Skip to main content

Advertisement

Log in

Occlusal Disharmony Increases Amyloid-β in the Rat Hippocampus

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Amyloid-β plays a causative role in Alzheimer’s disease. Occlusal disharmony causes chronic psychological stress, and psychological stress increases amyloid-β accumulation. The purpose of the present study was to investigate whether occlusal disharmony-induced psychological stress affects the accumulation of amyloid-β and its related gene expressions in the rat hippocampus. Eight-week-old male Wistar rats (n = 18) were divided into three groups of six rats each: (1) a control group that received no treatment for 8 weeks; (2) an occlusal disharmony group that underwent cutoff maxillary molar cusps for 8 weeks; and (3) a recovered group that underwent cutoff maxillary molar cusps for 4 weeks followed by recovery for 4 weeks. Occlusal disharmony increased plasma corticosterone levels in a time-dependent manner. Levels of amyloid-β 40 and 42, glucocorticoid receptor (Gr) protein, and cleaved caspase 3 (Casp3) as well as gene expressions of amyloid precursor protein, beta-secretase, Casp3, and Gr in the hippocampus in the occlusal disharmony group were significantly higher than those in the control group (P < 0.016). These findings were significantly improved by recovery of occlusion (P < 0.016). These results indicate that psychological stress induced by occlusal disharmony reversibly induces amyloid-β 40 and 42 in the rat hippocampus through the glucocorticoid signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, J. W., Eldadah, B. A., Huang, X., Knoblach, S. M., & Faden, A. I. (2001). Multiple caspases are involved in beta-amyloid-induced neuronal apoptosis. Journal of Neuroscience Research, 65, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Andoh, T., Sakuma, Y., Yamamoto, S., Matsuno, A., Maeda, T., & Kotani, J. (2009). Influences of molar loss of rat on learning and memory. Journal of Prosthodontic Research, 53, 155–160.

    Article  PubMed  Google Scholar 

  • Aoki, H., Kimoto, K., Hori, N., Hoshi, N., Yamamoto, T., & Onozuka, M. (2010). Molarless condition suppresses proliferation but not differentiation rates into neurons in the rat dentate gyrus. Neuroscience Letters, 469, 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., et al. (1996). Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1–42/1–40 ratio in vitro and in vivo. Neuron, 17, 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  • Buerger, K., Ewers, M., Pirttilä, T., Zinkowski, R., Alafuzoff, I., Teipel, S. J., et al. (2006). CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain, 129, 3035–3041.

    Article  PubMed  Google Scholar 

  • Carter, C. J. (2008). Interactions between the products of the Herpes simplex genome and Alzheimer’s disease susceptibility genes: relevance to pathological-signalling cascades. Neurochemistry International, 52, 920–934.

    Article  PubMed  CAS  Google Scholar 

  • Chow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromolecular Medicine, 12, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Csernansky, J. G., Dong, H., Fagan, A. M., Wang, L., Xiong, C., Holtzman, D. M., et al. (2006). Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. American Journal of Psychiatry, 163, 2164–2169.

    Article  PubMed  Google Scholar 

  • Dong, H., Yuede, C. M., Yoo, H. S., Martin, M. V., Deal, C., Mace, A. G., et al. (2008). Corticosterone and related receptor expression are associated with increased beta-amyloid plaques in isolated Tg2576 mice. Neuroscience, 155, 154–163.

    Article  PubMed  CAS  Google Scholar 

  • Ekuni, D., Furuta, M., Irie, K., Azuma, T., Tomofuji, T., Murakami, T., et al. (2011) Relationship between impacts attributed to malocclusion and psychological stress in young Japanese adults. European Journal of Orthodontics (Epub ahead of print).

  • Ekuni, D., Tomofuji, T., Irie, K., Kasuyama, K., Umakoshi, M., Azuma, T., et al. (2010). Effects of periodontitis on aortic insulin resistance in an obese rat model. Laboratory Investigation, 90, 348–359.

    Article  PubMed  CAS  Google Scholar 

  • Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L., & LaFerla, F. M. (2006). Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 26, 9047–9056.

    Article  PubMed  CAS  Google Scholar 

  • Gross, J., Machulik, A., Amarjargal, N., Moller, R., Ungethüm, U., Kuban, R. J., et al. (2007). Expression of apoptosis-related genes in the organ of Corti, modiolus and stria vascularis of newborn rats. Brain Research, 1162, 56–68.

    Article  PubMed  CAS  Google Scholar 

  • Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews Molecular Cell Biology, 8, 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Irie, K., Ekuni, D., Tomofuji, T., Azuma, T., Endo, Y., Kasuyama, K., et al. (2011). Occlusal disharmony induces BDNF level in rat submandibular gland. Archives of Oral Biology, 56, 35–40.

    Google Scholar 

  • Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N. P., et al. (2001). Metabolic regulation of brain Abeta by neprilysin. Science, 292, 1550–1552.

    Article  PubMed  CAS  Google Scholar 

  • Liang, J. H., Du, J., Xu, L. D., Jiang, T., Hao, S., Bi, J., et al. (2009). Catalpol protects primary cultured cortical neurons induced by Abeta(1–42) through a mitochondrial-dependent caspase pathway. Neurochemistry International, 55, 741–746.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H. B., Yang, X. M., Li, T. J., Cheng, Y. F., Zhang, H. T., & Xu, J. P. (2009). Memory deficits and neurochemical changes induced by C-reactive protein in rats: implication in Alzheimer’s disease. Psychopharmacology (Berl), 204, 705–714.

