Skip to main content
Log in

Traumatic Brain Injury Elicits Similar Alterations in α7 Nicotinic Receptor Density in Two Different Experimental Models

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is a major cause of death and disability worldwide, especially in children and young adults. Previous studies have shown alterations in the central cholinergic neurotransmission after TBI. We therefore determined α7 nicotinic acetylcholine receptor (nAChR) densities in newborn piglets and adult rats after experimental TBI. Thirteen newborn piglets (post-TBI survival time: 6 h) underwent fluid percussion (FP) injury (n = 7) or sham operation (n = 6). Furthermore, adult rats randomized into three groups of post-TBI survival times (2, 24, 72 h) received controlled cortical impact injury (CCI, n = 8) or sham operation (n = 8). Brains were frozen, sagittally cut and incubated with the α7-specific radioligand [125I]α-bungarotoxin for autoradiography. In injured newborn piglets, decreased α7 receptor densities were observed in the hippocampus (−38%), the hippocampus CA1 (−40%), thalamus (−30%) and colliculus superior (−30%). In adult rats, CCI decreased the receptor densities (between −16 and −47%) in almost any brain region within 2 and 24 h. In conclusion, widespread and significantly lowered α7 nAChR densities were demonstrated in both TBI models. Our results suggest that a nearly similar TBI-induced decrease in the α7 density in the brain of immature and adult animals is found, even with the differences in species, age and experimental procedures. The alterations make the α7 nAChR a suitable target for drug development and neuroimaging after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholine esterase

AChR:

Acetylcholine receptor(s)

CCI:

Controlled cortical impact

ChAT:

Choline acetyltransferase

FP:

Fluid percussion

mAChR:

Muscarinic acetylcholine receptor(s)

nAChR:

Nicotinic acetylcholine receptor(s)

PET:

Positron emission tomography

PSL:

Photostimulated luminescence

TBI:

Traumatic brain injury

vAChT:

Vesicular acetylcholine transporter

References

  • Adelson, P. D., & Kochanek, P. M. (1998). Head injury in children. Journal of Child Neurology, 13, 2–15.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, S. P., Mathie, A., & Peters, J. A. (2006). Guide to receptors and channels 2nd edition. British Journal of Pharmacology, 147(Suppl 3), S1–S168.

    PubMed  CAS  Google Scholar 

  • Arciniegas, D. B. (2003). The cholinergic hypothesis of cognitive impairment caused by traumatic brain injury. Current Psychiatry Reports, 5, 391–399.

    Article  PubMed  Google Scholar 

  • Arciniegas, D., Adler, L., Topkoff, J., Cawthra, E., Filley, C. M., & Reite, M. (1999). Attention and memory dysfunction after traumatic brain injury: cholinergic mechanisms, sensory gating, and a hypothesis for further investigation. Brain Injury, 13, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Bayir, H., Kochanek, P. M., & Kagan, V. E. (2006). Oxidative stress in immature brain after traumatic brain injury. Developmental Neuroscience, 28, 420–431.

    Article  PubMed  CAS  Google Scholar 

  • Bittigau, P., Sifringer, M., Felderhoff-Mueser, U., & Ikonomidou, C. (2004). Apoptotic neurodegeneration in the context of traumatic injury to the developing brain. Experimental and Toxicologic Pathology, 56, 83–89.

    Article  PubMed  Google Scholar 

  • Broide, R. S., O’Connor, L. T., Smith, M. A., Smith, J. A., & Leslie, F. M. (1995). Developmental expression of alpha 7 neuronal nicotinic receptor messenger RNA in rat sensory cortex and thalamus. Neuroscience, 67, 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev, N. (1998). Calcium permeability of ligand-gated channels. Cell Calcium, 24, 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J. P., Gunther, W., Seeburg, P. H., et al. (1992). Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science, 257, 1415–1419.

    Article  PubMed  CAS  Google Scholar 

  • Carnevale, D., De Simone, R., & Minghetti, L. (2007). Microglia-neuron interaction in inflammatory and degenerative diseases: role of cholinergic and noradrenergic systems. CNS & Neurological Disorders Drug Targets, 6, 388–397.

