Nicotinamide Prevents NAD+ Depletion and Protects Neurons Against Excitotoxicity and Cerebral Ischemia: NAD+ Consumption by SIRT1 may Endanger Energetically Compromised Neurons
Abstract
Neurons require large amounts of energy to support their survival and function, and are therefore susceptible to excitotoxicity, a form of cell death involving bioenergetic stress that may occur in several neurological disorders including stroke and Alzheimer’s disease. Here we studied the roles of NAD+ bioenergetic state, and the NAD+-dependent enzymes SIRT1 and PARP-1, in excitotoxic neuronal death in cultured neurons and in a mouse model of focal ischemic stroke. Excitotoxic activation of NMDA receptors induced a rapid decrease of cellular NAD(P)H levels and mitochondrial membrane potential. Decreased NAD+ levels and poly (ADP-ribose) polymer (PAR) accumulation in nuclei were relatively early events (<4 h) that preceded the appearance of propidium iodide- and TUNEL-positive cells (markers of necrotic cell death and DNA strand breakage, respectively) which became evident by 6 h. Nicotinamide, an NAD+ precursor and an inhibitor of SIRT1 and PARP1, inhibited SIRT1 deacetylase activity without affecting SIRT1 protein levels. NAD+ levels were preserved and PAR accumulation and neuronal death induced by excitotoxic insults were attenuated in nicotinamide-treated cells. Treatment of neurons with the SIRT1 activator resveratrol did not protect them from glutamate/NMDA-induced NAD+ depletion and death. In a mouse model of focal cerebral ischemic stroke, NAD+ levels were decreased in both the contralateral and ipsilateral cortex 6 h after the onset of ischemia. Stroke resulted in dynamic changes of SIRT1 protein and activity levels which varied among brain regions. Administration of nicotinamide (200 mg/kg, i.p.) up to 1 h after the onset of ischemia elevated brain NAD+ levels and reduced ischemic infarct size. Our findings demonstrate that the NAD+ bioenergetic state is critical in determining whether neurons live or die in excitotoxic and ischemic conditions, and suggest a potential therapeutic benefit in stroke of agents that preserve cellular NAD+ levels. Our data further suggest that, SIRT1 is linked to bioenergetic state and stress responses in neurons, and that under conditions of reduced cellular energy levels SIRT1 enzyme activity may consume sufficient NAD+ to nullify any cell survival-promoting effects of its deacetylase action on protein substrates.
Keywords
Excitotoxicity Glutamate NMDA NAD+ NADH SIRT1 PARP-1 PAR Nicotinamide MCAO TUNELNotes
Acknowledgments
We would like to thank Graeme I. Bell for providing us the mouse GLUT3 cDNA clone used for riboprobe preparation and in situ hybridization. This research was supported by the Intramural Research Program of the National Institute on Aging.
References
- Alcendor, R. R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., et al. (2007). Sirt1 regulates aging and resistance to oxidative stress in the heart. Circulation Research, 100, 1512–1521. doi: 10.1161/01.RES.0000267723.65696.4a.PubMedCrossRefGoogle Scholar
- Anderson, R. M., Latorre-esteves, M., Neves, A. R., Lavu, S., Medvedik, O., Taylor, C., et al. (2003). Yeast life-span extension by calorie restriction is independent of NAD+ fluctuation. Science, 302, 2124–2126. doi: 10.1126/science.1088697.PubMedCrossRefGoogle Scholar
- Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., et al. (1995). Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 15, 961–973. doi: 10.1016/0896-6273(95)90186-8.PubMedCrossRefGoogle Scholar
- Antzoulatos, E. G., & Byrne, J. H. (2004). Learning insights transmitted by glutamate. Trends in Neurosciences, 27, 555–560. doi: 10.1016/j.tins.2004.06.009.PubMedCrossRefGoogle Scholar
