008). Spontaneous neural activity during human slow wave sleep. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15160–15165.

    Article  PubMed  Google Scholar 

  • Datta, S. (1997). Cellular basis of pontine ponto-geniculo-occipital wave generation and modulation. Cellular and Molecular Neurobiology, 17(3), 341–365.

    Article  PubMed  CAS  Google Scholar 

  • Datta, S. (1999). PGO wave generation: Mechanism and functional significance. In B. N. Mallick & S. Inoue (Eds.), Rapid eye movement sleep (pp. 91–106). New Dehli: Narosa Publishing House.

    Google Scholar 

  • Datta, S. (2000). Avoidance task training potentiates phasic pontine-wave density in the rat: A mechanism for sleep-dependent plasticity. Journal of Neuroscience, 20(22), 8607–8613.

    PubMed  CAS  Google Scholar 

  • Davenne, D., & Adrien, J. (1984). Suppression of PGO waves in the kitten: Anatomical effects on the lateral geniculate nucleus. Neuroscience Letters, 45(1), 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Davenne, D., Fregnac, Y., Imbert, M., & Adrien, J. (1989). Lesion of the PGO pathways in the kitten. II. Impairment of physiological and morphological maturation of the lateral geniculate nucleus. Brain Research, 485(2), 267–277.

    Article  PubMed  CAS  Google Scholar 

  • De Gennaro, L., & Ferrara, M. (2003). Sleep spindles: An overview. Sleep Medicine Reviews, 7(5), 423–440.

    Article  PubMed  Google Scholar 

  • Destexhe, A., Hughes, S. W., Rudolph, M., & Crunelli, V. (2007). Are corticothalamic ‘up’ states fragments of wakefulness? Trends in Neurosciences, 30, 334–342.

    Article  PubMed  CAS  Google Scholar 

  • Elton, M., Winter, O., Heslenfeld, D., Loewy, D., Campbell, K., & Kok, A. (1997). Event-related potentials to tones in the absence and presence of sleep spindles. Journal of Sleep Research, 6(2), 78–83.

    Article  PubMed  CAS  Google Scholar 

  • Eschenko, O., Magri, C., Panzeri, S., & Sara, S. J. (2011). Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cerebral Cortex (in press). doi:10.1093/cercor/bhr121.

  • Fernandez-Mendoza, J., Lozano, B., Seijo, F., Santamarta-Liebana, E., Ramos-Platon, M. J., Vela-Bueno, A., et al. (2009). Evidence of subthalamic PGO-like waves during REM sleep in humans: A deep brain polysomnographic study. Sleep, 32(9), 1117–1126.

    PubMed  Google Scholar 

  • Ferrarelli, F., Peterson, M. J., Sarasso, S., Riedner, B. A., Murphy, M. J., Benca, R. M., et al. (2010). Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. The American Journal of Psychiatry, 167(11), 1339–1348.

    Article  PubMed  Google Scholar 

  • Finelli, L. A., Borbely, A. A., & Achermann, P. (2001). Functional topography of the human nonREM sleep electroencephalogram. European Journal of Neuroscience, 13(12), 2282–2290.

    Article  PubMed  CAS  Google Scholar 

  • Fogel, S. M., & Smith, C. T. (2011). The function of the sleep spindle: A physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neuroscience and Biobehavioral Reviews, 35(5), 1154–1165.

    Article  PubMed  Google Scholar 

  • Gaab, N., Gaser, C., Zaehle, T., Jancke, L., & Schlaug, G. (2003). Functional anatomy of pitch memory—An fMRI study with sparse temporal sampling. NeuroImage, 19(4), 1417–1426.

    Article  PubMed  Google Scholar 

  • Gais, S., Molle, M., Helms, K., & Born, J. (2002). Learning-dependent increases in sleep spindle density. Journal of Neuroscience, 22(15), 6830–6834.

    PubMed  CAS  Google Scholar 

  • Happe, S., Anderer, P., Gruber, G., Klosch, G., Saletu, B., & Zeitlhofer, J. (2002). Scalp topography of the spontaneous K-complex and of delta-waves in human sleep. Brain Topography, 15(1), 43–49.

    Article  PubMed  Google Scholar 

  • Hobson, J. A. (1964). L’activité électrique du cortex et du thalamus au cours du sommeil désynchronisé chez le chat. Comptes Rendus de la Société de Biologie (Paris), 158, 2131–2135.

