Abstract
The high demand for molecular oxygen, the enrichment of polyunsaturated fatty acids in membrane phospholipids, and the relatively low abundance of antioxidant defense enzymes are factors rendering cells in the central nervous system (CNS) particularly vulnerable to oxidative stress. Excess production of reactive oxygen species (ROS) in the brain has been implicated as a common underlying factor for the etiology of a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and stroke. While ROS are generated by enzymatic and nonenzymatic reactions in the mitochondria and cytoplasm under normal conditions, excessive production under pathological conditions is associated with activation of Ca2+-dependent enzymes including proteases, phospholipases, nucleases, and alterations of signaling pathways which subsequently lead to mitochondrial dysfunction, release of inflammatory factors, and apoptosis. In recent years, there is considerable interest to investigate antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we describe oxidative mechanisms associated with AD, PD, and stroke, and evaluate neuroprotective effects of phenolic compounds, such as resveratrol from grape and red wine, curcumin from turmeric, apocynin from Picrorhiza kurroa, and epi-gallocatechin from green tea. The main goal is to provide a better understanding of the mode of action of these compounds and assess their use as therapeutics to ameliorate age-related neurodegenerative diseases.
Similar content being viewed by others
References
Abekawa, T., Ohmori, T., & Koyama, T. (1997). Effect of no synthesis inhibition on striatal dopamine release and stereotyped behavior induced by a single administration of methamphetamine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 831–838. doi:10.1016/S0278-5846(97)00083-3.
Abramov, A. Y., Canevari, L., & Duchen, M. R. (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. Journal of Neuroscience, 24, 565–575. doi:10.1523/JNEUROSCI.4042-03.2004.
Adams, J. D., Jr., & Odunze, I. N. (1991). Biochemical mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Could oxidative stress be involved in the brain? Biochemical Pharmacology, 41, 1099–1105. doi:10.1016/0006-2952(91)90646-M.
Ahmad, S., Yousuf, S., Ishrat, T., Khan, M. B., Bhatia, K., Fazli, I. S., et al. (2006). Effect of dietary sesame oil as antioxidant on brain hippocampus of rat in focal cerebral ischemia. Life Sciences, 79, 1921–1928. doi:10.1016/j.lfs.2006.06.017.
Ahsan, H., Parveen, N., Khan, N. U., & Hadi, S. M. (1999). Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chemico-Biological Interactions, 121, 161–175. doi:10.1016/S0009-2797(99)00096-4.
Akama, K. T., & Van Eldik, L. J. (2000). Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. Journal of Biological Chemistry, 275, 7918–7924. doi:10.1074/jbc.275.11.7918.
Alvira, D., Yeste-Velasco, M., Folch, J., Verdaguer, E., Canudas, A. M., Pallas, M., et al. (2007). Comparative analysis of the effects of resveratrol in two apoptotic models: Inhibition of complex I and potassium deprivation in cerebellar neurons. Neuroscience, 147, 746–756. doi:10.1016/j.neuroscience.2007.04.029.
Anantharam, V., Kaul, S., Song, C., Kanthasamy, A., & Kanthasamy, A. G. (2007). Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology, 28, 988–997. doi:10.1016/j.neuro.2007.08.008.
Anekonda, T. S. (2006). Resveratrol—A boon for treating Alzheimer’s disease? Brain Research Reviews, 52, 316–326. doi:10.1016/j.brainresrev.2006.04.004.
Ang-Lee, M. K., Moss, J., & Yuan, C. S. (2001). Herbal medicines and perioperative care. JAMA, 286, 208–216. doi:10.1001/jama.286.2.208.
Barbieri, S. S., Cavalca, V., Eligini, S., Brambilla, M., Caiani, A., Tremoli, E., et al. (2004). Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radical Biology and Medicine, 37, 156–165. doi:10.1016/j.freeradbiomed.2004.04.020.
Baron-Menguy, C., Bocquet, A., Guihot, A. L., Chappard, D., Amiot, M. J., Andriantsitohaina, R., et al. (2007). Effects of red wine polyphenols on postischemic neovascularization model in rats: Low doses are proangiogenic, high doses anti-angiogenic. FASEB Journal, 21, 3511–3521. doi:10.1096/fj.06-7782com.
Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: The in vivo evidence. Nature Reviews. Drug Discovery, 5, 493–506. doi:10.1038/nrd2060.
Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245–313. doi:10.1152/physrev.00044.2005.
Bi, X. L., Yang, J. Y., Dong, Y. X., Wang, J. M., Cui, Y. H., Ikeshima, T., et al. (2005). Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. International Immunopharmacology, 5, 185–193. doi:10.1016/j.intimp.2004.08.008.
Block, M. L., Li, G., Qin, L., Wu, X., Pei, Z., Wang, T., et al. (2006). Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: Substance P vs. dynorphin. FASEB Journal, 20, 251–258. doi:10.1096/fj.05-4553com.
Boillee, S., & Cleveland, D. W. (2008). Revisiting oxidative damage in ALS: Microglia, Nox, and mutant SOD1. Journal of Clinical Investigation, 118, 474–478.
Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317–333.
Brooks, A. I., Chadwick, C. A., Gelbard, H. A., Cory-Slechta, D. A., & Federoff, H. J. (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Research, 823, 1–10. doi:10.1016/S0006-8993(98)01192-5.
