Skip to main content

Advertisement

Log in

Botanical Phenolics and Brain Health

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The high demand for molecular oxygen, the enrichment of polyunsaturated fatty acids in membrane phospholipids, and the relatively low abundance of antioxidant defense enzymes are factors rendering cells in the central nervous system (CNS) particularly vulnerable to oxidative stress. Excess production of reactive oxygen species (ROS) in the brain has been implicated as a common underlying factor for the etiology of a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and stroke. While ROS are generated by enzymatic and nonenzymatic reactions in the mitochondria and cytoplasm under normal conditions, excessive production under pathological conditions is associated with activation of Ca2+-dependent enzymes including proteases, phospholipases, nucleases, and alterations of signaling pathways which subsequently lead to mitochondrial dysfunction, release of inflammatory factors, and apoptosis. In recent years, there is considerable interest to investigate antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we describe oxidative mechanisms associated with AD, PD, and stroke, and evaluate neuroprotective effects of phenolic compounds, such as resveratrol from grape and red wine, curcumin from turmeric, apocynin from Picrorhiza kurroa, and epi-gallocatechin from green tea. The main goal is to provide a better understanding of the mode of action of these compounds and assess their use as therapeutics to ameliorate age-related neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abekawa, T., Ohmori, T., & Koyama, T. (1997). Effect of no synthesis inhibition on striatal dopamine release and stereotyped behavior induced by a single administration of methamphetamine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 831–838. doi:10.1016/S0278-5846(97)00083-3.

    Article  PubMed  CAS  Google Scholar 

  • Abramov, A. Y., Canevari, L., & Duchen, M. R. (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. Journal of Neuroscience, 24, 565–575. doi:10.1523/JNEUROSCI.4042-03.2004.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J. D., Jr., & Odunze, I. N. (1991). Biochemical mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Could oxidative stress be involved in the brain? Biochemical Pharmacology, 41, 1099–1105. doi:10.1016/0006-2952(91)90646-M.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, S., Yousuf, S., Ishrat, T., Khan, M. B., Bhatia, K., Fazli, I. S., et al. (2006). Effect of dietary sesame oil as antioxidant on brain hippocampus of rat in focal cerebral ischemia. Life Sciences, 79, 1921–1928. doi:10.1016/j.lfs.2006.06.017.

    Article  PubMed  CAS  Google Scholar 

  • Ahsan, H., Parveen, N., Khan, N. U., & Hadi, S. M. (1999). Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chemico-Biological Interactions, 121, 161–175. doi:10.1016/S0009-2797(99)00096-4.

    Article  PubMed  CAS  Google Scholar 

  • Akama, K. T., & Van Eldik, L. J. (2000). Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. Journal of Biological Chemistry, 275, 7918–7924. doi:10.1074/jbc.275.11.7918.

    Article  PubMed  CAS  Google Scholar 

  • Alvira, D., Yeste-Velasco, M., Folch, J., Verdaguer, E., Canudas, A. M., Pallas, M., et al. (2007). Comparative analysis of the effects of resveratrol in two apoptotic models: Inhibition of complex I and potassium deprivation in cerebellar neurons. Neuroscience, 147, 746–756. doi:10.1016/j.neuroscience.2007.04.029.

    Article  PubMed  CAS  Google Scholar 

  • Anantharam, V., Kaul, S., Song, C., Kanthasamy, A., & Kanthasamy, A. G. (2007). Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology, 28, 988–997. doi:10.1016/j.neuro.2007.08.008.

    Article  PubMed  CAS  Google Scholar 

  • Anekonda, T. S. (2006). Resveratrol—A boon for treating Alzheimer’s disease? Brain Research Reviews, 52, 316–326. doi:10.1016/j.brainresrev.2006.04.004.

    Article  PubMed  CAS  Google Scholar 

  • Ang-Lee, M. K., Moss, J., & Yuan, C. S. (2001). Herbal medicines and perioperative care. JAMA, 286, 208–216. doi:10.1001/jama.286.2.208.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, S. S., Cavalca, V., Eligini, S., Brambilla, M., Caiani, A., Tremoli, E., et al. (2004). Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radical Biology and Medicine, 37, 156–165. doi:10.1016/j.freeradbiomed.2004.04.020.

    Article  PubMed  CAS  Google Scholar 

  • Baron-Menguy, C., Bocquet, A., Guihot, A. L., Chappard, D., Amiot, M. J., Andriantsitohaina, R., et al. (2007). Effects of red wine polyphenols on postischemic neovascularization model in rats: Low doses are proangiogenic, high doses anti-angiogenic. FASEB Journal, 21, 3511–3521. doi:10.1096/fj.06-7782com.

    Article  PubMed  CAS  Google Scholar 

  • Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: The in vivo evidence. Nature Reviews. Drug Discovery, 5, 493–506. doi:10.1038/nrd2060.

    Article  PubMed  CAS  Google Scholar 

  • Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245–313. doi:10.1152/physrev.00044.2005.

    Article  PubMed  CAS  Google Scholar 

  • Bi, X. L., Yang, J. Y., Dong, Y. X., Wang, J. M., Cui, Y. H., Ikeshima, T., et al. (2005). Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. International Immunopharmacology, 5, 185–193. doi:10.1016/j.intimp.2004.08.008.

    Article  PubMed  CAS  Google Scholar 

  • Block, M. L., Li, G., Qin, L., Wu, X., Pei, Z., Wang, T., et al. (2006). Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: Substance P vs. dynorphin. FASEB Journal, 20, 251–258. doi:10.1096/fj.05-4553com.

    Article  PubMed  CAS  Google Scholar 

  • Boillee, S., & Cleveland, D. W. (2008). Revisiting oxidative damage in ALS: Microglia, Nox, and mutant SOD1. Journal of Clinical Investigation, 118, 474–478.

    PubMed  CAS  Google Scholar 

  • Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317–333.

