Advertisement

NeuroMolecular Medicine

, Volume 12, Issue 4, pp 351–361 | Cite as

Sphingolipids in Multiple Sclerosis

  • Arundhati Jana
  • Kalipada PahanEmail author
Review Paper

Abstract

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the CNS. Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), are target cells in MS. Although the etiology of MS is poorly known, new insights suggest oligodendrocyte apoptosis as one of the critical events followed by glial activation and infiltration of lymphocytes and macrophages. A major breakthrough in delineation of the mechanism of cell death, perivascular cuffing, and glial activation came from elucidation of the sphingolipid signal transduction pathway. The sphingolipid signal transduction pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and downstream targets. Sphingomyelin, a major component of myelin membrane formed by mature oligodendrocytes, is abundant in the CNS and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Similarly, under certain conditions, sphingosine produced from ceramide by ceramidase is phosphorylated by sphingosine kinases to sphingosine-1 phosphate, another potent second messenger molecule. Both ceramide and sphingosine-1 phosphate regulate life and death of many cell types including brain cells and participate in pathogenic processes of MS. In this review, we have made an honest attempt to compile recent findings made by others and us relating to the role of sphingolipids in the disease process of MS.

Keywords

Sphingomyelinases Ceramide Sphingosine-1 phosphate Signal transduction Oligodendroglial apoptosis Glial activation Perivascular cuffing 

Notes

Acknowledgments

This work was supported by grants from National Institutes of Health (NS39940 and NS39940-10S1).