Brown, G. C. (2007). Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochemical Society Transactions, 35, 1119–1121. doi:10.1042/BST0351166.
Burgener, S. C., Buettner, L., Coen Buckwalter, K., et al. (2008). Evidence supporting nutritional interventions for persons in early stage Alzheimer’s disease (AD). The Journal of Nutrition, Health & Aging, 12, 18–21.
Butterfield, D. A., Griffin, S., Munch, G., & Pasinetti, G. M. (2002). Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. Journal of Alzheimer’s Disease, 4, 193–201.
Cardoso, S. M., Moreira, P. I., Agostinho, P., Pereira, C., & Oliveira, C. R. (2005). Neurodegenerative pathways in Parkinson’s disease: Therapeutic strategies. Current Drug Targets. CNS and Neurological Disorders, 4, 405–419. doi:10.2174/1568007054546072.
Casarejos, M. J., Menendez, J., Solano, R. M., Rodriguez-Navarro, J. A., Garcia de Yebenes, J., & Mena, M. A. (2006). Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. Journal of Neurochemistry, 97, 934–946. doi:10.1111/j.1471-4159.2006.03777.x.
Castano, A., Herrera, A. J., Cano, J., & Machado, A. (1998). Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. Journal of Neurochemistry, 70, 1584–1592.
Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of Cerebral Blood Flow and Metabolism, 21, 2–14. doi:10.1097/00004647-200101000-00002.
Chan, P. H. (2004). Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochemical Research, 29, 1943–1949. doi:10.1007/s11064-004-6869-x.
Chan, P. H., Fishman, R. A., Wesley, M. A., & Longar, S. (1990). Pathogenesis of vasogenic edema in focal cerebral ischemia. Role of superoxide radicals. Advances in Neurology, 52, 177–183.
Chanvitayapongs, S., Draczynska-Lusiak, B., & Sun, A. Y. (1997). Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. NeuroReport, 8, 1499–1502. doi:10.1097/00001756-199704140-00035.
Chaturvedi, R. K., Shukla, S., Seth, K., Chauhan, S., Sinha, C., Shukla, Y., et al. (2006). Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiology of Disease, 22, 421–434. doi:10.1016/j.nbd.2005.12.008.
Chauhan, N. B. (2003). Anti-amyloidogenic effect of Allium sativum in Alzheimer’s transgenic model Tg2576. Journal of Herbal Pharmacotherapy, 3, 95–107. doi:10.1300/J157v03n01_05.
Chauhan, N. B. (2006). Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. Journal of Ethnopharmacology, 108, 385–394. doi:10.1016/j.jep.2006.05.030.
Chauhan, N. B., & Sandoval, J. (2007). Amelioration of early cognitive deficits by aged garlic extract in Alzheimer’s transgenic mice. Phytotherapy Research, 21, 629–640. doi:10.1002/ptr.2122.
Chen, F., Eckman, E. A., & Eckman, C. B. (2006). Reductions in levels of the Alzheimer’s amyloid beta peptide after oral administration of ginsenosides. FASEB Journal, 20, 1269–1271. doi:10.1096/fj.05-5530fje.
Chen, H., Zhang, M., Qu, Z., & Xie, B. (2007). Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate. Journal of Agricultural and Food Chemistry, 55, 2256–2260. doi:10.1021/jf0632740.
Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L. F., Kwon, H., Yi, S., et al. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. Journal of Biological Chemistry, 280, 40364–40374. doi:10.1074/jbc.M509329200.
Chen, S., & Le, W. (2006). Neuroprotective therapy in Parkinson disease. American Journal of Therapeutics, 13, 445–457. doi:10.1097/01.mjt.0000174353.28012.a7.
Cho, I. J., Ahn, J. Y., Kim, S., Choi, M. S., & Ha, T. Y. (2008). Resveratrol attenuates the expression of HMG-CoA reductase mRNA in hamsters. Biochemical and Biophysical Research Communications, 367, 190–194. doi:10.1016/j.bbrc.2007.12.140.
Choi, D. W. (1992). Excitotoxic cell death. Journal of Neurobiology, 23, 1261–1276. doi:10.1002/neu.480230915.
Choi, J. Y., Park, C. S., Kim, D. J., Cho, M. H., Jin, B. K., Pie, J. E., et al. (2002). Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology, 23, 367–374. doi:10.1016/S0161-813X(02)00079-7.
Chung, M. I., Teng, C. M., Cheng, K. L., Ko, F. N., & Lin, C. N. (1992). An antiplatelet principle of Veratrum formosanum. Planta Medica, 58, 274–276. doi:10.1055/s-2006-961453.
Conte, A., Pellegrini, S., & Tagliazucchi, D. (2003a). Effect of resveratrol and catechin on PC12 tyrosine kinase activities and their synergistic protection from beta-amyloid toxicity. Drugs Under Experimental and Clinical Research, 29, 243–255.
Conte, A., Pellegrini, S., & Tagliazucchi, D. (2003b). Synergistic protection of PC12 cells from beta-amyloid toxicity by resveratrol and catechin. Brain Research Bulletin, 62, 29–38. doi:10.1016/j.brainresbull.2003.08.001.