    PubMed  CAS  Google Scholar 

  • Brooks, A. I., Chadwick, C. A., Gelbard, H. A., Cory-Slechta, D. A., & Federoff, H. J. (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Research, 823, 1–10. doi:10.1016/S0006-8993(98)01192-5.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. C. (2007). Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochemical Society Transactions, 35, 1119–1121. doi:10.1042/BST0351166.

    Article  PubMed  CAS  Google Scholar 

  • Burgener, S. C., Buettner, L., Coen Buckwalter, K., et al. (2008). Evidence supporting nutritional interventions for persons in early stage Alzheimer’s disease (AD). The Journal of Nutrition, Health & Aging, 12, 18–21.

    Article  CAS  Google Scholar 

  • Butterfield, D. A., Griffin, S., Munch, G., & Pasinetti, G. M. (2002). Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. Journal of Alzheimer’s Disease, 4, 193–201.

    PubMed  CAS  Google Scholar 

  • Cardoso, S. M., Moreira, P. I., Agostinho, P., Pereira, C., & Oliveira, C. R. (2005). Neurodegenerative pathways in Parkinson’s disease: Therapeutic strategies. Current Drug Targets. CNS and Neurological Disorders, 4, 405–419. doi:10.2174/1568007054546072.

    Article  PubMed  CAS  Google Scholar 

  • Casarejos, M. J., Menendez, J., Solano, R. M., Rodriguez-Navarro, J. A., Garcia de Yebenes, J., & Mena, M. A. (2006). Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. Journal of Neurochemistry, 97, 934–946. doi:10.1111/j.1471-4159.2006.03777.x.

    Article  PubMed  CAS  Google Scholar 

  • Castano, A., Herrera, A. J., Cano, J., & Machado, A. (1998). Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. Journal of Neurochemistry, 70, 1584–1592.

    PubMed  CAS  Google Scholar 

  • Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of Cerebral Blood Flow and Metabolism, 21, 2–14. doi:10.1097/00004647-200101000-00002.

    PubMed  CAS  Google Scholar 

  • Chan, P. H. (2004). Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochemical Research, 29, 1943–1949. doi:10.1007/s11064-004-6869-x.

    Article  PubMed  CAS  Google Scholar 

  • Chan, P. H., Fishman, R. A., Wesley, M. A., & Longar, S. (1990). Pathogenesis of vasogenic edema in focal cerebral ischemia. Role of superoxide radicals. Advances in Neurology, 52, 177–183.

    PubMed  CAS  Google Scholar 

  • Chanvitayapongs, S., Draczynska-Lusiak, B., & Sun, A. Y. (1997). Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. NeuroReport, 8, 1499–1502. doi:10.1097/00001756-199704140-00035.

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi, R. K., Shukla, S., Seth, K., Chauhan, S., Sinha, C., Shukla, Y., et al. (2006). Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiology of Disease, 22, 421–434. doi:10.1016/j.nbd.2005.12.008.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, N. B. (2003). Anti-amyloidogenic effect of Allium sativum in Alzheimer’s transgenic model Tg2576. Journal of Herbal Pharmacotherapy, 3, 95–107. doi:10.1300/J157v03n01_05.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, N. B. (2006). Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. Journal of Ethnopharmacology, 108, 385–394. doi:10.1016/j.jep.2006.05.030.

    Article  PubMed  Google Scholar 

  • Chauhan, N. B., & Sandoval, J. (2007). Amelioration of early cognitive deficits by aged garlic extract in Alzheimer’s transgenic mice. Phytotherapy Research, 21, 629–640. doi:10.1002/ptr.2122.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Eckman, E. A., & Eckman, C. B. (2006). Reductions in levels of the Alzheimer’s amyloid beta peptide after oral administration of ginsenosides. FASEB Journal, 20, 1269–1271. doi:10.1096/fj.05-5530fje.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Zhang, M., Qu, Z., & Xie, B. (2007). Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate. Journal of Agricultural and Food Chemistry, 55, 2256–2260. doi:10.1021/jf0632740.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L. F., Kwon, H., Yi, S., et al. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. Journal of Biological Chemistry, 280, 40364–40374. doi:10.1074/jbc.M509329200.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., & Le, W. (2006). Neuroprotective therapy in Parkinson disease. American Journal of Therapeutics, 13, 445–457. doi:10.1097/01.mjt.0000174353.28012.a7.

    Article  PubMed  Google Scholar 

  • Cho, I. J., Ahn, J. Y., Kim, S., Choi, M. S., & Ha, T. Y. (2008). Resveratrol attenuates the expression of HMG-CoA reductase mRNA in hamsters. Biochemical and Biophysical Research Communications, 367, 190–194. doi:10.1016/j.bbrc.2007.12.140.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W. (1992). Excitotoxic cell death. Journal of Neurobiology, 23, 1261–1276. doi:10.1002/neu.480230915.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. Y., Park, C. S., Kim, D. J., Cho, M. H., Jin, B. K., Pie, J. E., et al. (2002). Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology, 23, 367–374. doi:10.1016/S0161-813X(02)00079-7.

    Article  PubMed  CAS  Google Scholar 

  • Chung, M. I., Teng, C. M., Cheng, K. L., Ko, F. N., & Lin, C. N. (1992). An antiplatelet principle of Veratrum formosanum. Planta Medica, 58, 274–276. doi:10.1055/s-2006-961453.

    Article  PubMed  CAS  Google Scholar 

  • Conte, A., Pellegrini, S., & Tagliazucchi, D. (2003a). Effect of resveratrol and catechin on PC12 tyrosine kinase activities and their synergistic protection from beta-amyloid toxicity. Drugs Under Experimental and Clinical Research, 29, 243–255.

    PubMed  CAS  Google Scholar 

  • Conte, A., Pellegrini, S., & Tagliazucchi, D. (2003b). Synergistic protection of PC12 cells from beta-amyloid toxicity by resveratrol and catechin. Brain Research Bulletin, 62, 29–38. doi:10.1016/j.brainresbull.2003.08.001.