    CAS  Google Scholar 

  • Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A. C., et al. (1997). Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. Journal of Neuroscience, 17(12), 4800–4808.

    PubMed  CAS  Google Scholar 

  • Holcomb, H. H., Medoff, D. R., Caudill, P. J., Zhao, Z., Lahti, A. C., Dannals, R. F., et al. (1998). Cerebral blood flow relationships associated with a difficult tone recognition task in trained normal volunteers. Cerebral Cortex, 8(6), 534–542.

    Article  PubMed  CAS  Google Scholar 

  • Iber, C., Ancoli-Israel, S., Chesson, A. L., & Quan, S. F. (2007). The AASM manual for the scoring of sleep and associated events. Westchester: American Academy of Sleep Medicine.

    Google Scholar 

  • Jouvet, M., & Michel, F. (1959). Corrélations électromyographiques du sommeil chez le Chat décortiqué et mésencéphalique chronique. Comptes Rendus de la Société de Biologie (Paris), 153, 422–425.

    CAS  Google Scholar 

  • Kajimura, N., Uchiyama, M., Takayama, Y., Uchida, S., Uema, T., Kato, M., et al. (1999). Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. Journal of Neuroscience, 19(22), 10065–10073.

    PubMed  CAS  Google Scholar 

  • Kaufmann, C., Wehrle, R., Wetter, T. C., Holsboer, F., Auer, D. P., Pollmacher, T., et al. (2006). Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: An EEG/fMRI study. Brain, 129(Pt 3), 655–667.

    Article  PubMed  CAS  Google Scholar 

  • Landsness, E. C., Crupi, D., Hulse, B. K., Peterson, M. J., Huber, R., Ansari, H., et al. (2009). Sleep-dependent improvement in visuomotor learning: A causal role for slow waves. Sleep, 32(10), 1273–1284.

    PubMed  Google Scholar 

  • Larson-Prior, L. J., Power, J. D., Vincent, J. L., Nolan, T. S., Coalson, R. S., Zempel, J., et al. (2011). Modulation of the brain’s functional network architecture in the transition from wake to sleep. Progress in Brain Research, 193, 277–294.

    Article  PubMed  Google Scholar 

  • Maquet, P. (2000). Functional neuroimaging of normal human sleep by positron emission tomography. Journal of Sleep Research, 9(3), 207–231.

    Article  PubMed  CAS  Google Scholar 

  • Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Peters, J. M., Luxen, A., et al. (1997). Functional neuroanatomy of human slow wave sleep. Journal of Neuroscience, 17(8), 2807–2812.

    PubMed  CAS  Google Scholar 

  • Maquet, P., Dive, D., Salmon, E., Sadzot, B., Franco, G., Poirrier, R., et al. (1990). Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-d-glucose method. Brain Research, 513(1), 136–143.

    Article  PubMed  CAS  Google Scholar 

  • Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., et al. (2000). Experience-dependent changes in cerebral activation during human REM sleep. Nature Neuroscience, 3(8), 831–836.

    Article  PubMed  CAS  Google Scholar 

  • Maquet, P., Peters, J., Aerts, J., Delfiore, G., Degueldre, C., Luxen, A., et al. (1996). Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 383(6596), 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Maquet, P., Ruby, P., Maudoux, A., Albouy, G., Sterpenich, V., Dang-Vu, T., et al. (2005). Human cognition during REM sleep and the activity profile within frontal and parietal cortices: A reappraisal of functional neuroimaging data. Progress in Brain Research, 150, 219–227.

    Article  PubMed  Google Scholar 

  • Marshall, L., Helgadottir, H., Molle, M., & Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature, 444(7119), 610–613.

    Article  PubMed  CAS  Google Scholar 

  • Massimini, M., Huber, R., Ferrarelli, F., Hill, S., & Tononi, G. (2004). The sleep slow oscillation as a traveling wave. Journal of Neuroscience, 24(31), 6862–6870.

    Article  PubMed  CAS  Google Scholar 

  • Massimini, M., Rosanova, M., & Mariotti, M. (2003). EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. Journal of Neurophysiology, 89(3), 1205–1213.

