Skip to main content

Triglyceride Level-Influencing Functional Variants of the ANGPTL3, CILP2, and TRIB1 Loci in Ischemic Stroke

Abstract

Stroke is a common multifactorial disease, and the third leading cause of death worldwide, which results in serious long-term mental and physical disability among survivors. The role of affected triglyceride metabolism in the development of ischemic stroke is under extensive investigations. Here, we examined three SNPs, rs12130333 located within the ANGPTL3 locus; rs16996148 residing at the CILP2 gene locus; and rs17321515 at the TRIB1 locus, which were originally reported in association with decreased triglyceride levels; therefore, we investigated their possible protective effect against the development of ischemic stroke. A total of 459 Caucasian stroke patients, stratified as large-vessel, small-vessel, and mixed stroke groups, and 168 control subjects were genotyped using PCR–RFLP methods. As a result, we could not detect any differences in triglyceride or total cholesterol levels in relation to any allelic variants of rs16996148, rs17321515, or rs12130333 SNPs. No correlation was found between the minor alleles rs16996148-T (P = 0.881), rs17321515-G (P = 0.070), or rs12130333-T allele (P = 0.757) and the risk for development of stroke. The data presented here suggest different scale of effect of triglyceride modifier alleles and also their variable susceptibility or protective nature.

This is a preview of subscription content, access via your institution.

References

  • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. (2001). Executive summary of the third report of the National Cholesterol Education Program (NCEP) (Adult Treatment Panel III). Journal of the American Medical Association, 285, 2486–2497.

    Google Scholar 

  • Baroni, M. G., Berni, A., Romeo, S., et al. (2003). Genetic study of common variants at the Apo E, Apo AI, Apo CIII, Apo B, lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes and coronary artery disease (CAD): Variation in LIPC gene associates with clinical outcomes in patients with established CAD. BMC Medical Genetics, 4, 8.

    Article  PubMed  Google Scholar 

  • Conklin, D., Gilbertson, D., Taft, D. W., et al. (1999). Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics, 62, 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Dallinga-Thie, G. M., Linde-Sibenius, T. M., Rotter, J. I., et al. (1997). Complex genetic contribution of the Apo AI-CIII-AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes. The Journal of Clinical Investigation, 99, 953–961.

    Article  PubMed  CAS  Google Scholar 

  • Feitosa, M. F., An, P., Ordovas, J. M., et al. (2011). Association of gene variants with lipid levels in response to fenofibrate is influenced by metabolic syndrome status. Atherosclerosis, 215(2), 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Freiberg, J. J., Tybjaerg-Hansen, A., Jensen, J. S., & Nordestgaard, B. G. (2008). Nonfasting triglycerides and risk of ischemic stroke in the general population. The Journal of the American Medical Association, 300, 2142–2152.

    Article  CAS  Google Scholar 

  • Frikke-Schmidt, R., Nordestgaard, B. G., Schnohr, P., & Tybjaerg-Hansen, A. (2004). Single nucleotide polymorphism in the low-density lipoprotein receptor is associated with a threefold risk of stroke. A case-control and prospective study. European Heart Journal, 25, 943–951.

    Article  PubMed  CAS  Google Scholar 

  • Havasi, V., Szolnoki, Z., Talian, G., et al. (2006). Apolipoprotein A5 gene promoter region T-1131C polymorphism associates with elevated circulating triglyceride levels and confers susceptibility for development of ischemic stroke. Journal of Molecular Neuroscience, 29, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Inaba, T., Matsuda, M., Shimamura, M., et al. (2003). Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. Journal of Biological Chemistry, 278, 21344–21351.

    Article  PubMed  CAS  Google Scholar 

  • Izar, M. C., Fonseca, F. A., Ihara, S. S., et al. (2003). Risk factors, biochemical markers, and genetic polymorphisms in early coronary artery disease. Arquivos Brasileiros de Cardiologia, 80, 379–395.

    Article  PubMed  Google Scholar 

  • Johnson, K., Farley, D., Hu, S. I., & Terkeltaub, R. (2003). One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist. Arthritis and Rheumatism, 48, 1302–1314.

    Article  PubMed  CAS  Google Scholar 

  • Kannel, W. B., Dawber, T. R., Kagan, A., & Stokes, J., I. I. I. (1961). Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham study. Annals of Internal Medicine, 55, 33–50.

    PubMed  CAS  Google Scholar 

  • Kaplan, R., Zhang, T., Hernandez, M., et al. (2003). Regulation of the angiopoietin-like protein 3 gene by LXR. Journal of Lipid Research, 44, 136–143.