    Article  CAS  Google Scholar 

  • Cederberg, D., & Siesjo, P. (2010). What has inflammation to do with traumatic brain injury? Childs Nervous System, 26, 221–226.

    Article  Google Scholar 

  • Ciallella, J. R., Yan, H. Q., Ma, X., Wolfson, B. M., Marion, D. W., DeKosky, S. T., et al. (1998). Chronic effects of traumatic brain injury on hippocampal vesicular acetylcholine transporter and M2 muscarinic receptor protein in rats. Experimental Neurology, 152, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, P. B., Schwartz, R. D., Paul, S. M., Pert, C. B., & Pert, A. (1985). Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. Journal of Neuroscience, 5, 1307–1315.

    PubMed  CAS  Google Scholar 

  • Conejero-Goldberg, C., Davies, P., & Ulloa, L. (2008). Alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration. Neuroscience and Biobehavioral Reviews, 32, 693–706.

    Article  PubMed  CAS  Google Scholar 

  • de Jonge, W. J., & Ulloa, L. (2007). The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. British Journal of Pharmacology, 151, 915–929.

    Article  PubMed  Google Scholar 

  • DeAngelis, M. M., Hayes, R. L., & Lyeth, B. G. (1994). Traumatic brain injury causes a decrease in M2 muscarinic cholinergic receptor binding in the rat brain. Brain Research, 653, 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, C. E., Bao, J., Bergmann, J. S., & Johnson, K. M. (1994). Traumatic brain injury reduces hippocampal high-affinity [3H]choline uptake but not extracellular choline levels in rats. Neuroscience Letters, 180, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Dobbing, J. (1982). Maternal nutrition, breast feeding, and contraception. British Medical Journal (Clinical Research ed.), 284, 1725–1726.

    Article  CAS  Google Scholar 

  • Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 3, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Donat, C. K., Schuhmann, M. U., Voigt, C., Nieber, K., Schliebs, R., & Brust, P. (2007). Alterations of acetylcholinesterase activity after traumatic brain injury in rats. Brain Injury, 21, 1031–1037.

    Article  PubMed  Google Scholar 

  • Donat, C. K., Schuhmann, M. U., Voigt, C., Nieber, K., Deuther-Conrad, W., & Brust, P. (2008). Time-dependent alterations of cholinergic markers after experimental traumatic brain injury. Brain Research, 1246, 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Donat, C. K., Walter, B., Deuther-Conrad, W., Wenzel, B., Nieber, K., Bauer, R., et al. (2010a). Alterations of cholinergic receptors and the vesicular acetylcholine transporter after lateral fluid percussion injury in newborn piglets. Neuropathology and Applied Neurobiology, 36, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Donat, C. K., Walter, B., Kayser, T., Deuther-Conrad, W., Schliebs, R., Nieber, K., et al. (2010b). Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain. International Journal of Developmental Neuroscience, 28, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Drisdel, R. C., & Green, W. N. (2000). Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. Journal of Neuroscience, 20, 133–139.

    PubMed  CAS  Google Scholar 

  • Duhaime, A. C. (2006). Large animal models of traumatic injury to the immature brain. Developmental Neuroscience, 28, 380–387.

    Article  PubMed  CAS  Google Scholar 

  • Duhaime, A. C., Margulies, S. S., Durham, S. R., O’Rourke, M. M., Golden, J. A., Marwaha, S., et al. (2000). Maturation-dependent response of the piglet brain to scaled cortical impact. Journal of Neurosurgery, 93, 455–462.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer, J. B., Broide, R. S., & Leslie, F. M. (2008). Nicotine and brain development. Birth Defects Research Part C Embryo Today, 84, 30–44.

    Article  CAS  Google Scholar 

  • Dwyer, J. B., McQuown, S. C., & Leslie, F. M. (2009). The dynamic effects of nicotine on the developing brain. Pharmacology and Therapeutics, 122, 125–139.

    Article  PubMed  CAS  Google Scholar 

  • Feickert, H. J., Drommer, S., & Heyer, R. (1999). Severe head injury in children: impact of risk factors on outcome. Journal of Trauma, 47, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Förster, E., Zhao, S., & Frotscher, M. (2006). Laminating the hippocampus. Nature Reviews Neuroscience, 7, 259–267.