- Araki, T., Sasaki, Y., & Milbrandt, J. (2004). Increased nuclear NAD+ biosynthesis and SIRT1 activation prevent axonal degeneration. Science, 305, 1010–1013. doi: 10.1126/science.1098014.PubMedCrossRefGoogle Scholar
- Beal, M. F. (1992). Mechanisms of excitotoxicity in neurological diseases. The FASEB Journal, 6, 3338–3344.PubMedGoogle Scholar
- Belenky, P., Bogan, K. L., & Brenner, C. (2006). NAD+ metabolism in health and disease. Trends in Biochemical Sciences, 32, 12–19. doi: 10.1016/j.tibs.2006.11.006.PubMedCrossRefGoogle Scholar
- Bieganowski, P., & Brenner, C. (2004). Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-handler independent route to NAD+ in fungi and humans. Cell, 117, 495–502. doi: 10.1016/S0092-8674(04)00416-7.PubMedCrossRefGoogle Scholar
- Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M., & Sinclair, D. A. (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. The Journal of Biological Chemistry, 277, 45099–45107. doi: 10.1074/jbc.M205670200.PubMedCrossRefGoogle Scholar
- Blander, G., & Guarente, L. (2004). The Sir2 family of protein deacetylases. Annual Review of Biochemistry, 73, 417–435. doi: 10.1146/annurev.biochem.73.011303.073651.PubMedCrossRefGoogle Scholar
- Boulares, A. H., Yakovlev, A. G., Ivanova, V., Stoica, B. A., Wang, G., Iyer, S., et al. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis: Caspase 3-resistant parp mutant increases rates of apoptosis in transfected cells. The Journal of Biological Chemistry, 274, 22932–22940. doi: 10.1074/jbc.274.33.22932.PubMedCrossRefGoogle Scholar
- Brennan, A. M., Connor, J. A., & Shuttleworth, C. W. (2006). NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function. Journal of Cerebral Blood Flow and Metabolism, 26, 1389–1406. doi: 10.1038/sj.jcbfm.9600292.PubMedCrossRefGoogle Scholar
- Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303, 2011–2015. doi: 10.1126/science.1094637.PubMedCrossRefGoogle Scholar
- Butler, R., & Bates, G. P. (2006). Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nature Reviews. Neuroscience, 7, 784–796. doi: 10.1038/nrn1989.PubMedCrossRefGoogle Scholar
- Cai, A. L., Zipfel, G. J., & Sheline, C. T. (2006). Zinc neurotoxicity is dependent on intracellular NAD+ levels and the sirtuin pathway. The European Journal of Neuroscience, 24, 2169–2176. doi: 10.1111/j.1460-9568.2006.05110.x.PubMedCrossRefGoogle Scholar
- Choi, D. W., & Koh, J. Y. (1998). Zinc and brain injury. Annual Review of Neuroscience, 21, 347–375. doi: 10.1146/annurev.neuro.21.1.347.PubMedCrossRefGoogle Scholar
- Clement, M. V., Hirpara, J. L., Chawdhury, S. H., & Pervaiz, S. (1998). Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood, 92, 996–1002.PubMedGoogle Scholar
- Cohen, H. Y., Miller, C., Bitterman, K. J., Wal, N. R., Hekking, B., Kessler, B., et al. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 305, 390–392. doi: 10.1126/science.1099196.PubMedCrossRefGoogle Scholar
- Dawson, V. L., & Dawson, T. M. (2004). Deadly conversations: Nuclear-mitochondrial cross-talk. Journal of Bioenergetics and Biomembranes, 36, 287–294. doi: 10.1023/B:JOBB.0000041755.22613.8d.PubMedCrossRefGoogle Scholar
- Du, L., Zhang, X., Han, Y. Y., Burke, N. A., Kochanek, P. M., Watkins, S. C., et al. (2003). Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. The Journal of Biological Chemistry, 278, 18426–18433. doi: 10.1074/jbc.M301295200.PubMedCrossRefGoogle Scholar
- Eng, J., Lynch, R. M., & Balaban, R. S. (1989). Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated myocytes. Biophysical Journal, 55, 621–630. doi: 10.1016/S0006-3495(89)82859-0.PubMedCrossRefGoogle Scholar
- Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., et al. (2005). Sir2 blocks extreme life-span extension. Cell, 18, 655–667. doi: 10.1016/j.cell.2005.08.042.CrossRefGoogle Scholar