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan, S., Melander, O., Anevski, D., et al. (2008a). Polymorphisms associated with cholesterol and risk of cardiovascular events. New England Journal of Medicine, 358, 1240–1249.

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan, S., Melander, O., Guiducci, C., et al. (2008b). Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nature Genetics, 40, 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan, S., Willer, C. J., Peloso, G. M., et al. (2009). Common variants at 30 loci contribute to polygenic dyslipidemia. Nature Genetics, 41, 56–65.

    Article  PubMed  CAS  Google Scholar 

  • Kiss-Toth, E., Bagstaff, S. M., Sung, H. Y., et al. (2004). Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. The Journal of Biological Chemistry, 279, 42703–42708.

    Article  PubMed  CAS  Google Scholar 

  • Koishi, R., Ando, Y., Ono, M., et al. (2002). Angptl3 regulates lipid metabolism in mice. Nature Genetics, 30, 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Koster, A., Chao, Y. B., Mosior, M., et al. (2005). Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: Regulation of triglyceride metabolism. Endocrinology, 146, 4943–4950.

    Article  PubMed  CAS  Google Scholar 

  • Labreuche, J., Touboul, P. J., & Amarenco, P. (2009). Plasma triglyceride levels and risk of stroke and carotid atherosclerosis: A systematic review of the epidemiological studies. Atherosclerosis, 203, 331–345.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., Bacci, S., Mlynarski, W., et al. (2004). A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Human Molecular Genetics, 13, 2197–2205.

    Article  PubMed  CAS  Google Scholar 

  • Maasz, A., Kisfali, P., Jaromi, L., et al. (2008a). Apolipoprotein A5 gene IVS3+G476A allelic variant confers susceptibility for development of ischemic stroke. Circulation Journal, 72, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Maasz, A., Kisfali, P., Szolnoki, Z., Hadarits, F., & Melegh, B. (2008b). Apolipoprotein A5 gene C56G variant confers risk for the development of large-vessel associated ischemic stroke. Journal of Neurology, 255, 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, J., & Mensah, G. A. (2004). The atlas of heart disease and stroke (1st ed.). Geneva: World Health Organization.

    Google Scholar 

  • Martinelli, N., Trabetti, E., Bassi, A., et al. (2007). The -1131 T>C and S19W APOA5 gene polymorphisms are associated with high levels of triglycerides and apolipoprotein C-III, but not with coronary artery disease: An angiographic study. Atherosclerosis, 191, 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Meigs, J. B., Nathan, D. M., D’Agostino, R. B., Sr., & Wilson, P. W. (2002). Fasting and postchallenge glycemia and cardiovascular disease risk: The Framingham Offspring study. Diabetes Care, 25, 1845–1850.

    Article  PubMed  Google Scholar 

  • Merkel, M., Eckel, R. H., & Goldberg, I. J. (2002). Lipoprotein lipase: Genetics, lipid uptake, and regulation. Journal of Lipid Research, 43, 1997–2006.

    Article  PubMed  CAS  Google Scholar 

  • Miller, N. E., & Miller, G. J. (1975). Letter: High-density lipoprotein and atherosclerosis. Lancet, 1, 1033.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, K., Bayasgalan, T., Yamanaka, K., et al. (2009). Large scale replication analysis of loci associated with lipid concentrations in a Japanese population. Journal of Medical Genetics, 46, 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Nordestgaard, B. G., Benn, M., Schnohr, P., & Tybjaerg-Hansen, A. (2007). Non-fasting triglycerides and risk of for myocardial infarction and death among women and men. Ugeskrift for Laeger, 169, 3865–3868.

    PubMed  Google Scholar 

  • Ono, M., Shimizugawa, T., Shimamura, M., et al. (2003). Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. Journal of Biological Chemistry, 278, 41804–41809.

    Article  PubMed  CAS  Google Scholar 

  • Ordovas, J. M., Civeira, F., Genest, J., Jr., et al. (1991). Restriction fragment length polymorphisms of the apolipoprotein A-I, C-III, A-IV gene locus. Relationships with lipids, apolipoproteins, and premature coronary artery disease. Atherosclerosis, 87, 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Pedro-Botet, J., Senti, M., Nogues, X., et al. (1992). Lipoprotein and apolipoprotein profile in men with ischemic stroke. Role of lipoprotein(a), triglyceride-rich lipoproteins, and apolipoprotein E polymorphism. Stroke, 23, 1556–1562.