References

  1. Abo-Krysha, N., & Rashed, L. (2008). The role of iron dysregulation in the pathogenesis of multiple sclerosis: An Egyptian study. Multiple Sclerosis, 14, 602–608.CrossRefPubMedGoogle Scholar
  2. Alberdi, E., Sanchez-Gomez, M. V., Marino, A., & Matute, C. (2002). Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiology of Diseases, 9, 234–243.CrossRefGoogle Scholar
  3. Back, S. A., Gan, X., Li, Y., Rosenberg, P. A., & Volpe, J. J. (1998). Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. Journal of Neuroscience, 18, 6241–6253.PubMedGoogle Scholar
  4. Bansal, R., Gard, A. L., & Pfeiffer, S. E. (1988). Stimulation of oligodendrocyte differentiation in culture by growth in the presence of a monoclonal antibody to sulfated glycolipid. Journal of Neuroscience Research, 21, 260–267.CrossRefPubMedGoogle Scholar
  5. Bansal, R., & Pfeiffer, S. E. (1989). Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proceedings of the National Academy of Sciences of the United States of America, 86, 6181–6185.CrossRefPubMedGoogle Scholar
  6. Bartke, N., & Hannun, Y. A. (2009). Bioactive sphingolipids: Metabolism and function. Journal of Lipid Research, 50(Suppl), S91–S96.CrossRefPubMedGoogle Scholar
  7. Bartzokis, G. (2004). Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer’s disease. Neurobiology of Aging, 25, 5–18. (author reply 49–62).CrossRefPubMedGoogle Scholar
  8. Bassi, R., Anelli, V., Giussani, P., Tettamanti, G., Viani, P., & Riboni, L. (2006). Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors. Glia, 53, 621–630.CrossRefPubMedGoogle Scholar
  9. Bazan, N. G. (2003). Synaptic lipid signaling: Significance of polyunsaturated fatty acids and platelet-activating factor. Journal of Lipid Research, 44, 2221–2233.CrossRefPubMedGoogle Scholar
  10. Beard, J. (2007). Recent evidence from human and animal studies regarding iron status and infant development. The Journal of nutrition, 137, 524S–530S.PubMedGoogle Scholar
  11. Beard, J. L., Wiesinger, J. A., & Connor, J. R. (2003). Pre- and postweaning iron deficiency alters myelination in Sprague-Dawley rats. Developmental Neuroscience, 25, 308–315.CrossRefPubMedGoogle Scholar
  12. Benarroch, E. E. (2009). Oligodendrocytes: Susceptibility to injury and involvement in neurologic disease. Neurology, 72, 1779–1785.CrossRefPubMedGoogle Scholar
  13. Benveniste, E. N. (1997). Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. Journal of Molecular Medicine, 75, 165–173.CrossRefPubMedGoogle Scholar
  14. Blewett, M. M. (2008). Hypothesized role of galactocerebroside and NKT cells in the etiology of multiple sclerosis. Medical Hypotheses, 70, 826–830.CrossRefPubMedGoogle Scholar
  15. Boggs, J. M., Menikh, A., & Rangaraj, G. (2000). Trans interactions between galactosylceramide and cerebroside sulfate across apposed bilayers. Biophysical Journal, 78, 874–885.CrossRefPubMedGoogle Scholar
  16. Bolton, C., & Paul, C. (2006). Glutamate receptors in neuroinflammatory demyelinating disease. Mediators of Inflammation, 2006, 93684.CrossRefPubMedGoogle Scholar
  17. Brahmachari, S., Fung, Y. K., & Pahan, K. (2006). Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. Journal of Neuroscience, 26, 4930–4939.CrossRefPubMedGoogle Scholar
  18. Brand, A., Schonfeld, E., Isharel, I., & Yavin, E. (2008). Docosahexaenoic acid-dependent iron accumulation in oligodendroglia cells protects from hydrogen peroxide-induced damage. Journal of Neurochemistry, 105, 1325–1335.CrossRefPubMedGoogle Scholar
  19. Brinkmann, V. (2009). FTY720 (fingolimod) in multiple sclerosis: Therapeutic effects in the immune and the central nervous system. British Journal of Pharmacology, 158, 1173–1182.CrossRefPubMedGoogle Scholar
  20. Carson, M. J. (2002). Microglia as liaisons between the immune and central nervous systems: Functional implications for multiple sclerosis. Glia, 40, 218–231.CrossRefPubMedGoogle Scholar
  21. Connor, J. R., & Menzies, S. L. (1996). Relationship of iron to oligodendrocytes and myelination. Glia, 17, 83–93.CrossRefPubMedGoogle Scholar