    Article  PubMed  Google Scholar 

  • Gorman, L. K., Fu, K., Hovda, D. A., Murray, M., & Traystman, R. J. (1996). Effects of traumatic brain injury on the cholinergic system in the rat. Journal of Neurotrauma, 13, 457–463.

    Article  PubMed  CAS  Google Scholar 

  • Gotti, C., & Clementi, F. (2004). Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology, 74, 363–396.

    Article  PubMed  CAS  Google Scholar 

  • Imperato, A., Dazzi, L., Obinu, M. C., Gessa, G. L., & Biggio, G. (1993). Inhibition of hippocampal acetylcholine release by benzodiazepines: antagonism by flumazenil. European Journal of Pharmacology, 238, 135–137.

    Article  PubMed  CAS  Google Scholar 

  • Jankowitz, B. T., & Adelson, P. D. (2006). Pediatric traumatic brain injury: past, present and future. Developmental Neuroscience, 28, 264–275.

    Article  PubMed  CAS  Google Scholar 

  • Keenan, H. T., & Bratton, S. L. (2006). Epidemiology and outcomes of pediatric traumatic brain injury. Developmental Neuroscience, 28, 256–263.

    Article  PubMed  CAS  Google Scholar 

  • Kelso, M. L., Wehner, J. M., Collins, A. C., Scheff, S. W., & Pauly, J. R. (2006). The pathophysiology of traumatic brain injury in alpha7 nicotinic cholinergic receptor knockout mice. Brain Research, 1083, 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Kochanek, P. M. (2006). Pediatric traumatic brain injury: quo vadis? Developmental Neuroscience, 28, 244–255.

    Article  PubMed  CAS  Google Scholar 

  • Koskiniemi, M., Kyykka, T., Nybo, T., & Jarho, L. (1995). Long-term outcome after severe brain injury in preschoolers is worse than expected. Archives of Pediatrics and Adolescent Medicine, 149, 249–254.

    PubMed  CAS  Google Scholar 

  • Lauder, J. M., & Schambra, U. B. (1999). Morphogenetic roles of acetylcholine. Environmental Health Perspectives, 107(Suppl 1), 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Levin, E. D. (2002). Nicotinic receptor subtypes and cognitive function. Journal of Neurobiology, 53, 633–640.

    Article  PubMed  CAS  Google Scholar 

  • Levin, H. S., Aldrich, E. F., Saydjari, C., Eisenberg, H. M., Foulkes, M. A., Bellefleur, M., et al. (1992). Severe head injury in children: experience of the Traumatic Coma Data Bank. Neurosurgery, 31, 435–443. discussion 443-434.

    Article  PubMed  CAS  Google Scholar 

  • Lyeth, B. G., Jiang, J. Y., Delahunty, T. M., Phillips, L. L., & Hamm, R. J. (1994). Muscarinic cholinergic receptor binding in rat brain following traumatic brain injury. Brain Research, 640, 240–245.

    Article  PubMed  CAS  Google Scholar 

  • Mazzola, C. A., & Adelson, P. D. (2002). Critical care management of head trauma in children. Critical Care Medicine, 30, S393–S401.

    Article  PubMed  Google Scholar 

  • McAllister, T. W. (1992). Neuropsychiatric sequelae of head injuries. Psychiatric Clinics of North America, 15, 395–413.

    PubMed  CAS  Google Scholar 

  • McCann, C. M., Bracamontes, J., Steinbach, J. H., & Sanes, J. R. (2006). The cholinergic antagonist alpha-bungarotoxin also binds and blocks a subset of GABA receptors. Proceedings of the national academy of sciences of the United States of America, 103, 5149–5154.