    Article  PubMed  CAS  Google Scholar 

  • Curin, Y., Ritz, M. F., & Andriantsitohaina, R. (2006). Cellular mechanisms of the protective effect of polyphenols on the neurovascular unit in strokes. Cardiovascular & Hematological Agents in Medicinal Chemistry, 4, 277–288. doi:10.2174/187152506778520691.

    Article  CAS  Google Scholar 

  • Dajas, F., Rivera, F., Blasina, F., Arredondo, F., Echeverry, C., Lafon, L., et al. (2003). Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotoxicity Research, 5, 425–432.

    Article  PubMed  Google Scholar 

  • Datla, K. P., Zbarsky, V., Rai, D., Parkar, S., Osakabe, N., Aruoma, O. I., et al. (2007). Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. Journal of the American College of Nutrition, 26, 341–349.

    PubMed  CAS  Google Scholar 

  • De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. Journal of Biological Chemistry, 282, 11590–11601. doi:10.1074/jbc.M607483200.

    Article  PubMed  CAS  Google Scholar 

  • Deschamps, V., Barberger-Gateau, P., Peuchant, E., & Orgogozo, J. M. (2001). Nutritional factors in cerebral aging and dementia: Epidemiological arguments for a role of oxidative stress. Neuroepidemiology, 20, 7–15. doi:10.1159/000054752.

    Article  PubMed  CAS  Google Scholar 

  • Dringen, R. (2005). Oxidative and antioxidative potential of brain microglial cells. Antioxidants & Redox Signaling, 7, 1223–1233. doi:10.1089/ars.2005.7.1223.

    Article  CAS  Google Scholar 

  • Esposito, E., Rotilio, D., Di Matteo, V., Di Giulio, C., Cacchio, M., & Algeri, S. (2002). A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiology of Aging, 23, 719–735. doi:10.1016/S0197-4580(02)00078-7.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y., Liu, Y. M., Fratkins, J. D., & LeBlanc, M. H. (2005). Grape seed extract suppresses lipid peroxidation and reduces hypoxic ischemic brain injury in neonatal rats. Brain Research Bulletin, 66, 120–127. doi:10.1016/j.brainresbull.2005.04.006.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y., Liu, Y. M., Leblanc, M. H., Bhatt, A. J., & Rhodes, P. G. (2007). Grape seed extract given three hours after injury suppresses lipid peroxidation and reduces hypoxic-ischemic brain injury in neonatal rats. Pediatric Research, 61, 295–300. doi:10.1203/pdr.0b013e318030c92d.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, L. R. (2001). Role of plant polyphenols in genomic stability. Mutation Research, 475, 89–111. doi:10.1016/S0027-5107(01)00073-2.

    PubMed  CAS  Google Scholar 

  • Fiala, M., Cribbs, D. H., Rosenthal, M., & Bernard, G. (2007). Phagocytosis of amyloid-beta and inflammation: Two faces of innate immunity in Alzheimer’s disease. Journal of Alzheimer’s Disease, 11, 457–463.

    PubMed  CAS  Google Scholar 

  • Frautschy, S. A., Hu, W., Kim, P., Miller, S. A., Chu, T., Harris-White, M. E., et al. (2001). Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiology of Aging, 22, 993–1005. doi:10.1016/S0197-4580(01)00300-1.

    Article  PubMed  CAS  Google Scholar 

  • Gao, D., Zhang, X., Jiang, X., Peng, Y., Huang, W., Cheng, G., et al. (2006a). Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice. Life Sciences, 78, 2564–2570. doi:10.1016/j.lfs.2005.10.030.

    Article  PubMed  CAS  Google Scholar 

  • Gao, H. M., Hong, J. S., Zhang, W., & Liu, B. (2002). Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. Journal of Neuroscience, 22, 782–790.

    PubMed  CAS  Google Scholar 

  • Gao, H. M., Hong, J. S., Zhang, W., & Liu, B. (2003a). Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: Relevance to the etiology of Parkinson’s disease. Journal of Neuroscience, 23, 1228–1236.

    PubMed  CAS  Google Scholar 

  • Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003b). Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB Journal, 17, 1954–1956.

    PubMed  CAS  Google Scholar 

  • Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003c). Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: Relevance to the etiology of Parkinson’s disease. FASEB Journal, 17, 1957–1959.

    PubMed  CAS  Google Scholar 

  • Gao, Z. B., Chen, X. Q., & Hu, G. Y. (2006b). Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Research, 1111, 41–47. doi:10.1016/j.brainres.2006.06.096.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Alloza, M., Dodwell, S. A., Meyer-Luehmann, M., Hyman, B. T., & Bacskai, B. J. (2006). Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. Journal of Neuropathology and Experimental Neurology, 65, 1082–1089. doi:10.1097/01.jnen.0000240468.12543.af.

    Article  PubMed  CAS  Google Scholar 

  • Gelinas, S., & Martinoli, M. G. (2002). Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. Journal of Neuroscience Research, 70, 90–96. doi:10.1002/jnr.10315.

    Article  PubMed  CAS  Google Scholar 

  • Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology, 75, 787–809. doi:10.1016/j.bcp.2007.08.016.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Hernandez, T., Perez de la Cruz, M. A., & Mantolan-Sarmiento, B. (1996). Histochemical and immunohistochemical detection of neurons that produce nitric oxide: Effect of different fixative parameters and immunoreactivity against non-neuronal NOS antisera. Journal of Histochemistry and Cytochemistry, 44, 1399–1413.

    PubMed  CAS  Google Scholar 

  • Guo, S., Yan, J., Yang, T., Yang, X., Bezard, E., & Zhao, B. (2007). Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biological Psychiatry, 62, 1353–1362. doi:10.1016/j.biopsych.2007.04.020.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97, 1634–1658. doi:10.1111/j.1471-4159.2006.03907.x.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics, 476, 107–112. doi:10.1016/j.abb.2008.01.028.