    Article  PubMed  CAS  Google Scholar 

  • Pennacchio, L. A., & Rubin, E. M. (2003). Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 529–534.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Martinez, P., Garcia-Rios, A., Delgado-Lista, J., Perez-Jimenez, F., & Lopez-Miranda, J. (2011). Nutrigenetics of the postprandial lipoprotein metabolism: Evidences from human intervention studies. Current Vascular Pharmacology, 9(3), 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Romeo, S., Yin, W., Kozlitina, J., et al. (2009). Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. The Journal of Clinical Investigation, 119, 70–79.

    PubMed  CAS  Google Scholar 

  • Saidi, S., Slamia, L. B., Ammou, S. B., Mahjoub, T., & Almawi, W. Y. (2007). Association of apolipoprotein E gene polymorphism with ischemic stroke involving large-vessel disease and its relation to serum lipid levels. Journal of Stroke and Cerebrovascular Diseases, 16, 160–166.

    Article  PubMed  Google Scholar 

  • Salonen, J. T., Puska, P., Tuomilehto, J., & Homan, K. (1982). Relation of blood pressure, serum lipids, and smoking to the risk of cerebral stroke. A longitudinal study in Eastern Finland. Stroke, 13, 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Seidelmann, S. B., Li, L., Shen, G. Q., Topol, E. J., & Wang, Q. K. (2008). Identification of a novel locus for triglyceride on chromosome 1p31–32 in families with premature CAD and MI. Journal of Lipid Research, 49, 1034–1038.

    Article  PubMed  CAS  Google Scholar 

  • Shimizugawa, T., Ono, M., Shimamura, M., et al. (2002). ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. Journal of Biological Chemistry, 277, 33742–33748.

    Article  PubMed  CAS  Google Scholar 

  • Souverein, O. W., Jukema, J. W., Boekholdt, S. M., Zwinderman, A. H., & Tanck, M. W. (2005). Polymorphisms in APOA1 and LPL genes are statistically independently associated with fasting TG in men with CAD. European Journal of Human Genetics, 13, 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Szalai, C., Keszei, M., Duba, J., et al. (2004). Polymorphism in the promoter region of the apolipoprotein A5 gene is associated with an increased susceptibility for coronary artery disease. Atherosclerosis, 173, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Tai, E. S., Sim, X. L., Ong, T. H., et al. (2009). Polymorphisms at newly identified lipid-associated loci are associated with blood lipids and cardiovascular disease in an Asian Malay population. Journal of Lipid Research, 50, 514–520.

    Article  PubMed  CAS  Google Scholar 

  • Talmud, P. J., Drenos, F., & Shah, S. (2009). Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. American Journal of Human Genetics, 85(5), 628–642.

    Article  PubMed  CAS  Google Scholar 

  • Vaessen, S. F., Schaap, F. G., Kuivenhoven, J. A., et al. (2006). Apolipoprotein A-V, triglycerides and risk of coronary artery disease: The prospective Epic-Norfolk Population study. Lipid Res., 47, 2064–2070.

    Article  CAS  Google Scholar 

  • Varbo, A., Benn, M., Tybjaerg-Hansen, A., Grande, P., & Nordestgaard, B. G. (2011). TRIB1 and GCKR polymorphisms, lipid levels, and risk of ischemic heart disease in the general population. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(2), 451–457.

    Article  PubMed  CAS  Google Scholar 

  • Waterworth, D. M., Ricketts, S. L., Song, K., Chen, L., & Zhao, J. H. (2010). Genetic variants influencing lipid levels and risk of coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(11), 2264–2276.

    Article  PubMed  CAS  Google Scholar 

  • Willer, C. J., Sanna, S., Jackson, A. U., et al. (2008). Newly identified loci that influence lipid concentrations and risk of coronary artery disease. National Genetics, 40, 161–169.

    Article  CAS  Google Scholar 

  • Yoshida, K., Shimizugawa, T., Ono, M., & Furukawa, H. (2002). Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. Journal of Lipid Research, 43, 1770–1772.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D., He, Z., Qin, X., Li, L., Liu, F., & Deng, S. (2010). Association of apolipoprotein M gene polymorphisms with ischemic stroke in a Han Chinese population. Journal of Molecular Neuroscience, 43(3), 370–375.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Melegh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Járomi, L., Csöngei, V., Polgár, N. et al. Triglyceride Level-Influencing Functional Variants of the ANGPTL3, CILP2, and TRIB1 Loci in Ischemic Stroke. Neuromol Med 13, 179–186 (2011). https://doi.org/10.1007/s12017-011-8149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-011-8149-7

Keywords

  • ANGPTL3
  • CILP2
  • TRIB1
  • Stroke
  • Triglyceride
  • Cholesterol