    Google Scholar 

  • McIntosh, T. K., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., et al. (1989). Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience, 28, 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M. M., Silver, J., & Billiar, R. B. (1982). Effects of ovariectomy on the binding of [125I]-alpha bungarotoxin (2.2 and 3.3) to the suprachiasmatic nucleus of the hypothalamus: an in vivo autoradiographic analysis. Brain Research, 247, 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Missios, S., Harris, B. T., Dodge, C. P., Simoni, M. K., Costine, B. A., Lee, Y. L., et al. (2009). Scaled cortical impact in immature swine: effect of age and gender on lesion volume. Journal of Neurotrauma, 26, 1943–1951.

    Article  PubMed  Google Scholar 

  • Moor, E., DeBoer, P., & Westerink, B. H. (1998). GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo. European Journal of Pharmacology, 359, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi, S., Thompson, J., Baghdoyan, H. A., & Lydic, R. (1999). Fentanyl and morphine, but not remifentanil, inhibit acetylcholine release in pontine regions modulating arousal. Anesthesiology, 90, 1070–1077.

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314–1318.

    Article  PubMed  CAS  Google Scholar 

  • Orr-Urtreger, A., Goldner, F. M., Saeki, M., Lorenzo, I., Goldberg, L., De Biasi, M., et al. (1997). Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. Journal of Neuroscience, 17, 9165–9171.

    PubMed  CAS  Google Scholar 

  • Prins, M. L., & Hovda, D. A. (2003). Developing experimental models to address traumatic brain injury in children. Journal of Neurotrauma, 20, 123–137.

    Article  PubMed  Google Scholar 

  • Radcliffe, K. A., & Dani, J. A. (1998). Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. Journal of Neuroscience, 18, 7075–7083.

    PubMed  CAS  Google Scholar 

  • Rangwala, F., Drisdel, R. C., Rakhilin, S., Ko, E., Atluri, P., Harkins, A. B., et al. (1997). Neuronal alpha-bungarotoxin receptors differ structurally from other nicotinic acetylcholine receptors. Journal of Neuroscience, 17, 8201–8212.

    PubMed  CAS  Google Scholar 

  • Rasmusson, D. D. (2000). The role of acetylcholine in cortical synaptic plasticity. Behavioural Brain Research, 115, 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Romijn, H. J., Hofman, M. A., & Gramsbergen, A. (1991). At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Human Development, 26, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Ballina, M., & Tracey, K. J. (2009). Cholinergic control of inflammation. Journal of Internal Medicine, 265, 663–679.

    Article  PubMed  CAS  Google Scholar 

  • Saija, A., Hayes, R. L., Lyeth, B. G., Dixon, C. E., Yamamoto, T., & Robinson, S. E. (1988). The effect of concussive head injury on central cholinergic neurons. Brain Research, 452, 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Salmond, C. H., Chatfield, D. A., Menon, D. K., Pickard, J. D., & Sahakian, B. J. (2005). Cognitive sequelae of head injury: involvement of basal forebrain and associated structures. Brain, 128, 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Scremin, O. U., Li, M. G., Roch, M., Booth, R., & Jenden, D. J. (2006). Acetylcholine and choline dynamics provide early and late markers of traumatic brain injury. Brain Research, 1124, 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Shao, L., Ciallella, J. R., Yan, H. Q., Ma, X., Wolfson, B. M., Marion, D. W., et al. (1999). Differential effects of traumatic brain injury on vesicular acetylcholine transporter and M2 muscarinic receptor mRNA and protein in rat. Journal of Neurotrauma, 16, 555–566.

    Article  PubMed  CAS  Google Scholar 

  • Shein, N. A., Grigoriadis, N., Horowitz, M., Umschwief, G., Alexandrovich, A. G., Simeonidou, C., et al. (2008). Microglial involvement in neuroprotection following experimental traumatic brain injury in heat-acclimated mice. Brain Research, 1244, 132–141.

    Article  PubMed  CAS  Google Scholar 

  • Shytle, R. D., Mori, T., Townsend, K., Vendrame, M., Sun, N., Zeng, J., et al. (2004). Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. Journal of Neurochemistry, 89, 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Slotkin, T. A. (2004). Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicology and Applied Pharmacology, 198, 132–151.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, J. A., & Pauly, J. R. (1999). Effects of continuous oral nicotine administration on brain nicotinic receptors and responsiveness to nicotine in C57Bl/6 mice. Psychopharmacology (Berl), 141, 145–153.