    Article  PubMed  CAS  Google Scholar 

  • Han, Y. S., Zheng, W. H., Bastianetto, S., Chabot, J. G., & Quirion, R. (2004). Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: Involvement of protein kinase C. British Journal of Pharmacology, 141, 997–1005. doi:10.1038/sj.bjp.0705688.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, R. E., Shah, A., Fagan, A. M., Schwetye, K. E., Parsadanian, M., Schulman, R. N., et al. (2006). Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiology of disease, 24, 506–515. doi:10.1016/j.nbd.2006.08.006.

    Article  PubMed  CAS  Google Scholar 

  • Hong, J. T., Ryu, S. R., Kim, H. J., et al. (2000). Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Research Bulletin, 53, 743–749. doi:10.1016/S0361-9230(00)00348-8.

    Article  PubMed  CAS  Google Scholar 

  • Hong, J. T., Ryu, S. R., Kim, H. J., Lee, J. K., Lee, S. H., Yun, Y. P., et al. (2001). Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Research, 888, 11–18. doi:10.1016/S0006-8993(00)02935-8.

    Article  PubMed  CAS  Google Scholar 

  • Howitz, K. T., Bitterman, K. J., Cohen, H. Y., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196. doi:10.1038/nature01960.

    Article  PubMed  CAS  Google Scholar 

  • Infanger, D. W., Sharma, R. V., & Davisson, R. L. (2006). NADPH oxidases of the brain: Distribution, regulation, and function. Antioxidants & Redox Signaling, 8, 1583–1596. doi:10.1089/ars.2006.8.1583.

    Article  CAS  Google Scholar 

  • Jagatha, B., Mythri, R. B., Vali, S., & Bharath, M. M. (2008). Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radical Biology and Medicine, 44, 907–917. doi:10.1016/j.freeradbiomed.2007.11.011.

    Article  PubMed  CAS  Google Scholar 

  • Jang, J. H., & Surh, Y. J. (2003). Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radical Biology and Medicine, 34, 1100–1110. doi:10.1016/S0891-5849(03)00062-5.

    Article  PubMed  CAS  Google Scholar 

  • Jekabsone, A., Mander, P. K., Tickler, A., Sharpe, M., & Brown, G. C. (2006). Fibrillar beta-amyloid peptide Abeta1–40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: A cell culture study. Journal of Neuroinflammation, 3, 24. doi:10.1186/1742-2094-3-24.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., Wang, W., Sun, Y. J., Hu, M., Li, F., & Zhu, D. Y. (2007). Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. European Journal of Pharmacology, 561, 54–62. doi:10.1016/j.ejphar.2006.12.028.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, J. A., Denisova, N. A., Arendash, G., Gordon, M., Diamond, D., Shukitt-Hale, B., et al. (2003). Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutritional Neuroscience, 6, 153–162. doi:10.1080/1028415031000111282.

    Article  PubMed  CAS  Google Scholar 

  • Kahles, T., Luedike, P., Endres, M., Galla, H. J., Steinmetz, H., Busse, R., et al. (2007). NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke, 38, 3000–3006. doi:10.1161/STROKEAHA.107.489765.

    Article  PubMed  CAS  Google Scholar 

  • Kang, T. H., Hur, J. Y., Kim, H. B., Ryu, J. H., & Kim, S. Y. (2006). Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neuroscience Letters, 391, 122–126. doi:10.1016/j.neulet.2005.08.053.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M. S., Lee, J. I., Lee, W. Y., & Kim, S. E. (2004). Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytotherapy Research, 18, 663–666. doi:10.1002/ptr.1486.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. A., Kim, G. Y., Park, K. Y., & Choi, Y. H. (2007). Resveratrol inhibits nitric oxide and prostaglandin E2 production by lipopolysaccharide-activated C6 microglia. Journal of Medicinal Food, 10, 218–224. doi:10.1089/jmf.2006.143.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. A., Lim, S. Y., Rhee, S. H., Park, K. Y., Kim, C. H., Choi, B. T., et al. (2006). Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in beta-amyloid-treated C6 glioma cells. International Journal of Molecular Medicine, 17, 1069–1075.

    PubMed  CAS  Google Scholar 

  • Kishida, K. T., & Klann, E. (2007). Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxidants & Redox Signaling, 9, 233–244. doi:10.1089/ars.2007.9.233.

    Article  CAS  Google Scholar 

  • Kishida, K. T., Pao, M., Holland, S. M., & Klann, E. (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. Journal of Neurochemistry, 94, 299–306. doi:10.1111/j.1471-4159.2005.03189.x.

    Article  PubMed  CAS  Google Scholar 

  • Koshimura, I., Imai, H., Hidano, T., Endo, K., Mochizuki, H., Kondo, T., et al. (1997). Dimethoxyphenylethylamine and tetrahydropapaverine are toxic to the nigrostriatal system. Brain Research, 773, 108–116. doi:10.1016/S0006-8993(97)00922-0.

    Article  PubMed  CAS  Google Scholar 

  • Kotilinek, L. A., Westerman, M. A., Wang, Q., et al. (2008). Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity. Brain, 131, 651–664. doi:10.1093/brain/awn008.

    Article  PubMed  Google Scholar 

  • Kriem, B., Sponne, I., Fifre, A., et al. (2005). Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB Journal, 19, 85–87.

    PubMed  CAS  Google Scholar 

  • Lambeth, J. D. (2007). Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radical Biology and Medicine, 43, 332–347. doi:10.1016/j.freeradbiomed.2007.03.027.

    Article  PubMed  CAS  Google Scholar 

  • Langston, J. W., Irwin, I., & Ricaurte, G. A. (1987). Neurotoxins, parkinsonism and Parkinson’s disease. Pharmacology and Therapeutics, 32, 19–49. doi:10.1016/0163-7258(87)90062-3.

    Article  PubMed  CAS  Google Scholar 

  • Levites, Y., Amit, T., Youdim, M. B., & Mandel, S. (2002a). Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. Journal of Biological Chemistry, 277, 30574–30580. doi:10.1074/jbc.M202832200.