    Article  PubMed  Google Scholar 

  • Mavanji, V., & Datta, S. (2003). Activation of the phasic pontine-wave generator enhances improvement of learning performance: A mechanism for sleep-dependent plasticity. European Journal of Neuroscience, 17(2), 359–370.

    Article  PubMed  Google Scholar 

  • McCarley, R. W., Winkelman, J. W., & Duffy, F. H. (1983). Human cerebral potentials associated with REM sleep rapid eye movements: Links to PGO waves and waking potentials. Brain Research, 274(2), 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Mikiten, T. H., Niebyl, P. H., & Hendley, C. D. (1961). EEG desynchronization during behavioral sleep associated with spike discharges from the thalamus of the cat. Federation Proceedings, 20, 327.

    Google Scholar 

  • Milner, C. E., Fogel, S. M., & Cote, K. A. (2006). Habitual napping moderates motor performance improvements following a short daytime nap. Biological Psychology, 73(2), 141–156.

    Article  PubMed  Google Scholar 

  • Miyauchi, S., Misaki, M., Kan, S., Fukunaga, T., & Koike, T. (2009). Human brain activity time-locked to rapid eye movements during REM sleep. Experimental Brain Research, 192(4), 657–667.

    Article  Google Scholar 

  • Molle, M., Bergmann, T. O., Marshall, L., & Born, J. (2011). Fast and slow spindles during the sleep slow oscillation: Disparate coalescence and engagement in memory processing. Sleep, 34(10), 1411–1421.

    PubMed  Google Scholar 

  • Molle, M., Marshall, L., Gais, S., & Born, J. (2002). Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. Journal of Neuroscience, 22(24), 10941–10947.

    PubMed  CAS  Google Scholar 

  • Mouret, J., Jeannerod, M., & Jouvet, M. (1963). L’activite électrique du systeme visuel au cours de la phase paradoxale du sommeil chez le chat. J Physiol (Paris), 55, 305–306.

    CAS  Google Scholar 

  • Murphy, M., Riedner, B. A., Huber, R., Massimini, M., Ferrarelli, F., & Tononi, G. (2009). Source modeling sleep slow waves. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1608–1613.

    Article  PubMed  CAS  Google Scholar 

  • Nir, Y., Staba, R. J., Andrillon, T., Vyazovskiy, V. V., Cirelli, C., Fried, I., et al. (2011). Regional slow waves and spindles in human sleep. Neuron, 70(1), 153–169.

    Article  PubMed  CAS  Google Scholar 

  • Nofzinger, E. A., Buysse, D. J., Miewald, J. M., Meltzer, C. C., Price, J. C., Sembrat, R. C., et al. (2002). Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain, 125(Pt 5), 1105–1115.

    Article  PubMed  Google Scholar 

  • Nofzinger, E. A., Mintun, M. A., Wiseman, M., Kupfer, D. J., & Moore, R. Y. (1997). Forebrain activation in REM sleep: An FDG PET study. Brain Research, 770(1–2), 192–201.

    Article  PubMed  CAS  Google Scholar 

  • Pare, D., Steriade, M., Deschenes, M., & Oakson, G. (1987). Physiological characteristics of anterior thalamic nuclei, a group devoid of inputs from reticular thalamic nucleus. Journal of Neurophysiology, 57(6), 1669–1685.

    PubMed  CAS  Google Scholar 

  • Peigneux, P., Laureys, S., Fuchs, S., Delbeuck, X., Degueldre, C., Aerts, J., et al. (2001). Generation of rapid eye movements during paradoxical sleep in humans. NeuroImage, 14(3), 701–708.

    Article  PubMed  CAS  Google Scholar 

  • Portas, C. M., Krakow, K., Allen, P., Josephs, O., Armony, J. L., & Frith, C. D. (2000). Auditory processing across the sleep-wake cycle: Simultaneous EEG and fMRI monitoring in humans. Neuron, 28(3), 991–999.

    Article  PubMed  CAS  Google Scholar 

  • Salzarule, P., Liary, G. C., Bancaud, J., Munari, C., Barros-Ferreira, M. D., Chodkiewicz, J. P., et al. (1975). Direct depth recording of the striate cortex during REM sleep in man: Are there PGO potentials? Electroencephalography and Clinical Neurophysiology, 38(2), 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Schabus, M., Dang-Vu, T. T., Albouy, G., Balteau, E., Boly, M., Carrier, J., et al. (2007). Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13164–13169.