Curin, Y., Ritz, M. F., & Andriantsitohaina, R. (2006). Cellular mechanisms of the protective effect of polyphenols on the neurovascular unit in strokes. Cardiovascular & Hematological Agents in Medicinal Chemistry, 4, 277–288. doi:10.2174/187152506778520691.
Dajas, F., Rivera, F., Blasina, F., Arredondo, F., Echeverry, C., Lafon, L., et al. (2003). Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotoxicity Research, 5, 425–432.
Datla, K. P., Zbarsky, V., Rai, D., Parkar, S., Osakabe, N., Aruoma, O. I., et al. (2007). Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. Journal of the American College of Nutrition, 26, 341–349.
De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. Journal of Biological Chemistry, 282, 11590–11601. doi:10.1074/jbc.M607483200.
Deschamps, V., Barberger-Gateau, P., Peuchant, E., & Orgogozo, J. M. (2001). Nutritional factors in cerebral aging and dementia: Epidemiological arguments for a role of oxidative stress. Neuroepidemiology, 20, 7–15. doi:10.1159/000054752.
Dringen, R. (2005). Oxidative and antioxidative potential of brain microglial cells. Antioxidants & Redox Signaling, 7, 1223–1233. doi:10.1089/ars.2005.7.1223.
Esposito, E., Rotilio, D., Di Matteo, V., Di Giulio, C., Cacchio, M., & Algeri, S. (2002). A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiology of Aging, 23, 719–735. doi:10.1016/S0197-4580(02)00078-7.
Feng, Y., Liu, Y. M., Fratkins, J. D., & LeBlanc, M. H. (2005). Grape seed extract suppresses lipid peroxidation and reduces hypoxic ischemic brain injury in neonatal rats. Brain Research Bulletin, 66, 120–127. doi:10.1016/j.brainresbull.2005.04.006.
Feng, Y., Liu, Y. M., Leblanc, M. H., Bhatt, A. J., & Rhodes, P. G. (2007). Grape seed extract given three hours after injury suppresses lipid peroxidation and reduces hypoxic-ischemic brain injury in neonatal rats. Pediatric Research, 61, 295–300. doi:10.1203/pdr.0b013e318030c92d.
Ferguson, L. R. (2001). Role of plant polyphenols in genomic stability. Mutation Research, 475, 89–111. doi:10.1016/S0027-5107(01)00073-2.
Fiala, M., Cribbs, D. H., Rosenthal, M., & Bernard, G. (2007). Phagocytosis of amyloid-beta and inflammation: Two faces of innate immunity in Alzheimer’s disease. Journal of Alzheimer’s Disease, 11, 457–463.
Frautschy, S. A., Hu, W., Kim, P., Miller, S. A., Chu, T., Harris-White, M. E., et al. (2001). Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiology of Aging, 22, 993–1005. doi:10.1016/S0197-4580(01)00300-1.
Gao, D., Zhang, X., Jiang, X., Peng, Y., Huang, W., Cheng, G., et al. (2006a). Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice. Life Sciences, 78, 2564–2570. doi:10.1016/j.lfs.2005.10.030.
Gao, H. M., Hong, J. S., Zhang, W., & Liu, B. (2002). Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. Journal of Neuroscience, 22, 782–790.
Gao, H. M., Hong, J. S., Zhang, W., & Liu, B. (2003a). Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: Relevance to the etiology of Parkinson’s disease. Journal of Neuroscience, 23, 1228–1236.
Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003b). Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB Journal, 17, 1954–1956.
Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003c). Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: Relevance to the etiology of Parkinson’s disease. FASEB Journal, 17, 1957–1959.
Gao, Z. B., Chen, X. Q., & Hu, G. Y. (2006b). Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Research, 1111, 41–47. doi:10.1016/j.brainres.2006.06.096.
Garcia-Alloza, M., Dodwell, S. A., Meyer-Luehmann, M., Hyman, B. T., & Bacskai, B. J. (2006). Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. Journal of Neuropathology and Experimental Neurology, 65, 1082–1089. doi:10.1097/01.jnen.0000240468.12543.af.
Gelinas, S., & Martinoli, M. G. (2002). Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. Journal of Neuroscience Research, 70, 90–96. doi:10.1002/jnr.10315.
Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology, 75, 787–809. doi:10.1016/j.bcp.2007.08.016.
Gonzalez-Hernandez, T., Perez de la Cruz, M. A., & Mantolan-Sarmiento, B. (1996). Histochemical and immunohistochemical detection of neurons that produce nitric oxide: Effect of different fixative parameters and immunoreactivity against non-neuronal NOS antisera. Journal of Histochemistry and Cytochemistry, 44, 1399–1413.
Guo, S., Yan, J., Yang, T., Yang, X., Bezard, E., & Zhao, B. (2007). Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biological Psychiatry, 62, 1353–1362. doi:10.1016/j.biopsych.2007.04.020.
Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97, 1634–1658. doi:10.1111/j.1471-4159.2006.03907.x.
Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics, 476, 107–112. doi:10.1016/j.abb.2008.01.028.
Han, Y. S., Zheng, W. H., Bastianetto, S., Chabot, J. G., & Quirion, R. (2004). Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: Involvement of protein kinase C. British Journal of Pharmacology, 141, 997–1005. doi:10.1038/sj.bjp.0705688.