- Feng, Y., Paul, I. A., & LeBlanc, M. H. (2006). Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Research Bulletin, 69, 117–122. doi: 10.1016/j.brainresbull.2005.11.011.PubMedCrossRefGoogle Scholar
- Gao, X., Xu, Y. X., Divine, G., Janakiraman, N., Chapman, R. A., & Gautam, S. C. (2002). Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. The Journal of Nutrition, 132, 2076–2081.PubMedGoogle Scholar
- Gill, R., Andine, P., Hillerd, L., Persson, L., & Hagberg, H. (1992). The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 12, 371–379.PubMedGoogle Scholar
- Green, K. N., Steffan, J. S., Martinez-Coria, H., Sun, X., Schreiber, S. S., Thompson, L. M., et al. (2008). Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. Journal of Neuroscience, 28, 11500–11510. doi: 10.1523/JNEUROSCI.3203-08.2008.PubMedCrossRefGoogle Scholar
- Greene, J. G., & Greenamyre, J. T. (1996). Bioenergetics and glutamate excitotoxicity. Progress in Neurobiology, 48, 613–634. doi: 10.1016/0301-0082(96)00006-8.PubMedCrossRefGoogle Scholar
- Grubisha, O., Smith, B. C., & Denu, J. M. (2005). Small molecule regulation of sir2 protein deacetylase. FEBS, 272, 4607–4616. doi: 10.1111/j.1742-4658.2005.04862.x.CrossRefGoogle Scholar
- Ha, H. C., & Snyder, S. H. (2000). Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiology of Disease, 7, 225–239. doi: 10.1006/nbdi.2000.0324.PubMedCrossRefGoogle Scholar
- Hata, R., Maeda, K., Hermann, D., Mies, G., & Hossmann, K. A. (2000). Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism, 20, 306–315. doi: 10.1097/00004647-200002000-00012.PubMedGoogle Scholar
- Herceg, Z., & Wang, Z. Q. (1999). Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Molecular and Cellular Biology, 19, 5124–5133.PubMedGoogle Scholar
- Hinz, M., Katsilambros, N., Maier, V., Schatz, H., & Pfeiffer, E. F. (1973). Significance of streptozotocin induced nicotinamide-adenine-dinucleotide (NAD+) degradation in mouse pancreatic islets. FEBS Letters, 30, 225–230. doi: 10.1016/0014-5793(73)80656-8.PubMedCrossRefGoogle Scholar
- Hossmann, K. A. (2003). Glutamate hypothesis of stroke. Fortschritte der Neurologie, Psychiatrie, und ihrer Grenzgebiete, 71(Suppl 1), S10. doi: 10.1055/s-2003-40500.Google Scholar
- Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., & Wood, J. G. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196. doi: 10.1038/nature01960.PubMedCrossRefGoogle Scholar
- Hyun, D. H., Hunt, N. D., Emerson, S. S., Hernandez, J. O., Mattson, M. P., & de Cabo, R. (2007). Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. Journal of Neurochemistry, 100, 1364–1374. doi: 10.1111/j.1471-4159.2006.04411.x.PubMedCrossRefGoogle Scholar
- Imai, S., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD+-dependent histone deacetylase. Nature, 403, 795–800. doi: 10.1038/35001622.PubMedCrossRefGoogle Scholar
- Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., & Poirier, G. G. (1993). Specific cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Research, 53, 3976–3985.PubMedGoogle Scholar
- Kauppinen, T. M., & Swanson, R. A. (2007). The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience, 145, 1267–1272. doi: 10.1016/j.neuroscience.2006.09.034.PubMedCrossRefGoogle Scholar
- Klaidman, L., Morales, M., Kem, S., Yang, J., Chang, M. L., & Adams, J. D. (2003). Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology, 69, 150–157. doi: 10.1159/000072668.PubMedCrossRefGoogle Scholar
- Kobayashi, Y., Furukawa-Hibi, Y., Chen, C., Horio, Y., Isobe, K., Ikeda, K., et al. (2005). SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. International Journal of Molecular Medicine, 16, 237–243.PubMedGoogle Scholar
- Kolthur-Seetharam, U., Dantzer, F., McBurney, M. W., de Murcia, G., & Sassone-Corsi, P. (2006). Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle, 5, 873–877.PubMedGoogle Scholar
- Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., et al. (2000). The silencing protein SIR2 and its homologs are NAD+-dependent protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 97, 5807–5811. doi: 10.1073/pnas.110148297.PubMedCrossRefGoogle Scholar
- Langley, B., Gensert, J. M., Beal, M. F., & Ratan, R. R. (2005). Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Current Drug Targets. CNS Neurological Disorders, 4, 41–50.PubMedCrossRefGoogle Scholar
- Lee, J. B., Grabb, M. C., Zipfel, G. J., & Choi, D. W. (2000). Brain tissue responses to ischemia. The Journal of Clinical Investigation, 106, 723–731. doi: 10.1172/JCI11003.PubMedCrossRefGoogle Scholar
- Lisa, F. D., Menabo, R., Canton, M., Baria, M., & Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytesin postischemic reperfusion of the heart. The Journal of Biological Chemistry, 276, 2571–2575. doi: 10.1074/jbc.M006825200.PubMedCrossRefGoogle Scholar
- Liu, D., Chan, S. L., de Souza-Pinto, N. C., Slevin, J. R., Wersto, R. P., Zhan, M., et al. (2006). Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Medicine, 8, 389–414. doi: 10.1385/NMM:8:3:389.PubMedCrossRefGoogle Scholar
- Liu, D., Lu, C., Wan, R., Auyeung, W. W., & Mattson, M. P. (2002). Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome C. Journal of Cerebral Blood Flow and Metabolism, 22, 431–433. doi: 10.1097/00004647-200204000-00007.PubMedGoogle Scholar
- Liu, D., Pitta, M., & Mattson, M. (2008). Preventing NAD+ depletion protects neurons against excitotoxicity: Bioenergetic effects of mild mitochondrial uncoupling, caloric restriction. Annals of the New York Academy of Sciences, 1147, 275–282.PubMedCrossRefGoogle Scholar
- Liu, D., Smith, C. L., Barone, F. C., Ellison, J. A., Lysko, P. G., Li, K., et al. (1999). Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Molecular Brain Research, 68, 29–41. doi: 10.1016/S0169-328X(99)00063-7.PubMedCrossRefGoogle Scholar
- Matthews, R. T., Ferrante, R. J., Klivenyi, P., Yang, L., Klein, A. M., Mueller, G., et al. (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Experimental Neurology, 157, 142–149. doi: 10.1006/exnr.1999.7049.PubMedCrossRefGoogle Scholar
- Matthews, R. T., Yang, L., Jenkins, B. G., Ferrante, R. J., Rosen, B. R., Kaddurah-Daouk, R., et al. (1998). Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. Journal of Neuroscience, 18, 156–163.PubMedGoogle Scholar
- Mattson, M. P. (2003). Excitotoxic and excitoprotective mechanisms: Abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Medicine, 3, 65–94. doi: 10.1385/NMM:3:2:65.PubMedCrossRefGoogle Scholar
- Mattson, M. P., Barger, S. W., Begley, J. G., & Mark, R. J. (1995). Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods in Cell Biology, 46, 187–216. doi: 10.1016/S0091-679X(08)61930-5.PubMedCrossRefGoogle Scholar
- Mattson, M. P., & Liu, D. (2002). Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Medicine, 2, 215–231. doi: 10.1385/NMM:2:2:215.PubMedCrossRefGoogle Scholar
- McBurney, M. W., Yang, X., Jardine, K., Hixon, M., Boekelheide, K., Webb, J. R., et al. (2003). The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Molecular and Cellular Biology, 23, 38–54. doi: 10.1128/MCB.23.1.38-54.2003.PubMedCrossRefGoogle Scholar
- Ohsawa, S., & Miura, M. (2006). Caspase-mediated changes in Sir2α during apoptosis. FEBS Letters, 580, 5875–5879. doi: 10.1016/j.febslet.2006.09.051.PubMedCrossRefGoogle Scholar
- Pieper, A. A., Blackshaw, S., Clements, E. E., Daniel, J., Brat, D. J., Krug, D. K., et al. (2000). Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. Proceedings of the National Academy of Sciences of the United States of America, 97, 1845–1850. doi: 10.1073/pnas.97.4.1845.PubMedCrossRefGoogle Scholar