  22. Cremesti, A. E., Goni, F. M., & Kolesnick, R. (2002). Role of sphingomyelinase and ceramide in modulating rafts: Do biophysical properties determine biologic outcome? FEBS Letters, 531, 47–53.CrossRefPubMedGoogle Scholar
  23. Cunningham, T. J., Yao, L., Oetinger, M., Cort, L., Blankenhorn, E. P., & Greenstein, J. I. (2006). Secreted phospholipase A2 activity in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Neuroinflammation, 3, 26.CrossRefPubMedGoogle Scholar
  24. D’Souza, S. D., Bonetti, B., Balasingam, V., Cashman, N. R., Barker, P. A., Troutt, A. B., et al. (1996). Multiple sclerosis: Fas signaling in oligodendrocyte cell death. The Journal of experimental medicine, 184, 2361–2370.CrossRefPubMedGoogle Scholar
  25. Dittel, B. N. (2000). Evidence that Fas and FasL contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Archivum Immunologiae et Therapiae Experimentali (Warsz), 48, 381–388.Google Scholar
  26. Don, A. S., Martinez-Lamenca, C., Webb, W. R., Proia, R. L., Roberts, E., & Rosen, H. (2007). Essential requirement for sphingosine kinase 2 in a sphingolipid apoptosis pathway activated by FTY720 analogues. The Journal of biological chemistry, 282, 15833–15842.CrossRefPubMedGoogle Scholar
  27. Dowling, P., Ming, X., Raval, S., Husar, W., Casaccia-Bonnefil, P., Chao, M., et al. (1999). Up-regulated p75NTR neurotrophin receptor on glial cells in MS plaques. Neurology, 53, 1676–1682.PubMedGoogle Scholar
  28. Dringen, R., Pawlowski, P. G., & Hirrlinger, J. (2005). Peroxide detoxification by brain cells. Journal of Neuroscience Research, 79, 157–165.CrossRefPubMedGoogle Scholar
  29. Ferriero, D. M. (2001). Oxidant mechanisms in neonatal hypoxia-ischemia. Developmental Neuroscience, 23, 198–202.CrossRefPubMedGoogle Scholar
  30. Fraser, P. E., Moscarello, M. A., Rand, R. P., & Deber, C. M. (1986). Spontaneous vesicularization of myelin lipids is counteracted by myelin basic protein. Biochimica et Biophysica Acta, 863, 282–288.CrossRefPubMedGoogle Scholar
  31. Fujinami, R. S., von Herrath, M. G., Christen, U., & Whitton, J. L. (2006). Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clinical Microbiology Reviews, 19, 80–94.CrossRefPubMedGoogle Scholar
  32. Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2004). The role of oxidative stress in the pathogenesis of multiple sclerosis: The need for effective antioxidant therapy. Journal of Neurology, 251, 261–268.CrossRefPubMedGoogle Scholar
  33. Grassme, H., Bock, J., Kun, J., Gulbins, E., et al. (2002a). Clustering of CD40 ligand is required to form a functional contact with CD40. The Journal of biological chemistry, 277, 30289–30299.CrossRefPubMedGoogle Scholar
  34. Grassme, H., Jendrossek, V., Bock, J., Riehle, A., Gulbins, E., et al. (2002b). Ceramide-rich membrane rafts mediate CD40 clustering. Journal of Immunology, 168, 298–307.Google Scholar
  35. Grassme, H., Schwarz, H., & Gulbins, E. (2001). Molecular mechanisms of ceramide-mediated CD95 clustering. Biochemical and Biophysical Research Communications, 284, 1016–1030.CrossRefPubMedGoogle Scholar
  36. Greenfield, S., Brostoff, S., & Hogan, E. (1977). Evidence for defective incorporation of proteins in myelin of the quaking mutant mouse. Brain Research, 120, 507–515.CrossRefPubMedGoogle Scholar
  37. Halliwell, B. (1992). Reactive oxygen species and the central nervous system. Journal of Neurochemistry, 59, 1609–1623.CrossRefPubMedGoogle Scholar
  38. Hannun, Y. A. (1994). The sphingomyelin cycle and the second messenger function of ceramide. The Journal of Biological Chemistry, 269, 3125–3128.PubMedGoogle Scholar
  39. Hannun, Y. A. (1996). Functions of ceramide in coordinating cellular responses to stress. Science, 274, 1855–1859.CrossRefPubMedGoogle Scholar
  40. Hannun, Y. A., & Obeid, L. M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Reviews. Molecular Cell Biology, 9, 139–150.CrossRefPubMedGoogle Scholar
  41. Hida, H., Nagano, S., Takeda, M., & Soliven, B. (1999). Regulation of mitogen-activated protein kinases by sphingolipid products in oligodendrocytes. Journal of Neuroscience, 19, 7458–7467.PubMedGoogle Scholar