    Article  CAS  Google Scholar 

  • Sullivan, H. G., Martinez, J., Becker, D. P., Miller, J. D., Griffith, R., & Wist, A. O. (1976). Fluid-percussion model of mechanical brain injury in the cat. Journal of Neurosurgery, 45, 521–534.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Hide, I., Matsubara, A., Hama, C., Harada, K., Miyano, K., et al. (2006). Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. Journal of Neuroscience Research, 83, 1461–1470.

    Article  PubMed  CAS  Google Scholar 

  • Tellez, S., Colpaert, F., & Marien, M. (1997). Acetylcholine release in the rat prefrontal cortex in vivo: modulation by alpha 2-adrenoceptor agonists and antagonists. Journal of Neurochemistry, 68, 778–785.

    Article  PubMed  CAS  Google Scholar 

  • Terry, A. V, Jr., Gearhart, D. A., Mahadik, S. P., Warsi, S., Davis, L. W., & Waller, J. L. (2005). Chronic exposure to typical or atypical antipsychotics in rodents: temporal effects on central alpha7 nicotinic acetylcholine receptors. Neuroscience, 136, 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Tribollet, E., Bertrand, D., Marguerat, A., & Raggenbass, M. (2004). Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience, 124, 405–420.

    Article  PubMed  CAS  Google Scholar 

  • Vargo, J. M., Grachek, R. A., & Rockswold, G. L. (1999). Light deprivation soon after frontal brain trauma accelerates recovery from attentional deficits and promotes functional normalization of basal ganglia. Journal of Trauma, 47, 265–272. discussion 273-264.

    Article  PubMed  CAS  Google Scholar 

  • Verbois, S. L., Sullivan, P. G., Scheff, S. W., & Pauly, J. R. (2000). Traumatic brain injury reduces hippocampal α7 nicotinic cholinergic receptor binding. Journal of Neurotrauma, 17, 1001–1011.

    Article  PubMed  CAS  Google Scholar 

  • Verbois, S. L., Scheff, S. W., & Pauly, J. R. (2002). Time-dependent changes in rat brain cholinergic receptor expression after experimental brain injury. Journal of Neurotrauma, 19, 1569–1585.

    Article  PubMed  Google Scholar 

  • Walter, B., Brust, P., Fuchtner, F., Muller, M., Hinz, R., Kuwabara, H., et al. (2004). Age-dependent effects of severe traumatic brain injury on cerebral dopaminergic activity in newborn and juvenile pigs. Journal of Neurotrauma, 21, 1076–1089.

    Article  PubMed  Google Scholar 

  • Wang, H., Yu, M., Ochani, M., Amella, C. A., Tanovic, M., Susarla, S., et al. (2003). Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 421, 384–388.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Liao, H., Ochani, M., Justiniani, M., Lin, X., Yang, L., et al. (2004). Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine, 10, 1216–1221.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Zhang, Z. Y., & Wang, Y. (2007). Expression of alpha7-nAChR on rat hippocampal astrocytes in vivo and in vitro. Nan Fang Yi Ke Da Xue Xue Bao, 27, 591–594.

    PubMed  Google Scholar 

  • Whyte, J., Polansky, M., Cavallucci, C., Fleming, M., Lhulier, J., & Coslett, H. B. (1996). Inattentive behavior after traumatic brain injury. Journal of the International Neuropsychological Society, 2, 274–281.

    Article  PubMed  CAS  Google Scholar 

  • Wisden, W., Laurie, D. J., Monyer, H., & Seeburg, P. H. (1992). The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. Journal of Neuroscience, 12, 1040–1062.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius K. Donat.

Additional information

Peter-Georg Hoffmeister and Cornelius K. Donat contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmeister, PG., Donat, C.K., Schuhmann, M.U. et al. Traumatic Brain Injury Elicits Similar Alterations in α7 Nicotinic Receptor Density in Two Different Experimental Models. Neuromol Med 13, 44–53 (2011). https://doi.org/10.1007/s12017-010-8136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-010-8136-4

Keywords

Navigation