    Article  PubMed  CAS  Google Scholar 

  • Levites, Y., Youdim, M. B., Maor, G., & Mandel, S. (2002b). Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochemical Pharmacology, 63, 21–29. doi:10.1016/S0006-2952(01)00813-9.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Pisalyaput, K., Galvan, M., & Tenner, A. J. (2004). Macrophage colony stimulatory factor and interferon-gamma trigger distinct mechanisms for augmentation of beta-amyloid-induced microglia-mediated neurotoxicity. Journal of Neurochemistry, 91, 623–633. doi:10.1111/j.1471-4159.2004.02765.x.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., & Sun, A. Y. (1999). Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. Journal of Neural Transmission, 106, 1–21. doi:10.1007/s007020050137.

    Article  PubMed  CAS  Google Scholar 

  • Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21, 8370–8377.

    PubMed  CAS  Google Scholar 

  • Lim, H. J., Lee, K. S., Lee, S., Park, J. H., Choi, H. E., Go, S. H., et al. (2007a). 15d-PGJ2 stimulates HO-1 expression through p38 MAP kinase and Nrf-2 pathway in rat vascular smooth muscle cells. Toxicology and Applied Pharmacology, 223, 20–27. doi:10.1016/j.taap.2007.04.019.

    Article  PubMed  CAS  Google Scholar 

  • Lim, M. L., Mercer, L. D., Nagley, P., & Beart, P. M. (2007b). Rotenone and MPP+ preferentially redistribute apoptosis-inducing factor in apoptotic dopamine neurons. NeuroReport, 18, 307–312. doi:10.1097/WNR.0b013e32801b3ca6.

    Article  PubMed  CAS  Google Scholar 

  • Liou, H. H., Tsai, M. C., Chen, C. J., Jeng, J. S., Chang, Y. C., Chen, S. Y., et al. (1997). Environmental risk factors and Parkinson’s disease: A case-control study in Taiwan. Neurology, 48, 1583–1588.

    PubMed  CAS  Google Scholar 

  • Lu, K. T., Chiou, R. Y., Chen, L. G., Chen, M. H., Tseng, W. T., Hsieh, H. T., et al. (2006). Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation. Journal of Agricultural and Food Chemistry, 54, 3126–3131. doi:10.1021/jf053011q.

    Article  PubMed  CAS  Google Scholar 

  • Manach, C., & Donovan, J. L. (2004). Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Research, 38, 771–785. doi:10.1080/10715760410001727858.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso, C., Scapagini, G., Curro, D., Giuffrida Stella, A. M., De Marco, C., Butterfield, D. A., et al. (2007). Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Frontiers in Bioscience, 12, 1107–1123. doi:10.2741/2130.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, S., Weinreb, O., Amit, T., & Youdim, M. B. (2004). Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. Journal of Neurochemistry, 88, 1555–1569.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, S., & Youdim, M. B. (2004). Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Biology and Medicine, 37, 304–317. doi:10.1016/j.freeradbiomed.2004.04.012.

    Article  PubMed  CAS  Google Scholar 

  • Mander, P. K., Jekabsone, A., & Brown, G. C. (2006). Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. Journal of Immunology, 176, 1046–1052.

    CAS  Google Scholar 

  • Marambaud, P., Zhao, H., & Davies, P. (2005). Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. Journal of Biological Chemistry, 280, 37377–37382. doi:10.1074/jbc.M508246200.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, M., Suzuki, N., Taniguchi, S., Oikawa, T., Nonaka, T., Iwatsubo, T., et al. (2006). Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry, 45, 6085–6094. doi:10.1021/bi0600749.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (2007). Calcium and neurodegeneration. Aging Cell, 6, 337–350. doi:10.1111/j.1474-9726.2007.00275.x.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (2008). Dietary factors, hormesis and health. Ageing Research Reviews, 7, 43–48. doi:10.1016/j.arr.2007.08.004.

    Article  PubMed  Google Scholar 

  • McGeer, P. L., Itagaki, S., Akiyama, H., & McGeer, E. G. (1988). Rate of cell death in parkinsonism indicates active neuropathological process. Annals of Neurology, 24, 574–576. doi:10.1002/ana.410240415.

    Article  PubMed  CAS  Google Scholar 

  • McKeel, D. W., Jr., Price, J. L., Miller, J. P., Grant, E. A., Xiong, C., Berg, L., et al. (2004). Neuropathologic criteria for diagnosing Alzheimer disease in persons with pure dementia of Alzheimer type. Journal of Neuropathology and Experimental Neurology, 63, 1028–1037.

    PubMed  Google Scholar 

  • Mercer, L. D., Kelly, B. L., Horne, M. K., & Beart, P. M. (2005). Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: Investigations in primary rat mesencephalic cultures. Biochemical Pharmacology, 69, 339–345. doi:10.1016/j.bcp.2004.09.018.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. L., James-Kracke, M., Sun, G. Y., & Sun, A. Y. (2008). Oxidative and inflammatory pathways in Parkinson’s disease. Neurochemical Research. doi:10.1007/s11064-008-9656-2.

  • Miller, R. L., Sun, G. Y., & Sun, A. Y. (2007). Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Research, 1167, 129–139. doi:10.1016/j.brainres.2007.06.046.

    Article  PubMed  CAS  Google Scholar 

  • Morelli, V., & Naquin, C. (2002). Alternative therapies for traditional disease states: Menopause. American Family Physician, 66, 129–134.

    PubMed  Google Scholar 

  • Ndiaye, M., Chataigneau, M., Lobysheva, I., Chataigneau, T., & Schini-Kerth, V. B. (2005). Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB Journal, 19, 455–457.

    PubMed  CAS  Google Scholar 

  • Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. Journal of Neuroscience Research, 75, 742–750. doi:10.1002/jnr.20025.

    Article  PubMed  CAS  Google Scholar 

  • Ono, K., Naiki, H., & Yamada, M. (2006). The development of preventives and therapeutics for Alzheimer’s disease that inhibit the formation of beta-amyloid fibrils (fAbeta), as well as destabilize preformed fAbeta. Current Pharmaceutical Design, 12, 4357–4375. doi:10.2174/138161206778793010.