  42. Hida, H., Takeda, M., & Soliven, B. (1998). Ceramide inhibits inwardly rectifying K+ currents via a Ras- and Raf-1-dependent pathway in cultured oligodendrocytes. Journal of Neuroscience, 18, 8712–8719.PubMedGoogle Scholar
  43. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., O’Connor, T., & Yamamoto, M. (2003). Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells, 8, 379–391.CrossRefPubMedGoogle Scholar
  44. Jahng, A. W., Maricic, I., Pedersen, B., Burdin, N., Naidenko, O., Kronenberg, M., et al. (2001). Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. The Journal of experimental medicine, 194, 1789–1799.CrossRefPubMedGoogle Scholar
  45. Jana, M., & Pahan, K. (2005). Redox regulation of cytokine-mediated inhibition of myelin gene expression in human primary oligodendrocytes. Free Radical Biology and Medicine, 39, 823–831.CrossRefPubMedGoogle Scholar
  46. Jana, A., & Pahan, K. (2007). Oxidative stress kills human primary oligodendrocytes via neutral sphingomyelinase: Implications for multiple sclerosis. Journal of Neuroimmune Pharmacology, 2, 184–193.CrossRefPubMedGoogle Scholar
  47. Jayadev, S., Hayter, H. L., Andrieu, N., Gamard, C. J., Liu, B., Balu, R., et al. (1997). Phospholipase A2 is necessary for tumor necrosis factor alpha-induced ceramide generation in L929 cells. The Journal of biological chemistry, 272, 17196–17203.CrossRefPubMedGoogle Scholar
  48. Juurlink, B. H., Thorburne, S. K., & Hertz, L. (1998). Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia, 22, 371–378.CrossRefPubMedGoogle Scholar
  49. Kanter, J. L., Narayana, S., Ho, P. P., Catz, I., Warren, K. G., Sobel, R. A., et al. (2006). Lipid microarrays identify key mediators of autoimmune brain inflammation. Nature Medicine, 12, 138–143.CrossRefPubMedGoogle Scholar
  50. Kappos, L., Antel, J., Comi, G., Montalban, X., O’Connor, P., Polman, C. H., et al. (2006). Oral fingolimod (FTY720) for relapsing multiple sclerosis. New England Journal of Medicine, 355, 1124–1140.CrossRefPubMedGoogle Scholar
  51. Kasai, N., Pachner, A. R., & Yu, R. K. (1986). Anti-glycolipid antibodies and their immune complexes in multiple sclerosis. Journal of the Neurological Sciences, 75, 33–42.CrossRefPubMedGoogle Scholar
  52. Kolesnick, R., & Golde, D. W. (1994). The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell, 77, 325–328.CrossRefPubMedGoogle Scholar
  53. Kolesnick, R. N., Haimovitz-Friedman, A., & Fuks, Z. (1994). The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochemistry and Cell Biology, 72, 471–474.CrossRefPubMedGoogle Scholar
  54. Kunz, M., & Ibrahim, S. M. (2009). Cytokines and cytokine profiles in human autoimmune diseases and animal models of autoimmunity. Mediators of Inflammation, 2009, 979258.CrossRefPubMedGoogle Scholar
  55. Laudiero, L. B., Aloe, L., Levi-Montalcini, R., Buttinelli, C., Schilter, D., Gillessen, S., et al. (1992). Multiple sclerosis patients express increased levels of beta-nerve growth factor in cerebrospinal fluid. Neuroscience Letters, 147, 9–12.CrossRefPubMedGoogle Scholar
  56. LeVine, S. M. (1991). Oligodendrocytes and myelin sheaths in normal, quaking and shiverer brains are enriched in iron. Journal of Neuroscience Research, 29, 413–419.CrossRefPubMedGoogle Scholar
  57. Marbois, B. N., Faull, K. F., Fluharty, A. L., Raval-Fernandes, S., & Rome, L. H. (2000). Analysis of sulfatide from rat cerebellum and multiple sclerosis white matter by negative ion electrospray mass spectrometry. Biochimica et Biophysica Acta, 1484, 59–70.PubMedGoogle Scholar
  58. Martin, R., McFarland, H. F., & McFarlin, D. E. (1992). Immunological aspects of demyelinating diseases. Annual Review of Immunology, 10, 153–187.CrossRefPubMedGoogle Scholar
  59. Marusic, S., Leach, M. W., Pelker, J. W., Azoitei, M. L., Uozumi, N., Cui, J., et al. (2005). Cytosolic phospholipase A2 alpha-deficient mice are resistant to experimental autoimmune encephalomyelitis. The Journal of experimental medicine, 202, 841–851.CrossRefPubMedGoogle Scholar
  60. Marusic, S., Thakker, P., Pelker, J. W., Stedman, N. L., Lee, K. L., McKew, J. C., et al. (2008). Blockade of cytosolic phospholipase A2 alpha prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses. Journal of Neuroimmunology, 204, 29–37.CrossRefPubMedGoogle Scholar