Hartman, R. E., Shah, A., Fagan, A. M., Schwetye, K. E., Parsadanian, M., Schulman, R. N., et al. (2006). Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiology of disease, 24, 506–515. doi:10.1016/j.nbd.2006.08.006.
Hong, J. T., Ryu, S. R., Kim, H. J., et al. (2000). Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Research Bulletin, 53, 743–749. doi:10.1016/S0361-9230(00)00348-8.
Hong, J. T., Ryu, S. R., Kim, H. J., Lee, J. K., Lee, S. H., Yun, Y. P., et al. (2001). Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Research, 888, 11–18. doi:10.1016/S0006-8993(00)02935-8.
Howitz, K. T., Bitterman, K. J., Cohen, H. Y., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196. doi:10.1038/nature01960.
Infanger, D. W., Sharma, R. V., & Davisson, R. L. (2006). NADPH oxidases of the brain: Distribution, regulation, and function. Antioxidants & Redox Signaling, 8, 1583–1596. doi:10.1089/ars.2006.8.1583.
Jagatha, B., Mythri, R. B., Vali, S., & Bharath, M. M. (2008). Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radical Biology and Medicine, 44, 907–917. doi:10.1016/j.freeradbiomed.2007.11.011.
Jang, J. H., & Surh, Y. J. (2003). Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radical Biology and Medicine, 34, 1100–1110. doi:10.1016/S0891-5849(03)00062-5.
Jekabsone, A., Mander, P. K., Tickler, A., Sharpe, M., & Brown, G. C. (2006). Fibrillar beta-amyloid peptide Abeta1–40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: A cell culture study. Journal of Neuroinflammation, 3, 24. doi:10.1186/1742-2094-3-24.
Jiang, J., Wang, W., Sun, Y. J., Hu, M., Li, F., & Zhu, D. Y. (2007). Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. European Journal of Pharmacology, 561, 54–62. doi:10.1016/j.ejphar.2006.12.028.
Joseph, J. A., Denisova, N. A., Arendash, G., Gordon, M., Diamond, D., Shukitt-Hale, B., et al. (2003). Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutritional Neuroscience, 6, 153–162. doi:10.1080/1028415031000111282.
Kahles, T., Luedike, P., Endres, M., Galla, H. J., Steinmetz, H., Busse, R., et al. (2007). NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke, 38, 3000–3006. doi:10.1161/STROKEAHA.107.489765.
Kang, T. H., Hur, J. Y., Kim, H. B., Ryu, J. H., & Kim, S. Y. (2006). Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neuroscience Letters, 391, 122–126. doi:10.1016/j.neulet.2005.08.053.
Kim, M. S., Lee, J. I., Lee, W. Y., & Kim, S. E. (2004). Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytotherapy Research, 18, 663–666. doi:10.1002/ptr.1486.
Kim, Y. A., Kim, G. Y., Park, K. Y., & Choi, Y. H. (2007). Resveratrol inhibits nitric oxide and prostaglandin E2 production by lipopolysaccharide-activated C6 microglia. Journal of Medicinal Food, 10, 218–224. doi:10.1089/jmf.2006.143.
Kim, Y. A., Lim, S. Y., Rhee, S. H., Park, K. Y., Kim, C. H., Choi, B. T., et al. (2006). Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in beta-amyloid-treated C6 glioma cells. International Journal of Molecular Medicine, 17, 1069–1075.
Kishida, K. T., & Klann, E. (2007). Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxidants & Redox Signaling, 9, 233–244. doi:10.1089/ars.2007.9.233.
Kishida, K. T., Pao, M., Holland, S. M., & Klann, E. (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. Journal of Neurochemistry, 94, 299–306. doi:10.1111/j.1471-4159.2005.03189.x.
Koshimura, I., Imai, H., Hidano, T., Endo, K., Mochizuki, H., Kondo, T., et al. (1997). Dimethoxyphenylethylamine and tetrahydropapaverine are toxic to the nigrostriatal system. Brain Research, 773, 108–116. doi:10.1016/S0006-8993(97)00922-0.
Kotilinek, L. A., Westerman, M. A., Wang, Q., et al. (2008). Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity. Brain, 131, 651–664. doi:10.1093/brain/awn008.
Kriem, B., Sponne, I., Fifre, A., et al. (2005). Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB Journal, 19, 85–87.
Lambeth, J. D. (2007). Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radical Biology and Medicine, 43, 332–347. doi:10.1016/j.freeradbiomed.2007.03.027.
Langston, J. W., Irwin, I., & Ricaurte, G. A. (1987). Neurotoxins, parkinsonism and Parkinson’s disease. Pharmacology and Therapeutics, 32, 19–49. doi:10.1016/0163-7258(87)90062-3.
Levites, Y., Amit, T., Youdim, M. B., & Mandel, S. (2002a). Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. Journal of Biological Chemistry, 277, 30574–30580. doi:10.1074/jbc.M202832200.
Levites, Y., Youdim, M. B., Maor, G., & Mandel, S. (2002b). Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochemical Pharmacology, 63, 21–29. doi:10.1016/S0006-2952(01)00813-9.