    Article  PubMed  CAS  Google Scholar 

  • Ono, K., & Yamada, M. (2006). Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. Journal of Neurochemistry, 97, 105–115. doi:10.1111/j.1471-4159.2006.03707.x.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, N., Strider, J., Nolan, W. C., Yan, S. X., & Galvin, J. E. (2008). Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathologica, 115, 479–489. doi:10.1007/s00401-007-0332-4.

    Article  PubMed  CAS  Google Scholar 

  • Pu, F., Mishima, K., Egashira, N., et al. (2004). Protective effect of buckwheat polyphenols against long-lasting impairment of spatial memory associated with hippocampal neuronal damage in rats subjected to repeated cerebral ischemia. Journal of Pharmacological Sciences, 94, 393–402. doi:10.1254/jphs.94.393.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, M., Riaz, M., & Desai, U. R. (2007). Synthesis of biologically relevant biflavanoids—A review. Chemistry and Biodiversity, 4, 2495–2527. doi:10.1002/cbdv.200790205.

    Article  PubMed  CAS  Google Scholar 

  • Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. European Journal of Pharmacology, 545, 51–64. doi:10.1016/j.ejphar.2006.06.025.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I., Ribnicky, D. M., Komarnytsky, S., et al. (2002). Plants and human health in the twenty-first century. Trends in Biotechnology, 20, 522–531. doi:10.1016/S0167-7799(02)02080-2.

    Article  PubMed  CAS  Google Scholar 

  • Rathore, P., Dohare, P., Varma, S., Ray, A., Sharma, U., Jaganathanan, N. R., et al. (2008). Curcuma oil: Reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochemical Research, 33, 1672–1682.

    Article  PubMed  CAS  Google Scholar 

  • Raval, A. P., Dave, K. R., & Perez-Pinzon, M. A. (2006). Resveratrol mimics ischemic preconditioning in the brain. Journal of Cerebral Blood Flow and Metabolism, 26, 1141–1147.

    PubMed  CAS  Google Scholar 

  • Rezai-Zadeh, K., Shytle, D., Sun, N., et al. (2005). Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. Journal of Neuroscience, 25, 8807–8814. doi:10.1523/JNEUROSCI.1521-05.2005.

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans, C., & Miller, N. (1997). Measurement of the antioxidant status of dietary constituents, low density lipoproteins and plasma. Prostaglandins, Leukotrienes and Essential Fatty Acids, 57, 499–505. doi:10.1016/S0952-3278(97)90435-X.

    Article  CAS  Google Scholar 

  • Ringman, J. M., Frautschy, S. A., Cole, G. M., Masterman, D. L., & Cummings, J. L. (2005). A potential role of the curry spice curcumin in Alzheimer’s disease. Current Alzheimer Research, 2, 131–136. doi:10.2174/1567205053585882.

    Article  PubMed  CAS  Google Scholar 

  • Ritz, M. F., Ratajczak, P., Curin, Y., Cam, E., Mendelowitsch, A., Pinet, F., et al. (2008). Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. The Journal of Nutrition, 138, 519–525.

    PubMed  CAS  Google Scholar 

  • Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19–34. doi:10.1146/annurev.nutr.22.111401.144957.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., Maier, C. M., Narasimhan, P., et al. (2005). Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Molecular Neurobiology, 31, 105–116. doi:10.1385/MN:31:1-3:105.

    Article  PubMed  CAS  Google Scholar 

  • Saleem, S., Ahmad, M., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., et al. (2006). Behavioral and histologic neuroprotection of aqueous garlic extract after reversible focal cerebral ischemia. Journal of Medicinal Food, 9, 537–544. doi:10.1089/jmf.2006.9.537.

    Article  PubMed  CAS  Google Scholar 

  • Salvioli, S., Sikora, E., Cooper, E. L., & Franceschi, C. (2007). Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evidence-Based Complementary and Alternative Medicine, 4, 181–190. doi:10.1093/ecam/nem043.

    Article  PubMed  Google Scholar 

  • Sang, N., & Chen, C. (2006). Lipid signaling and synaptic plasticity. Neuroscientist, 12, 425–434. doi:10.1177/1073858406290794.

    Article  PubMed  CAS  Google Scholar 

  • Santangelo, C., Vari, R., Scazzocchio, B., Di Benedetto, R., Filesi, C., & Masella, R. (2007). Polyphenols, intracellular signalling and inflammation. Annali dell Istituto Superiore di Sanita, 43, 394–405.

    PubMed  CAS  Google Scholar 

  • Schapira, A. H. (1996). Neurotoxicity and the mechanisms of cell death in Parkinson’s disease. Advances in Neurology, 69, 161–165.

    PubMed  CAS  Google Scholar 

  • Schober, A. (2004). Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell and Tissue Research, 318, 215–224. doi:10.1007/s00441-004-0938-y.

    Article  PubMed  Google Scholar 

  • Schroeter, H., Bahia, P., Spencer, J. P., Sheppard, O., Rattray, M., Cadenas, E., et al. (2007). (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. Journal of Neurochemistry, 101, 1596–1606. doi:10.1111/j.1471-4159.2006.04434.x.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2001). Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. Journal of Alzheimer’s Disease, 3, 75–80.

    PubMed  CAS  Google Scholar 

  • Sharma, M., & Gupta, Y. K. (2002). Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sciences, 71, 2489–2498. doi:10.1016/S0024-3205(02)02083-0.

    Article  PubMed  CAS  Google Scholar 

  • Shelat, P. B., Chalimoniuk, M., Wang, J. H., Strosznajder, J. B., Lee, J. C., Sun, A. Y., et al. (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A(2) in cortical neurons. Journal of Neurochemistry, 106, 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., & Zhang, J. (2003). Ginsenoside Rgl increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neuroscience Letters, 344, 1–4. doi:10.1016/S0304-3940(03)00318-5.