  61. Matei, I., & Matei, L. (2002). Cytokine patterns and pathogenicity in autoimmune diseases. Romanian Journal of Internal Medicine, 40, 27–41.PubMedGoogle Scholar
  62. McCord, J. M., & Edeas, M. A. (2005). SOD, oxidative stress and human pathologies: A brief history and a future vision. Biomedicine and Pharmacotherapy, 59, 139–142.CrossRefGoogle Scholar
  63. McTigue, D. M., & Tripathi, R. B. (2008). The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of Neurochemistry, 107, 1–19.CrossRefPubMedGoogle Scholar
  64. Menon, K. K., Piddlesden, S. J., & Bernard, C. C. (1997). Demyelinating antibodies to myelin oligodendrocyte glycoprotein and galactocerebroside induce degradation of myelin basic protein in isolated human myelin. Journal of Neurochemistry, 69, 214–222.CrossRefPubMedGoogle Scholar
  65. Miller, R. H. (2002). Regulation of oligodendrocyte development in the vertebrate CNS. Progress in Neurobiology, 67, 451–467.CrossRefPubMedGoogle Scholar
  66. Moscatelli, E. A., & Isaacson, E. (1969). Gas liquid chromatographic analysis of sphingosine bases in sphingolipids of human normal and multiple sclerosis cerebral white matter. Lipids, 4, 550–555.CrossRefPubMedGoogle Scholar
  67. Nagata, S., & Golstein, P. (1995). The Fas death factor. Science, 267, 1449–1456.CrossRefPubMedGoogle Scholar
  68. Newcombe, J., Uddin, A., Dove, R., Patel, B., Turski, L., Nishizawa, Y., et al. (2008). Glutamate receptor expression in multiple sclerosis lesions. Brain Pathology, 18, 52–61.CrossRefPubMedGoogle Scholar
  69. Ohler, B., Graf, K., Bragg, R., Lemons, T., Coe, R., Genain, C., et al. (2004). Role of lipid interactions in autoimmune demyelination. Biochimica et Biophysica Acta, 1688, 10–17.PubMedGoogle Scholar
  70. Ozawa, K., Suchanek, G., Breitschopf, H., Bruck, W., Budka, H., Jellinger, K., et al. (1994). Patterns of oligodendroglia pathology in multiple sclerosis. Brain, 117(Pt 6), 1311–1322.CrossRefPubMedGoogle Scholar
  71. Pahan, K., Sheikh, F. G., Khan, M., Namboodiri, A. M., & Singh, I. (1998). Sphingomyelinase and ceramide stimulate the expression of inducible nitric-oxide synthase in rat primary astrocytes. The Journal of biological chemistry, 273, 2591–2600.CrossRefPubMedGoogle Scholar
  72. Pfeiffer, S. E., Warrington, A. E., & Bansal, R. (1993). The oligodendrocyte and its many cellular processes. Trends in Cell Biology, 3, 191–197.CrossRefPubMedGoogle Scholar
  73. Plo, I., Ghandour, S., Feutz, A. C., Clanet, M., Laurent, G., & Bettaieb, A. (1999). Involvement of de novo ceramide biosynthesis in lymphotoxin-induced oligodendrocyte death. Neuroreport, 10, 2373–2376.CrossRefPubMedGoogle Scholar
  74. Podbielska, M., & Hogan, E. L. (2009). Molecular and immunogenic features of myelin lipids: Incitants or modulators of multiple sclerosis? Multiple Sclerosis, 15, 1011–1029.CrossRefPubMedGoogle Scholar
  75. Probert, L., Eugster, H. P., Akassoglou, K., Bauer, J., Frei, K., Lassmann, H., et al. (2000). TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain, 123(Pt 10), 2005–2019.CrossRefPubMedGoogle Scholar
  76. Raine, C. S., Johnson, A. B., Marcus, D. M., Suzuki, A., & Bornstein, M. B. (1981). Demyelination in vitro. Absorption studies demonstrate that galactocerebroside is a major target. Journal of the Neurological Sciences, 52, 117–131.CrossRefPubMedGoogle Scholar
  77. Rosen, H., & Goetzl, E. J. (2005). Sphingosine 1-phosphate and its receptors: An autocrine and paracrine network. Nature Reviews Immunology, 5, 560–570.CrossRefPubMedGoogle Scholar
  78. Sabelko-Downes, K. A., Cross, A. H., Russell, J. H., et al. (1999a). Dual role for Fas ligand in the initiation of and recovery from experimental allergic encephalomyelitis. The Journal of experimental medicine, 189, 1195–1205.CrossRefPubMedGoogle Scholar
  79. Sabelko-Downes, K. A., Russell, J. H., Cross, A. H., et al. (1999b). Role of Fas–FasL interactions in the pathogenesis and regulation of autoimmune demyelinating disease. Journal of Neuroimmunology, 100, 42–52.CrossRefPubMedGoogle Scholar