Li, M., Pisalyaput, K., Galvan, M., & Tenner, A. J. (2004). Macrophage colony stimulatory factor and interferon-gamma trigger distinct mechanisms for augmentation of beta-amyloid-induced microglia-mediated neurotoxicity. Journal of Neurochemistry, 91, 623–633. doi:10.1111/j.1471-4159.2004.02765.x.
Li, X., & Sun, A. Y. (1999). Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. Journal of Neural Transmission, 106, 1–21. doi:10.1007/s007020050137.
Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21, 8370–8377.
Lim, H. J., Lee, K. S., Lee, S., Park, J. H., Choi, H. E., Go, S. H., et al. (2007a). 15d-PGJ2 stimulates HO-1 expression through p38 MAP kinase and Nrf-2 pathway in rat vascular smooth muscle cells. Toxicology and Applied Pharmacology, 223, 20–27. doi:10.1016/j.taap.2007.04.019.
Lim, M. L., Mercer, L. D., Nagley, P., & Beart, P. M. (2007b). Rotenone and MPP+ preferentially redistribute apoptosis-inducing factor in apoptotic dopamine neurons. NeuroReport, 18, 307–312. doi:10.1097/WNR.0b013e32801b3ca6.
Liou, H. H., Tsai, M. C., Chen, C. J., Jeng, J. S., Chang, Y. C., Chen, S. Y., et al. (1997). Environmental risk factors and Parkinson’s disease: A case-control study in Taiwan. Neurology, 48, 1583–1588.
Lu, K. T., Chiou, R. Y., Chen, L. G., Chen, M. H., Tseng, W. T., Hsieh, H. T., et al. (2006). Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation. Journal of Agricultural and Food Chemistry, 54, 3126–3131. doi:10.1021/jf053011q.
Manach, C., & Donovan, J. L. (2004). Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Research, 38, 771–785. doi:10.1080/10715760410001727858.
Mancuso, C., Scapagini, G., Curro, D., Giuffrida Stella, A. M., De Marco, C., Butterfield, D. A., et al. (2007). Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Frontiers in Bioscience, 12, 1107–1123. doi:10.2741/2130.
Mandel, S., Weinreb, O., Amit, T., & Youdim, M. B. (2004). Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. Journal of Neurochemistry, 88, 1555–1569.
Mandel, S., & Youdim, M. B. (2004). Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Biology and Medicine, 37, 304–317. doi:10.1016/j.freeradbiomed.2004.04.012.
Mander, P. K., Jekabsone, A., & Brown, G. C. (2006). Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. Journal of Immunology, 176, 1046–1052.
Marambaud, P., Zhao, H., & Davies, P. (2005). Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. Journal of Biological Chemistry, 280, 37377–37382. doi:10.1074/jbc.M508246200.
Masuda, M., Suzuki, N., Taniguchi, S., Oikawa, T., Nonaka, T., Iwatsubo, T., et al. (2006). Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry, 45, 6085–6094. doi:10.1021/bi0600749.
Mattson, M. P. (2007). Calcium and neurodegeneration. Aging Cell, 6, 337–350. doi:10.1111/j.1474-9726.2007.00275.x.
Mattson, M. P. (2008). Dietary factors, hormesis and health. Ageing Research Reviews, 7, 43–48. doi:10.1016/j.arr.2007.08.004.
McGeer, P. L., Itagaki, S., Akiyama, H., & McGeer, E. G. (1988). Rate of cell death in parkinsonism indicates active neuropathological process. Annals of Neurology, 24, 574–576. doi:10.1002/ana.410240415.
McKeel, D. W., Jr., Price, J. L., Miller, J. P., Grant, E. A., Xiong, C., Berg, L., et al. (2004). Neuropathologic criteria for diagnosing Alzheimer disease in persons with pure dementia of Alzheimer type. Journal of Neuropathology and Experimental Neurology, 63, 1028–1037.
Mercer, L. D., Kelly, B. L., Horne, M. K., & Beart, P. M. (2005). Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: Investigations in primary rat mesencephalic cultures. Biochemical Pharmacology, 69, 339–345. doi:10.1016/j.bcp.2004.09.018.
Miller, R. L., James-Kracke, M., Sun, G. Y., & Sun, A. Y. (2008). Oxidative and inflammatory pathways in Parkinson’s disease. Neurochemical Research. doi:10.1007/s11064-008-9656-2.
Miller, R. L., Sun, G. Y., & Sun, A. Y. (2007). Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Research, 1167, 129–139. doi:10.1016/j.brainres.2007.06.046.
Morelli, V., & Naquin, C. (2002). Alternative therapies for traditional disease states: Menopause. American Family Physician, 66, 129–134.
Ndiaye, M., Chataigneau, M., Lobysheva, I., Chataigneau, T., & Schini-Kerth, V. B. (2005). Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB Journal, 19, 455–457.
Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. Journal of Neuroscience Research, 75, 742–750. doi:10.1002/jnr.20025.
Ono, K., Naiki, H., & Yamada, M. (2006). The development of preventives and therapeutics for Alzheimer’s disease that inhibit the formation of beta-amyloid fibrils (fAbeta), as well as destabilize preformed fAbeta. Current Pharmaceutical Design, 12, 4357–4375. doi:10.2174/138161206778793010.