    Article  CAS  Google Scholar 

  • Liu, G., Sun, Y., Li, Z., Song, T., Wang, H., Zhang, Y., et al. (2008). Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochemical and Biophysical Research Communications, 370, 651–656.

    Article  PubMed  CAS  Google Scholar 

  • Nie, J., Luo, Y., Huang, X. N., Gong, Q. H., Wu, Q., & Shi, J. S. (2010). Icariin inhibits beta-amyloid peptide segment 25–35 induced expression of beta-secretase in rat hippocampus. European Journal of Pharmacology, 626, 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, N., Morikawa, M., Okamoto, K., Habu, N., Hazaki, K., Harano, A., et al. (2010). Tooth loss is associated with mild memory impairment in the elderly: the Fujiwara-kyo study. Brain Research, 1349, 68–75.

    Article  PubMed  CAS  Google Scholar 

  • Okimoto, K., Ieiri, K., Matsuo, K., & Terada, Y. (1991). The relationship between oral status and the progress of dementia at senile hospital. Journal of Japanese Prosthodont Society, 35, 931–943.

    Article  Google Scholar 

  • Onozuka, M., Watanabe, K., Fujita, M., Tonosaki, K., & Saito, S. (2002). Evidence for involvement of glucocorticoid response in the hippocampal changes in aged molarless SAMP8 mice. Behavioural Brain Research, 131, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Radecki, D. T., Brown, L. M., Martinez, J., & Teyler, T. J. (2005). BDNF protects against stress-induced impairments in spatial learning and memory and LTP. Hippocampus, 15, 246–253.

    Article  PubMed  CAS  Google Scholar 

  • Rai, B., Kaur, J., Anand, S. C., & Jacobs, R. (2011) Salivary stress markers, stress and periodontitis: A pilot study. Journal of Periodontology, 82, 287–292.

    Google Scholar 

  • Sarabdjitsingh, R. A., Meijer, O. C., & de Kloet, E. R. (2010). Specificity of glucocorticoid receptor primary antibodies for analysis of receptor localization patterns in cultured cells and rat hippocampus. Brain Research, 1331, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Sauro, M. D., Jorgensen, R. S., & Pedlow, C. T. (2003). Stress, glucocorticoids, and memory: a meta-analytic review. Stress, 6, 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Seo, J. S., Jung, E. Y., Kim, J. H., Lyu, Y. S., Han, P. L., & Kang, H. W. (2010). A modified preparation (LMK03) of the oriental medicine Jangwonhwan reduces Abeta(1–42) level in the brain of Tg-APPswe/PS1dE9 mouse model of Alzheimer disease. Journal of Ethnopharmacology, 130, 578–585.

    Article  PubMed  Google Scholar 

  • Shigetomi, T., Asano, T., Katou, T., Usami, T., Ueda, M., & Kawano, K. (1998). A study on oral function and aging—an epidemiological risk factor for dementia-. Journal of Japan Stomatological Society, 47, 403–407.

    Google Scholar 

  • Siu PM, Tam EW, Teng BT, Pei XM, Ng JW, Benzie IF, et al. (2009) Muscle apoptosis is induced in pressure-induced deep tissue injury. Journal of Applied Physiology, 107, 1266–1275.

    Google Scholar 

  • Spiga, F., & Lightman, S. L. (2009). Dose-dependent effects of corticosterone on nuclear glucocorticoid receptors and their binding to DNA in the brain and pituitary of the rat. Brain Research, 1293, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Stein, P. S., Desrosiers, M., Donegan, S. J., Yepes, J. F., & Kryscio, R. J. (2007). Tooth loss, dementia and neuropathology in the Nun study. Journal of the American Dental Association, 138, 1314–1322.

    PubMed  Google Scholar 

  • Strozyk, D., Blennow, K., White, L. R., & Launer, L. J. (2003). CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology, 60, 652–656.

    PubMed  CAS  Google Scholar 

  • Sultana, R., Banks, W. A., & Butterfield, D. A. (2010). Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer’s disease. Journal of Neuroscience Research, 88, 469–477.

    PubMed  CAS  Google Scholar 

  • Vassar, R., Kovacs, D. M., Yan, R., & Wong, P. C. (2009). The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. Journal of Neuroscience, 29, 12787–12794.

    Article  PubMed  CAS  Google Scholar 

  • Wahrle, S. E., Jiang, H., Parsadanian, M., Hartman, R. E., Bales, K. R., Paul, S. M., et al. (2005). Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. Journal of Biological Chemistry, 280, 43236–43242.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R. S., Barnes, L. L., Bennett, D. A., Li, Y., Bienias, J. L., Mendes de Leon, C. F., et al. (2005). Proneness to psychological distress and risk of Alzheimer disease in a biracial community. Neurology, 64, 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, L., & Chen, Y. (2008). Culture condition and embryonic stage dependent silence of glucocorticoid receptor expression in hippocampal neurons. Journal of Steroid Biochemistry and Molecular Biology, 111, 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara, T., Matsumoto, Y., & Ogura, T. (2001). Occlusal disharmony affects plasma corticosterone and hypothalamic noradrenaline release in rats. Journal of Dental Research, 80, 2089–2092.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants-in-aid for a scholarship supporting Japanese national dental schools to promote dental research for patient’s QOL improvement awarded to Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences (2009) and for Scientific Research (23792512) from the Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan.

Conflicts of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ekuni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekuni, D., Tomofuji, T., Irie, K. et al. Occlusal Disharmony Increases Amyloid-β in the Rat Hippocampus. Neuromol Med 13, 197–203 (2011). https://doi.org/10.1007/s12017-011-8151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-011-8151-0

Keywords

Navigation