    Article  PubMed  CAS  Google Scholar 

  • Schabus, M., Gruber, G., Parapatics, S., Sauter, C., Klosch, G., Anderer, P., et al. (2004). Sleep spindles and their significance for declarative memory consolidation. Sleep, 27(8), 1479–1485.

    PubMed  Google Scholar 

  • Shaffery, J. P., Roffwarg, H. P., Speciale, S. G., & Marks, G. A. (1999). Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens. Developmental Brain Research, 114(1), 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Spoormaker, V. I., Schroter, M. S., Gleiser, P. M., Andrade, K. C., Dresler, M., Wehrle, R., et al. (2010). Development of a large-scale functional brain network during human non-rapid eye movement sleep. Journal of Neuroscience, 30(34), 11379–11387.

    Article  PubMed  CAS  Google Scholar 

  • Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of Neurophysiology, 86(1), 1–39.

    PubMed  CAS  Google Scholar 

  • Steriade, M., Contreras, D., Curro Dossi, R., & Nunez, A. (1993a). The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: Scenario of sleep rhythm generation in interacting thalamic and neocortical networks. Journal of Neuroscience, 13(8), 3284–3299.

    PubMed  CAS  Google Scholar 

  • Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research, 320(1), 1–63.

    PubMed  CAS  Google Scholar 

  • Steriade, M., Domich, L., Oakson, G., & Deschenes, M. (1987). The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of Neurophysiology, 57(1), 260–273.

    PubMed  CAS  Google Scholar 

  • Steriade, M., & McCarley, R. W. (2005). Brain control of wakefulness and sleep. New York: Springer.

    Google Scholar 

  • Steriade, M., Nunez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience, 13(8), 3266–3283.

    PubMed  CAS  Google Scholar 

  • Steriade, M., Nunez, A., & Amzica, F. (1993c). A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. Journal of Neuroscience, 13(8), 3252–3265.

    PubMed  CAS  Google Scholar 

  • Steriade, M., & Timofeev, I. (2003). Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron, 37(4), 563–576.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki, M., Matsuoka, T., Nittono, H., & Hori, T. (2008). Fast sleep spindle (13–15 hz) activity correlates with sleep-dependent improvement in visuomotor performance. Sleep, 31(2), 204–211.

    PubMed  Google Scholar 

  • Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10(12), 1185–1199.

    Article  PubMed  CAS  Google Scholar 

  • Timofeev, I., & Steriade, M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Journal of Neurophysiology, 76(6), 4152–4168.

    PubMed  CAS  Google Scholar 

  • Wamsley, E. J., Tucker, M. A., Shinn, A. K., Ono, K. E., McKinley, S. K., Ely, A. V., et al. (2011). Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation? Biological Psychiatry, 71, 154–161.

    Article  PubMed  Google Scholar 

  • Wehrle, R., Czisch, M., Kaufmann, C., Wetter, T. C., Holsboer, F., Auer, D. P., et al. (2005). Rapid eye movement-related brain activation in human sleep: A functional magnetic resonance imaging study. Neuroreport, 16(8), 853–857.

    Article  PubMed  Google Scholar 

  • Wehrle, R., Kaufmann, C., Wetter, T. C., Holsboer, F., Auer, D. P., Pollmacher, T., et al. (2007). Functional microstates within human REM sleep: First evidence from fMRI of a thalamocortical network specific for phasic REM periods. European Journal of Neuroscience, 25(3), 863–871.

    Article  PubMed  Google Scholar 

  • Zeitlhofer, J., Gruber, G., Anderer, P., Asenbaum, S., Schimicek, P., & Saletu, B. (1997). Topographic distribution of sleep spindles in young healthy subjects. Journal of Sleep Research, 6(3), 149–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Belgian Fonds National de la Recherche Scientifique (FNRS), Fondation Médicale Reine Elisabeth (FMRE), Research Fund of the University of Liège, the “Interuniversity Attraction Poles Programme—Belgian State—Belgian Science Policy”, the Fonds Léon Frédéricq and the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thien Thanh Dang-Vu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang-Vu, T.T. Neuronal Oscillations in Sleep: Insights from Functional Neuroimaging. Neuromol Med 14, 154–167 (2012). https://doi.org/10.1007/s12017-012-8166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8166-1

Keywords

Navigation