Ono, K., & Yamada, M. (2006). Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. Journal of Neurochemistry, 97, 105–115. doi:10.1111/j.1471-4159.2006.03707.x.
Pandey, N., Strider, J., Nolan, W. C., Yan, S. X., & Galvin, J. E. (2008). Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathologica, 115, 479–489. doi:10.1007/s00401-007-0332-4.
Pu, F., Mishima, K., Egashira, N., et al. (2004). Protective effect of buckwheat polyphenols against long-lasting impairment of spatial memory associated with hippocampal neuronal damage in rats subjected to repeated cerebral ischemia. Journal of Pharmacological Sciences, 94, 393–402. doi:10.1254/jphs.94.393.
Rahman, M., Riaz, M., & Desai, U. R. (2007). Synthesis of biologically relevant biflavanoids—A review. Chemistry and Biodiversity, 4, 2495–2527. doi:10.1002/cbdv.200790205.
Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. European Journal of Pharmacology, 545, 51–64. doi:10.1016/j.ejphar.2006.06.025.
Raskin, I., Ribnicky, D. M., Komarnytsky, S., et al. (2002). Plants and human health in the twenty-first century. Trends in Biotechnology, 20, 522–531. doi:10.1016/S0167-7799(02)02080-2.
Rathore, P., Dohare, P., Varma, S., Ray, A., Sharma, U., Jaganathanan, N. R., et al. (2008). Curcuma oil: Reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochemical Research, 33, 1672–1682.
Raval, A. P., Dave, K. R., & Perez-Pinzon, M. A. (2006). Resveratrol mimics ischemic preconditioning in the brain. Journal of Cerebral Blood Flow and Metabolism, 26, 1141–1147.
Rezai-Zadeh, K., Shytle, D., Sun, N., et al. (2005). Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. Journal of Neuroscience, 25, 8807–8814. doi:10.1523/JNEUROSCI.1521-05.2005.
Rice-Evans, C., & Miller, N. (1997). Measurement of the antioxidant status of dietary constituents, low density lipoproteins and plasma. Prostaglandins, Leukotrienes and Essential Fatty Acids, 57, 499–505. doi:10.1016/S0952-3278(97)90435-X.
Ringman, J. M., Frautschy, S. A., Cole, G. M., Masterman, D. L., & Cummings, J. L. (2005). A potential role of the curry spice curcumin in Alzheimer’s disease. Current Alzheimer Research, 2, 131–136. doi:10.2174/1567205053585882.
Ritz, M. F., Ratajczak, P., Curin, Y., Cam, E., Mendelowitsch, A., Pinet, F., et al. (2008). Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. The Journal of Nutrition, 138, 519–525.
Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19–34. doi:10.1146/annurev.nutr.22.111401.144957.
Saito, A., Maier, C. M., Narasimhan, P., et al. (2005). Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Molecular Neurobiology, 31, 105–116. doi:10.1385/MN:31:1-3:105.
Saleem, S., Ahmad, M., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., et al. (2006). Behavioral and histologic neuroprotection of aqueous garlic extract after reversible focal cerebral ischemia. Journal of Medicinal Food, 9, 537–544. doi:10.1089/jmf.2006.9.537.
Salvioli, S., Sikora, E., Cooper, E. L., & Franceschi, C. (2007). Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evidence-Based Complementary and Alternative Medicine, 4, 181–190. doi:10.1093/ecam/nem043.
Sang, N., & Chen, C. (2006). Lipid signaling and synaptic plasticity. Neuroscientist, 12, 425–434. doi:10.1177/1073858406290794.
Santangelo, C., Vari, R., Scazzocchio, B., Di Benedetto, R., Filesi, C., & Masella, R. (2007). Polyphenols, intracellular signalling and inflammation. Annali dell Istituto Superiore di Sanita, 43, 394–405.
Schapira, A. H. (1996). Neurotoxicity and the mechanisms of cell death in Parkinson’s disease. Advances in Neurology, 69, 161–165.
Schober, A. (2004). Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell and Tissue Research, 318, 215–224. doi:10.1007/s00441-004-0938-y.
Schroeter, H., Bahia, P., Spencer, J. P., Sheppard, O., Rattray, M., Cadenas, E., et al. (2007). (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. Journal of Neurochemistry, 101, 1596–1606. doi:10.1111/j.1471-4159.2006.04434.x.
Selkoe, D. J. (2001). Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. Journal of Alzheimer’s Disease, 3, 75–80.
Sharma, M., & Gupta, Y. K. (2002). Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sciences, 71, 2489–2498. doi:10.1016/S0024-3205(02)02083-0.
Shelat, P. B., Chalimoniuk, M., Wang, J. H., Strosznajder, J. B., Lee, J. C., Sun, A. Y., et al. (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A(2) in cortical neurons. Journal of Neurochemistry, 106, 45–55.
Shen, L., & Zhang, J. (2003). Ginsenoside Rgl increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neuroscience Letters, 344, 1–4. doi:10.1016/S0304-3940(03)00318-5.
Shibata, H., Katsuki, H., Okawara, M., Kume, T., & Akaike, A. (2006). c-Jun N-terminal kinase inhibition and alpha-tocopherol protect midbrain dopaminergic neurons from interferon-gamma/lipopolysaccharide-induced injury without affecting nitric oxide production. Journal of Neuroscience Research, 83, 102–109. doi:10.1002/jnr.20700.
