NeuroMolecular Medicine

, Volume 10, Issue 4, pp 259–274 | Cite as

Botanical Phenolics and Brain Health

  • Albert Y. Sun
  • Qun Wang
  • Agnes Simonyi
  • Grace Y. Sun
Review Paper


The high demand for molecular oxygen, the enrichment of polyunsaturated fatty acids in membrane phospholipids, and the relatively low abundance of antioxidant defense enzymes are factors rendering cells in the central nervous system (CNS) particularly vulnerable to oxidative stress. Excess production of reactive oxygen species (ROS) in the brain has been implicated as a common underlying factor for the etiology of a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and stroke. While ROS are generated by enzymatic and nonenzymatic reactions in the mitochondria and cytoplasm under normal conditions, excessive production under pathological conditions is associated with activation of Ca2+-dependent enzymes including proteases, phospholipases, nucleases, and alterations of signaling pathways which subsequently lead to mitochondrial dysfunction, release of inflammatory factors, and apoptosis. In recent years, there is considerable interest to investigate antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we describe oxidative mechanisms associated with AD, PD, and stroke, and evaluate neuroprotective effects of phenolic compounds, such as resveratrol from grape and red wine, curcumin from turmeric, apocynin from Picrorhiza kurroa, and epi-gallocatechin from green tea. The main goal is to provide a better understanding of the mode of action of these compounds and assess their use as therapeutics to ameliorate age-related neurodegenerative diseases.


Polyphenols Neurodegenerative diseases Oxidative stress Neuroinflammation NADPH oxidase Phospholipase A2 Mitochondria dysfunction Alzheimer Parkinson Stroke 



This work was supported by grants (P02 AG018357 and 1R21AT003859) from NIH.