  • Shibata, H., Katsuki, H., Okawara, M., Kume, T., & Akaike, A. (2006). c-Jun N-terminal kinase inhibition and alpha-tocopherol protect midbrain dopaminergic neurons from interferon-gamma/lipopolysaccharide-induced injury without affecting nitric oxide production. Journal of Neuroscience Research, 83, 102–109. doi:10.1002/jnr.20700.

    Article  PubMed  CAS  Google Scholar 

  • Shin, D. H., Bae, Y. C., Kim-Han, J. S., Lee, J. H., Choi, I. Y., Son, K. H., et al. (2006). Polyphenol amentoflavone affords neuroprotection against neonatal hypoxic-ischemic brain damage via multiple mechanisms. Journal of Neurochemistry, 96, 561–572. doi:10.1111/j.1471-4159.2005.03582.x.

    Article  PubMed  CAS  Google Scholar 

  • Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neurodegenerative diseases. Annual Review of Pharmacology and Toxicology, 36, 83–106. doi:10.1146/annurev.pa.36.040196.000503.

    Article  PubMed  CAS  Google Scholar 

  • Simonyi, A., Wang, Q., Miller, R. L., Yusof, M., Shelat, P. B., Sun, A. Y., et al. (2005). Polyphenols in cerebral ischemia: Novel targets for neuroprotection. Molecular Neurobiology, 31, 135–147. doi:10.1385/MN:31:1-3:135.

    Article  PubMed  CAS  Google Scholar 

  • Simonyi, A., Woods, D., Sun, A. Y., & Sun, G. Y. (2002). Grape polyphenols inhibit chronic ethanol-induced COX-2 mRNA expression in rat brain. Alcoholism, Clinical and Experimental Research, 26, 352–357.

    PubMed  CAS  Google Scholar 

  • Snyder, E. M., Nong, Y., Almeida, C. G., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058. doi:10.1038/nn1503.

    Article  PubMed  CAS  Google Scholar 

  • Stackman, R. W., Eckenstein, F., Frei, B., Kulhanek, D., Nowlin, J., & Quinn, J. F. (2003). Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Experimental Neurology, 184, 510–520. doi:10.1016/S0014-4886(03)00399-6.

    Article  PubMed  Google Scholar 

  • Stolk, J., Hiltermann, T. J., Dijkman, J. H., & Verhoeven, A. J. (1994). Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. American Journal of Respiratory Cell and Molecular Biology, 11, 95–102.

    PubMed  CAS  Google Scholar 

  • Storch, A., Jost, W. H., Vieregge, P., et al. (2007). Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Archives of Neurology, 64, 938–944. doi:10.1001/archneur.64.7.nct60005.

    Article  PubMed  Google Scholar 

  • Sun, A. Y., & Chen, Y. M. (1998). Oxidative stress and neurodegenerative disorders. Journal of Biomedical Science, 5, 401–414. doi:10.1007/BF02255928.

    Article  PubMed  CAS  Google Scholar 

  • Sun, A. Y., Yang, W. L., & Kim, H. D. (1993). Free radical and lipid peroxidation in manganese-induced neuronal cell injury. Annals of the New York Academy of Sciences, 679, 358–363. doi:10.1111/j.1749-6632.1993.tb18322.x.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G. Y., Xia, J., Draczynska-Lusiak, B., Simonyi, A., & Sun, A. Y. (1999a). Grape polyphenols protect neurodegenerative changes induced by chronic ethanol administration. NeuroReport, 10, 93–96. doi:10.1097/00001756-199901180-00018.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G. Y., Xia, J., Xu, J., Allenbrand, B., Simonyi, A., Rudeen, P. K., et al. (1999b). Dietary supplementation of grape polyphenols to rats ameliorates chronic ethanol-induced changes in hepatic morphology without altering changes in hepatic lipids. The Journal of Nutrition, 129, 1814–1819.

    PubMed  CAS  Google Scholar 

  • Sutherland, B. A., Rahman, R. M., & Appleton, I. (2006). Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. The Journal of Nutritional Biochemistry, 17, 291–306. doi:10.1016/j.jnutbio.2005.10.005.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, M. I., Kalt, W., MacKinnon, S. L., Ashby, J., & Gottschall-Pass, K. T. (2002). Feeding rats diets enriched in lowbush blueberries for six weeks decreases ischemia-induced brain damage. Nutritional Neuroscience, 5, 427–431. doi:10.1080/1028415021000055970.

    Article  PubMed  CAS  Google Scholar 

  • Tang, L. L., Ye, K., Yang, X. F., & Zheng, J. S. (2007). Apocynin attenuates cerebral infarction after transient focal ischaemia in rats. Journal of International Medical Research, 35, 517–522.

    PubMed  CAS  Google Scholar 

  • Tchantchou, F., Xu, Y., Wu, Y., Christen, Y., & Luo, Y. (2007). EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB Journal, 21, 2400–2408. doi:10.1096/fj.06-7649com.

    Article  PubMed  CAS  Google Scholar 

  • Tohda, C., Matsumoto, N., Zou, K., Meselhy, M. R., & Komatsu, K. (2004). Abeta(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology, 29, 860–868. doi:10.1038/sj.npp.1300388.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, S. K., Hung, L. M., Fu, Y. T., Cheng, H., Nien, M. W., Liu, H. Y., et al. (2007). Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats. Journal of Vascular Surgery, 46, 346–353. doi:10.1016/j.jvs.2007.04.044.

    Article  PubMed  Google Scholar 

  • Vafeiadou, K., Vauzour, D., & Spencer, J. P. (2007). Neuroinflammation and its modulation by flavonoids. Endocrine, Metabolic & Immune Disorders Drug Targets, 7, 211–224. doi:10.2174/187153007781662521.

    Article  CAS  Google Scholar 

  • Vauzour, D., Vafeiadou, K., Corona, G., Pollard, S. E., Tzounis, X., & Spencer, J. P. (2007). Champagne wine polyphenols protect primary cortical neurons against peroxynitrite-induced injury. Journal of Agricultural and Food Chemistry, 55, 2854–2860. doi:10.1021/jf063304z.