Shin, D. H., Bae, Y. C., Kim-Han, J. S., Lee, J. H., Choi, I. Y., Son, K. H., et al. (2006). Polyphenol amentoflavone affords neuroprotection against neonatal hypoxic-ischemic brain damage via multiple mechanisms. Journal of Neurochemistry, 96, 561–572. doi:10.1111/j.1471-4159.2005.03582.x.
Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neurodegenerative diseases. Annual Review of Pharmacology and Toxicology, 36, 83–106. doi:10.1146/annurev.pa.36.040196.000503.
Simonyi, A., Wang, Q., Miller, R. L., Yusof, M., Shelat, P. B., Sun, A. Y., et al. (2005). Polyphenols in cerebral ischemia: Novel targets for neuroprotection. Molecular Neurobiology, 31, 135–147. doi:10.1385/MN:31:1-3:135.
Simonyi, A., Woods, D., Sun, A. Y., & Sun, G. Y. (2002). Grape polyphenols inhibit chronic ethanol-induced COX-2 mRNA expression in rat brain. Alcoholism, Clinical and Experimental Research, 26, 352–357.
Snyder, E. M., Nong, Y., Almeida, C. G., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058. doi:10.1038/nn1503.
Stackman, R. W., Eckenstein, F., Frei, B., Kulhanek, D., Nowlin, J., & Quinn, J. F. (2003). Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Experimental Neurology, 184, 510–520. doi:10.1016/S0014-4886(03)00399-6.
Stolk, J., Hiltermann, T. J., Dijkman, J. H., & Verhoeven, A. J. (1994). Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. American Journal of Respiratory Cell and Molecular Biology, 11, 95–102.
Storch, A., Jost, W. H., Vieregge, P., et al. (2007). Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Archives of Neurology, 64, 938–944. doi:10.1001/archneur.64.7.nct60005.
Sun, A. Y., & Chen, Y. M. (1998). Oxidative stress and neurodegenerative disorders. Journal of Biomedical Science, 5, 401–414. doi:10.1007/BF02255928.
Sun, A. Y., Yang, W. L., & Kim, H. D. (1993). Free radical and lipid peroxidation in manganese-induced neuronal cell injury. Annals of the New York Academy of Sciences, 679, 358–363. doi:10.1111/j.1749-6632.1993.tb18322.x.
Sun, G. Y., Xia, J., Draczynska-Lusiak, B., Simonyi, A., & Sun, A. Y. (1999a). Grape polyphenols protect neurodegenerative changes induced by chronic ethanol administration. NeuroReport, 10, 93–96. doi:10.1097/00001756-199901180-00018.
Sun, G. Y., Xia, J., Xu, J., Allenbrand, B., Simonyi, A., Rudeen, P. K., et al. (1999b). Dietary supplementation of grape polyphenols to rats ameliorates chronic ethanol-induced changes in hepatic morphology without altering changes in hepatic lipids. The Journal of Nutrition, 129, 1814–1819.
Sutherland, B. A., Rahman, R. M., & Appleton, I. (2006). Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. The Journal of Nutritional Biochemistry, 17, 291–306. doi:10.1016/j.jnutbio.2005.10.005.
Sweeney, M. I., Kalt, W., MacKinnon, S. L., Ashby, J., & Gottschall-Pass, K. T. (2002). Feeding rats diets enriched in lowbush blueberries for six weeks decreases ischemia-induced brain damage. Nutritional Neuroscience, 5, 427–431. doi:10.1080/1028415021000055970.
Tang, L. L., Ye, K., Yang, X. F., & Zheng, J. S. (2007). Apocynin attenuates cerebral infarction after transient focal ischaemia in rats. Journal of International Medical Research, 35, 517–522.
Tchantchou, F., Xu, Y., Wu, Y., Christen, Y., & Luo, Y. (2007). EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB Journal, 21, 2400–2408. doi:10.1096/fj.06-7649com.
Tohda, C., Matsumoto, N., Zou, K., Meselhy, M. R., & Komatsu, K. (2004). Abeta(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology, 29, 860–868. doi:10.1038/sj.npp.1300388.
Tsai, S. K., Hung, L. M., Fu, Y. T., Cheng, H., Nien, M. W., Liu, H. Y., et al. (2007). Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats. Journal of Vascular Surgery, 46, 346–353. doi:10.1016/j.jvs.2007.04.044.
Vafeiadou, K., Vauzour, D., & Spencer, J. P. (2007). Neuroinflammation and its modulation by flavonoids. Endocrine, Metabolic & Immune Disorders Drug Targets, 7, 211–224. doi:10.2174/187153007781662521.
Vauzour, D., Vafeiadou, K., Corona, G., Pollard, S. E., Tzounis, X., & Spencer, J. P. (2007). Champagne wine polyphenols protect primary cortical neurons against peroxynitrite-induced injury. Journal of Agricultural and Food Chemistry, 55, 2854–2860. doi:10.1021/jf063304z.
Voko, Z., Hollander, M., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2003). Dietary antioxidants and the risk of ischemic stroke: The Rotterdam Study. Neurology, 61, 1273–1275.