  1. Abekawa, T., Ohmori, T., & Koyama, T. (1997). Effect of no synthesis inhibition on striatal dopamine release and stereotyped behavior induced by a single administration of methamphetamine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 831–838. doi: 10.1016/S0278-5846(97)00083-3.PubMedCrossRefGoogle Scholar
  2. Abramov, A. Y., Canevari, L., & Duchen, M. R. (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. Journal of Neuroscience, 24, 565–575. doi: 10.1523/JNEUROSCI.4042-03.2004.PubMedCrossRefGoogle Scholar
  3. Adams, J. D., Jr., & Odunze, I. N. (1991). Biochemical mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Could oxidative stress be involved in the brain? Biochemical Pharmacology, 41, 1099–1105. doi: 10.1016/0006-2952(91)90646-M.PubMedCrossRefGoogle Scholar
  4. Ahmad, S., Yousuf, S., Ishrat, T., Khan, M. B., Bhatia, K., Fazli, I. S., et al. (2006). Effect of dietary sesame oil as antioxidant on brain hippocampus of rat in focal cerebral ischemia. Life Sciences, 79, 1921–1928. doi: 10.1016/j.lfs.2006.06.017.PubMedCrossRefGoogle Scholar
  5. Ahsan, H., Parveen, N., Khan, N. U., & Hadi, S. M. (1999). Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chemico-Biological Interactions, 121, 161–175. doi: 10.1016/S0009-2797(99)00096-4.PubMedCrossRefGoogle Scholar
  6. Akama, K. T., & Van Eldik, L. J. (2000). Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. Journal of Biological Chemistry, 275, 7918–7924. doi: 10.1074/jbc.275.11.7918.PubMedCrossRefGoogle Scholar
  7. Alvira, D., Yeste-Velasco, M., Folch, J., Verdaguer, E., Canudas, A. M., Pallas, M., et al. (2007). Comparative analysis of the effects of resveratrol in two apoptotic models: Inhibition of complex I and potassium deprivation in cerebellar neurons. Neuroscience, 147, 746–756. doi: 10.1016/j.neuroscience.2007.04.029.PubMedCrossRefGoogle Scholar
  8. Anantharam, V., Kaul, S., Song, C., Kanthasamy, A., & Kanthasamy, A. G. (2007). Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology, 28, 988–997. doi: 10.1016/j.neuro.2007.08.008.PubMedCrossRefGoogle Scholar
  9. Anekonda, T. S. (2006). Resveratrol—A boon for treating Alzheimer’s disease? Brain Research Reviews, 52, 316–326. doi: 10.1016/j.brainresrev.2006.04.004.PubMedCrossRefGoogle Scholar
  10. Ang-Lee, M. K., Moss, J., & Yuan, C. S. (2001). Herbal medicines and perioperative care. JAMA, 286, 208–216. doi: 10.1001/jama.286.2.208.PubMedCrossRefGoogle Scholar
  11. Barbieri, S. S., Cavalca, V., Eligini, S., Brambilla, M., Caiani, A., Tremoli, E., et al. (2004). Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radical Biology and Medicine, 37, 156–165. doi: 10.1016/j.freeradbiomed.2004.04.020.PubMedCrossRefGoogle Scholar
  12. Baron-Menguy, C., Bocquet, A., Guihot, A. L., Chappard, D., Amiot, M. J., Andriantsitohaina, R., et al. (2007). Effects of red wine polyphenols on postischemic neovascularization model in rats: Low doses are proangiogenic, high doses anti-angiogenic. FASEB Journal, 21, 3511–3521. doi: 10.1096/fj.06-7782com.PubMedCrossRefGoogle Scholar
  13. Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: The in vivo evidence. Nature Reviews. Drug Discovery, 5, 493–506. doi: 10.1038/nrd2060.PubMedCrossRefGoogle Scholar
  14. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245–313. doi: 10.1152/physrev.00044.2005.PubMedCrossRefGoogle Scholar
  15. Bi, X. L., Yang, J. Y., Dong, Y. X., Wang, J. M., Cui, Y. H., Ikeshima, T., et al. (2005). Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. International Immunopharmacology, 5, 185–193. doi: 10.1016/j.intimp.2004.08.008.PubMedCrossRefGoogle Scholar
  16. Block, M. L., Li, G., Qin, L., Wu, X., Pei, Z., Wang, T., et al. (2006). Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: Substance P vs. dynorphin. FASEB Journal, 20, 251–258. doi: 10.1096/fj.05-4553com.PubMedCrossRefGoogle Scholar
  17. Boillee, S., & Cleveland, D. W. (2008). Revisiting oxidative damage in ALS: Microglia, Nox, and mutant SOD1. Journal of Clinical Investigation, 118, 474–478.PubMedGoogle Scholar
  18. Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317–333.PubMedGoogle Scholar
  19. Brooks, A. I., Chadwick, C. A., Gelbard, H. A., Cory-Slechta, D. A., & Federoff, H. J. (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Research, 823, 1–10. doi: 10.1016/S0006-8993(98)01192-5.PubMedCrossRefGoogle Scholar
  20. Brown, G. C. (2007). Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochemical Society Transactions, 35, 1119–1121. doi: 10.1042/BST0351166.PubMedCrossRefGoogle Scholar
  21. Burgener, S. C., Buettner, L., Coen Buckwalter, K., et al. (2008). Evidence supporting nutritional interventions for persons in early stage Alzheimer’s disease (AD). The Journal of Nutrition, Health & Aging, 12, 18–21.CrossRefGoogle Scholar
  22. Butterfield, D. A., Griffin, S., Munch, G., & Pasinetti, G. M. (2002). Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. Journal of Alzheimer’s Disease, 4, 193–201.PubMedGoogle Scholar
  23. Cardoso, S. M., Moreira, P. I., Agostinho, P., Pereira, C., & Oliveira, C. R. (2005). Neurodegenerative pathways in Parkinson’s disease: Therapeutic strategies. Current Drug Targets. CNS and Neurological Disorders, 4, 405–419. doi: 10.2174/1568007054546072.PubMedCrossRefGoogle Scholar
  24. Casarejos, M. J., Menendez, J., Solano, R. M., Rodriguez-Navarro, J. A., Garcia de Yebenes, J., & Mena, M. A. (2006). Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. Journal of Neurochemistry, 97, 934–946. doi: 10.1111/j.1471-4159.2006.03777.x.PubMedCrossRefGoogle Scholar
  25. Castano, A., Herrera, A. J., Cano, J., & Machado, A. (1998). Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. Journal of Neurochemistry, 70, 1584–1592.PubMedGoogle Scholar