    Article  PubMed  CAS  Google Scholar 

  • Voko, Z., Hollander, M., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2003). Dietary antioxidants and the risk of ischemic stroke: The Rotterdam Study. Neurology, 61, 1273–1275.

    PubMed  CAS  Google Scholar 

  • Wang, C. N., Chi, C. W., Lin, Y. L., Chen, C. F., & Shiao, Y. J. (2001). The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. Journal of Biological Chemistry, 276, 5287–5295. doi:10.1074/jbc.M006406200.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Ho, L., Zhao, Z., et al. (2006a). Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB Journal, 20, 2313–2320. doi:10.1096/fj.06-6281com.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Simonyi, A., Li, W., Sisk, B. A., Miller, R. L., Macdonald, R. S., et al. (2005a). Dietary grape supplement ameliorates cerebral ischemia-induced neuronal death in gerbils. Molecular Nutrition & Food Research, 49, 443–451. doi:10.1002/mnfr.200500019.

    Article  CAS  Google Scholar 

  • Wang, Q., Smith, R. E., Luchtefeld, R., Sun, A. Y., Simonyi, A., Luo, R., et al. (2008). Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine, 15, 496–503.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Sun, A. Y., Simonyi, A., et al. (2005b). Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. Journal of Neuroscience Research, 82, 138–148. doi:10.1002/jnr.20610.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Tompkins, K. D., Simonyi, A., Korthuis, R. J., Sun, A. Y., & Sun, G. Y. (2006b). Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Research, 1090, 182–189. doi:10.1016/j.brainres.2006.03.060.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Xu, J., Rottinghaus, G. E., Simonyi, A., Lubahn, D., Sun, G. Y., et al. (2002). Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Research, 958, 439–447. doi:10.1016/S0006-8993(02)03543-6.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Yu, S., Simonyi, A., Sun, G. Y., & Sun, A. Y. (2005c). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Molecular Neurobiology, 31, 3–16. doi:10.1385/MN:31:1-3:003.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Su, B., Perry, G., Smith, M. A., & Zhu, X. (2007). Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine, 43, 1569–1573. doi:10.1016/j.freeradbiomed.2007.09.007.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Chang, C. F., Chou, J., Chen, H. L., Deng, X., Harvey, B. K., et al. (2005d). Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Experimental Neurology, 193, 75–84. doi:10.1016/j.expneurol.2004.12.014.

    Article  PubMed  CAS  Google Scholar 

  • Weinreb, O., Amit, T., & Youdim, M. B. (2008). The application of proteomics for studying the neurorescue activity of the polyphenol (-)-epigallocatechin-3-gallate. Archives of Biochemistry and Biophysics, 476, 152–160. doi:10.1016/j.abb.2008.01.004.

    Article  PubMed  CAS  Google Scholar 

  • Weinreb, O., Mandel, S., Amit, T., & Youdim, M. B. (2004). Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. Journal of Nutritional Biochemistry, 15, 506–516. doi:10.1016/j.jnutbio.2004.05.002.

    Article  PubMed  CAS  Google Scholar 

  • West, T., Atzeva, M., & Holtzman, D. M. (2007). Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Developmental Neuroscience, 29, 363–372. doi:10.1159/000105477.

    Article  PubMed  CAS  Google Scholar 

  • Wu, A., Ying, Z., & Gomez-Pinilla, F. (2006). Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Experimental Neurology, 197, 309–317. doi:10.1016/j.expneurol.2005.09.004.

    Article  PubMed  CAS  Google Scholar 

  • Wu, D. C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H., et al. (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 100, 6145–6150. doi:10.1073/pnas.0937239100.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X. F., Block, M. L., Zhang, W., Qin, L., Wilson, B., Zhang, W. Q., et al. (2005). The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxidants & Redox Signaling, 7, 654–661. doi:10.1089/ars.2005.7.654.

    Article  CAS  Google Scholar 

  • Yang, F., Lim, G. P., Begum, A. N., et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280, 5892–5901. doi:10.1074/jbc.M404751200.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., & Sun, A. Y. (1998a). Paraquat-induced free radical reaction in mouse brain microsomes. Neurochemical Research, 23, 47–53. doi:10.1023/A:1022497319548.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W. L., & Sun, A. Y. (1998b). Paraquat-induced cell death in PC12 cells. Neurochemical Research, 23, 1387–1394. doi:10.1023/A:1020750706762.

    Article  PubMed  CAS  Google Scholar 

  • Yi, H., Akao, Y., Maruyama, W., Chen, K., Shih, J., & Naoi, M. (2006). Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. Journal of Neurochemistry, 96, 541–549. doi:10.1111/j.1471-4159.2005.03573.x.

    Article  PubMed  CAS  Google Scholar 

  • Youdim, K. A., & Joseph, J. A. (2001). A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radical Biology and Medicine, 30, 583–594. doi:10.1016/S0891-5849(00)00510-4.

    Article  PubMed  CAS  Google Scholar 

  • Zbarsky, V., Datla, K. P., Parkar, S., Rai, D. K., Aruoma, O. I., & Dexter, D. T. (2005). Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Research, 39, 1119–1125. doi:10.1080/10715760500233113.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Wang, T., Qin, L., Gao, H. M., Wilson, B., Ali, S. F., et al. (2004). Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: Role of NADPH oxidase. FASEB Journal, 18, 589–591.

    PubMed  CAS  Google Scholar 

  • Zhu, D., Lai, Y., Shelat, P. B., Hu, C., Sun, G. Y., & Lee, J. C. (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. Journal of Neuroscience, 26, 11111–11119. doi:10.1523/JNEUROSCI.3505-06.2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants (P02 AG018357 and 1R21AT003859) from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Y. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, A.Y., Wang, Q., Simonyi, A. et al. Botanical Phenolics and Brain Health. Neuromol Med 10, 259–274 (2008). https://doi.org/10.1007/s12017-008-8052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8052-z

Keywords

Navigation