- Pillai, J. B., Isbatan, A., Imai, S., & Gupta, M. P. (2005). Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced sir2α deacetylase activity. The Journal of Biological Chemistry, 280, 43121–43130. doi: 10.1074/jbc.M506162200.PubMedCrossRefGoogle Scholar
- Raval, A. P., Dave, K. R., & Perez-Pinzon, M. A. (2006). Resveratrol mimics ischemic preconditioning in the brain. Journal of Cerebral Blood Flow and Metabolism, 26, 1141–1147.PubMedGoogle Scholar
- Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 434, 113–118. doi: 10.1038/nature03354.PubMedCrossRefGoogle Scholar
- Sadanaga-Akiyoshi, F., Yao, H., Tanuma, S., Nakahara, T., Hong, J. S., Ibayashi, S., et al. (2003). Nicotinamide attenuates focal ischemic brain injury in rats: With special reference to changes in nicotinamide and NAD+ levels in ischemic core and penumbra. Neurochemical Research, 28, 1227–1234. doi: 10.1023/A:1024236614015.PubMedCrossRefGoogle Scholar
- Sauve, A. A., Moir, R. M., Schramm, V. L., & Willis, I. M. (2005). Chemical activation of sir2-dependent silencing by relief of nicotinamide inhibition. Molecular Cell, 17, 595–601. doi: 10.1016/j.molcel.2004.12.032.PubMedCrossRefGoogle Scholar
- Schmidt, M. T., Smith, B. C., Jackson, M. D., & Denu, J. M. (2004). Coenzyme specificity of Sir2 protein deacetylases: Implications for physiological regulation. The Journal of Biological Chemistry, 279, 40122–40129. doi: 10.1074/jbc.M407484200.PubMedCrossRefGoogle Scholar
- Schulz, J. B., Henshaw, D. R., Matthews, R. T., & Beal, M. F. (1995). Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity. Experimental Neurology, 132, 279–283. doi: 10.1016/0014-4886(95)90033-0.PubMedCrossRefGoogle Scholar
- Sheline, C. T., Behrens, M. M., & Choi, D. W. (2000). Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. The Journal of Neuroscience, 20, 3139–3146.PubMedGoogle Scholar
- Soane, L., Kahraman, S., Kristian, T., & Fiskum, G. (2007). Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. Journal of Neuroscience Research, 85, 3407–3415. doi: 10.1002/jnr.21498.PubMedCrossRefGoogle Scholar
- Sullivan, P. G., Geiger, J. D., Mattson, M. P., & Scheff, S. W. (2000). Dietary supplement creatine protects against traumatic brain injury. Annals of Neurology, 48, 723–729. doi: 10.1002/1531-8249(200011)48:5<723::AID-ANA5>3.0.CO;2-W.PubMedCrossRefGoogle Scholar
- Tanner, K. G., Landry, J., Sternglanz, R., & Denu, J. M. (2000). Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America, 97, 14178–14182. doi: 10.1073/pnas.250422697.PubMedCrossRefGoogle Scholar
- Tarnopolsky, M. A., & Beal, M. F. (2001). Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Annals of Neurology, 49, 561–574. doi: 10.1002/ana.1028.PubMedCrossRefGoogle Scholar
- Virag, L., & Szabo, C. (2002). The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacological Reviews, 54, 375–429. doi: 10.1124/pr.54.3.375.PubMedCrossRefGoogle Scholar
- Winfree, C. J., Baker, C. J., Connoly, E. S., Fiore, A. J., & Solomon, R. A. (1996). Mild hypothermia reduces penumbral glutamate levels in the rat permanent focal cerebral ischemia model. Neurosurgery, 38, 1216–1222. doi: 10.1097/00006123-199606000-00034.PubMedCrossRefGoogle Scholar
- Woodley, C. L., & Gupta, N. K. (1971). New enzyme cycling method for determination of oxidized and reduced nicotinamide adenine dinucleotide. Analytical Biochemistry, 43, 341–348.PubMedCrossRefGoogle Scholar
- Yang, J., Klaidman, L. K., Chang, M. L., Kem, S., Sugawara, T., Chan, P., et al. (2002). Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacology, Biochemistry, and Behavior, 73, 901–910. doi: 10.1016/S0091-3057(02)00939-5.PubMedCrossRefGoogle Scholar
- Yang, T., & Sauve, A. A. (2006). NAD+ metabolism and sirtuins: Metabolic regulation of protein deacetylation in stress and toxicity. The AAPS Journal, 8, 632–643. doi: 10.1208/aapsj080472.CrossRefGoogle Scholar