  80. Schonfeld, E., Yasharel, I., Yavin, E., & Brand, A. (2007). Docosahexaenoic acid enhances iron uptake by modulating iron transporters and accelerates apoptotic death in PC12 cells. Neurochemical Research, 32, 1673–1684.CrossRefPubMedGoogle Scholar
  81. Schubert, D., & Piasecki, D. (2001). Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. Journal of Neuroscience, 21, 7455–7462.PubMedGoogle Scholar
  82. Segui, B., Cuvillier, O., Adam-Klages, S., Garcia, V., Malagarie-Cazenave, S., Leveque, S., et al. (2001). Involvement of FAN in TNF-induced apoptosis. Journal of Clinical Investigation, 108, 143–151.PubMedGoogle Scholar
  83. Singh, I., Pahan, K., Khan, M., & Singh, A. K. (1998). Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. The Journal of biological chemistry, 273, 20354–20362.CrossRefPubMedGoogle Scholar
  84. Smith, K. J., Kapoor, R., & Felts, P. A. (1999). Demyelination: The role of reactive oxygen and nitrogen species. Brain Pathology, 9, 69–92.CrossRefPubMedGoogle Scholar
  85. Spiegel, S., & Milstien, S. (2003). Sphingosine-1-phosphate: An enigmatic signalling lipid. Nature Reviews. Molecular Cell Biology, 4, 397–407.CrossRefPubMedGoogle Scholar
  86. Stoffel, W., & Bosio, A. (1997). Myelin glycolipids and their functions. Current Opinion in Neurobiology, 7, 654–661.CrossRefPubMedGoogle Scholar
  87. Tani, M., Glabinski, A. R., Tuohy, V. K., Stoler, M. H., Estes, M. L., & Ransohoff, R. M. (1996). In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. American Journal of Pathology, 148, 889–896.PubMedGoogle Scholar
  88. Tani, M., & Hannun, Y. A. (2007). Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. The Journal of biological chemistry, 282, 10047–10056.CrossRefPubMedGoogle Scholar
  89. Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M., & Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research, 62, 5196–5203.PubMedGoogle Scholar
  90. Trapp, B. D., & Nave, K. A. (2008). Multiple sclerosis: An immune or neurodegenerative disorder? Annual Review of Neuroscience, 31, 247–269.CrossRefPubMedGoogle Scholar
  91. Van der Goes, A., Wouters, D., Van Der Pol, S. M., Huizinga, R., Ronken, E., Adamson, P., et al. (2001). Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB Journal, 15, 1852–1854.PubMedGoogle Scholar
  92. van Meeteren, M. E., Teunissen, C. E., Dijkstra, C. D., & van Tol, E. A. (2005). Antioxidants and polyunsaturated fatty acids in multiple sclerosis. European Journal of Clinical Nutrition, 59, 1347–1361.CrossRefPubMedGoogle Scholar
  93. Vanderlugt, C. L., & Miller, S. D. (2002). Epitope spreading in immune-mediated diseases: Implications for immunotherapy. Nature Reviews Immunology, 2, 85–95.CrossRefPubMedGoogle Scholar
  94. Wheeler, D., Bandaru, V. V., Calabresi, P. A., Nath, A., & Haughey, N. J. (2008). A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain, 131, 3092–3102.CrossRefPubMedGoogle Scholar
  95. Wu, Y. P., Mizugishi, K., Bektas, M., Sandhoff, R., & Proia, R. L. (2008). Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. Human Molecular Genetics, 17, 2257–2264.CrossRefPubMedGoogle Scholar
  96. Yoon, S. O., Casaccia-Bonnefil, P., Carter, B., & Chao, M. V. (1998). Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. Journal of Neuroscience, 18, 3273–3281.PubMedGoogle Scholar
  97. Zamvil, S. S., & Steinman, L. (2003). Diverse targets for intervention during inflammatory and neurodegenerative phases of multiple sclerosis. Neuron, 38, 685–688.CrossRefPubMedGoogle Scholar
  98. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Nature Reviews, 5, 863–873.CrossRefPubMedGoogle Scholar
  99. Zhang, X., Haaf, M., Todorich, B., Grosstephan, E., Schieremberg, H., Surguladze, N., et al. (2005). Cytokine toxicity to oligodendrocyte precursors is mediated by iron. Glia, 52, 199–208.CrossRefPubMedGoogle Scholar
  100. Zhang, Y., & Kolesnick, R. (1995). Signaling through the sphingomyelin pathway. Endocrinology, 136, 4157–4160.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Neurological SciencesRush University Medical CenterChicagoUSA

Personalised recommendations