Wang, C. N., Chi, C. W., Lin, Y. L., Chen, C. F., & Shiao, Y. J. (2001). The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. Journal of Biological Chemistry, 276, 5287–5295. doi:10.1074/jbc.M006406200.
Wang, J., Ho, L., Zhao, Z., et al. (2006a). Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB Journal, 20, 2313–2320. doi:10.1096/fj.06-6281com.
Wang, Q., Simonyi, A., Li, W., Sisk, B. A., Miller, R. L., Macdonald, R. S., et al. (2005a). Dietary grape supplement ameliorates cerebral ischemia-induced neuronal death in gerbils. Molecular Nutrition & Food Research, 49, 443–451. doi:10.1002/mnfr.200500019.
Wang, Q., Smith, R. E., Luchtefeld, R., Sun, A. Y., Simonyi, A., Luo, R., et al. (2008). Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine, 15, 496–503.
Wang, Q., Sun, A. Y., Simonyi, A., et al. (2005b). Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. Journal of Neuroscience Research, 82, 138–148. doi:10.1002/jnr.20610.
Wang, Q., Tompkins, K. D., Simonyi, A., Korthuis, R. J., Sun, A. Y., & Sun, G. Y. (2006b). Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Research, 1090, 182–189. doi:10.1016/j.brainres.2006.03.060.
Wang, Q., Xu, J., Rottinghaus, G. E., Simonyi, A., Lubahn, D., Sun, G. Y., et al. (2002). Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Research, 958, 439–447. doi:10.1016/S0006-8993(02)03543-6.
Wang, Q., Yu, S., Simonyi, A., Sun, G. Y., & Sun, A. Y. (2005c). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Molecular Neurobiology, 31, 3–16. doi:10.1385/MN:31:1-3:003.
Wang, X., Su, B., Perry, G., Smith, M. A., & Zhu, X. (2007). Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine, 43, 1569–1573. doi:10.1016/j.freeradbiomed.2007.09.007.
Wang, Y., Chang, C. F., Chou, J., Chen, H. L., Deng, X., Harvey, B. K., et al. (2005d). Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Experimental Neurology, 193, 75–84. doi:10.1016/j.expneurol.2004.12.014.
Weinreb, O., Amit, T., & Youdim, M. B. (2008). The application of proteomics for studying the neurorescue activity of the polyphenol (-)-epigallocatechin-3-gallate. Archives of Biochemistry and Biophysics, 476, 152–160. doi:10.1016/j.abb.2008.01.004.
Weinreb, O., Mandel, S., Amit, T., & Youdim, M. B. (2004). Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. Journal of Nutritional Biochemistry, 15, 506–516. doi:10.1016/j.jnutbio.2004.05.002.
West, T., Atzeva, M., & Holtzman, D. M. (2007). Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Developmental Neuroscience, 29, 363–372. doi:10.1159/000105477.
Wu, A., Ying, Z., & Gomez-Pinilla, F. (2006). Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Experimental Neurology, 197, 309–317. doi:10.1016/j.expneurol.2005.09.004.
Wu, D. C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H., et al. (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 100, 6145–6150. doi:10.1073/pnas.0937239100.
Wu, X. F., Block, M. L., Zhang, W., Qin, L., Wilson, B., Zhang, W. Q., et al. (2005). The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxidants & Redox Signaling, 7, 654–661. doi:10.1089/ars.2005.7.654.
Yang, F., Lim, G. P., Begum, A. N., et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280, 5892–5901. doi:10.1074/jbc.M404751200.
Yang, W., & Sun, A. Y. (1998a). Paraquat-induced free radical reaction in mouse brain microsomes. Neurochemical Research, 23, 47–53. doi:10.1023/A:1022497319548.
Yang, W. L., & Sun, A. Y. (1998b). Paraquat-induced cell death in PC12 cells. Neurochemical Research, 23, 1387–1394. doi:10.1023/A:1020750706762.
Yi, H., Akao, Y., Maruyama, W., Chen, K., Shih, J., & Naoi, M. (2006). Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. Journal of Neurochemistry, 96, 541–549. doi:10.1111/j.1471-4159.2005.03573.x.
Youdim, K. A., & Joseph, J. A. (2001). A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radical Biology and Medicine, 30, 583–594. doi:10.1016/S0891-5849(00)00510-4.
Zbarsky, V., Datla, K. P., Parkar, S., Rai, D. K., Aruoma, O. I., & Dexter, D. T. (2005). Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Research, 39, 1119–1125. doi:10.1080/10715760500233113.
Zhang, W., Wang, T., Qin, L., Gao, H. M., Wilson, B., Ali, S. F., et al. (2004). Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: Role of NADPH oxidase. FASEB Journal, 18, 589–591.
Zhu, D., Lai, Y., Shelat, P. B., Hu, C., Sun, G. Y., & Lee, J. C. (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. Journal of Neuroscience, 26, 11111–11119. doi:10.1523/JNEUROSCI.3505-06.2006.
Acknowledgment
This work was supported by grants (P02 AG018357 and 1R21AT003859) from NIH.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, A.Y., Wang, Q., Simonyi, A. et al. Botanical Phenolics and Brain Health. Neuromol Med 10, 259–274 (2008). https://doi.org/10.1007/s12017-008-8052-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12017-008-8052-z