  26. Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of Cerebral Blood Flow and Metabolism, 21, 2–14. doi: 10.1097/00004647-200101000-00002.PubMedGoogle Scholar
  27. Chan, P. H. (2004). Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochemical Research, 29, 1943–1949. doi: 10.1007/s11064-004-6869-x.PubMedCrossRefGoogle Scholar
  28. Chan, P. H., Fishman, R. A., Wesley, M. A., & Longar, S. (1990). Pathogenesis of vasogenic edema in focal cerebral ischemia. Role of superoxide radicals. Advances in Neurology, 52, 177–183.PubMedGoogle Scholar
  29. Chanvitayapongs, S., Draczynska-Lusiak, B., & Sun, A. Y. (1997). Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. NeuroReport, 8, 1499–1502. doi: 10.1097/00001756-199704140-00035.PubMedCrossRefGoogle Scholar
  30. Chaturvedi, R. K., Shukla, S., Seth, K., Chauhan, S., Sinha, C., Shukla, Y., et al. (2006). Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiology of Disease, 22, 421–434. doi: 10.1016/j.nbd.2005.12.008.PubMedCrossRefGoogle Scholar
  31. Chauhan, N. B. (2003). Anti-amyloidogenic effect of Allium sativum in Alzheimer’s transgenic model Tg2576. Journal of Herbal Pharmacotherapy, 3, 95–107. doi: 10.1300/J157v03n01_05.PubMedCrossRefGoogle Scholar
  32. Chauhan, N. B. (2006). Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. Journal of Ethnopharmacology, 108, 385–394. doi: 10.1016/j.jep.2006.05.030.PubMedCrossRefGoogle Scholar
  33. Chauhan, N. B., & Sandoval, J. (2007). Amelioration of early cognitive deficits by aged garlic extract in Alzheimer’s transgenic mice. Phytotherapy Research, 21, 629–640. doi: 10.1002/ptr.2122.PubMedCrossRefGoogle Scholar
  34. Chen, F., Eckman, E. A., & Eckman, C. B. (2006). Reductions in levels of the Alzheimer’s amyloid beta peptide after oral administration of ginsenosides. FASEB Journal, 20, 1269–1271. doi: 10.1096/fj.05-5530fje.PubMedCrossRefGoogle Scholar
  35. Chen, H., Zhang, M., Qu, Z., & Xie, B. (2007). Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate. Journal of Agricultural and Food Chemistry, 55, 2256–2260. doi: 10.1021/jf0632740.PubMedCrossRefGoogle Scholar
  36. Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L. F., Kwon, H., Yi, S., et al. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. Journal of Biological Chemistry, 280, 40364–40374. doi: 10.1074/jbc.M509329200.PubMedCrossRefGoogle Scholar
  37. Chen, S., & Le, W. (2006). Neuroprotective therapy in Parkinson disease. American Journal of Therapeutics, 13, 445–457. doi: 10.1097/01.mjt.0000174353.28012.a7.PubMedCrossRefGoogle Scholar
  38. Cho, I. J., Ahn, J. Y., Kim, S., Choi, M. S., & Ha, T. Y. (2008). Resveratrol attenuates the expression of HMG-CoA reductase mRNA in hamsters. Biochemical and Biophysical Research Communications, 367, 190–194. doi: 10.1016/j.bbrc.2007.12.140.PubMedCrossRefGoogle Scholar
  39. Choi, D. W. (1992). Excitotoxic cell death. Journal of Neurobiology, 23, 1261–1276. doi: 10.1002/neu.480230915.PubMedCrossRefGoogle Scholar
  40. Choi, J. Y., Park, C. S., Kim, D. J., Cho, M. H., Jin, B. K., Pie, J. E., et al. (2002). Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology, 23, 367–374. doi: 10.1016/S0161-813X(02)00079-7.PubMedCrossRefGoogle Scholar
  41. Chung, M. I., Teng, C. M., Cheng, K. L., Ko, F. N., & Lin, C. N. (1992). An antiplatelet principle of Veratrum formosanum. Planta Medica, 58, 274–276. doi: 10.1055/s-2006-961453.PubMedCrossRefGoogle Scholar
  42. Conte, A., Pellegrini, S., & Tagliazucchi, D. (2003a). Effect of resveratrol and catechin on PC12 tyrosine kinase activities and their synergistic protection from beta-amyloid toxicity. Drugs Under Experimental and Clinical Research, 29, 243–255.PubMedGoogle Scholar
  43. Conte, A., Pellegrini, S., & Tagliazucchi, D. (2003b). Synergistic protection of PC12 cells from beta-amyloid toxicity by resveratrol and catechin. Brain Research Bulletin, 62, 29–38. doi: 10.1016/j.brainresbull.2003.08.001.PubMedCrossRefGoogle Scholar
  44. Curin, Y., Ritz, M. F., & Andriantsitohaina, R. (2006). Cellular mechanisms of the protective effect of polyphenols on the neurovascular unit in strokes. Cardiovascular & Hematological Agents in Medicinal Chemistry, 4, 277–288. doi: 10.2174/187152506778520691.CrossRefGoogle Scholar
  45. Dajas, F., Rivera, F., Blasina, F., Arredondo, F., Echeverry, C., Lafon, L., et al. (2003). Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotoxicity Research, 5, 425–432.PubMedCrossRefGoogle Scholar
  46. Datla, K. P., Zbarsky, V., Rai, D., Parkar, S., Osakabe, N., Aruoma, O. I., et al. (2007). Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. Journal of the American College of Nutrition, 26, 341–349.PubMedGoogle Scholar
  47. De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. Journal of Biological Chemistry, 282, 11590–11601. doi: 10.1074/jbc.M607483200.PubMedCrossRefGoogle Scholar
  48. Deschamps, V., Barberger-Gateau, P., Peuchant, E., & Orgogozo, J. M. (2001). Nutritional factors in cerebral aging and dementia: Epidemiological arguments for a role of oxidative stress. Neuroepidemiology, 20, 7–15. doi: 10.1159/000054752.PubMedCrossRefGoogle Scholar
  49. Dringen, R. (2005). Oxidative and antioxidative potential of brain microglial cells. Antioxidants & Redox Signaling, 7, 1223–1233. doi: 10.1089/ars.2005.7.1223.CrossRefGoogle Scholar
  50. Esposito, E., Rotilio, D., Di Matteo, V., Di Giulio, C., Cacchio, M., & Algeri, S. (2002). A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiology of Aging, 23, 719–735. doi: 10.1016/S0197-4580(02)00078-7.PubMedCrossRefGoogle Scholar
  51. Feng, Y., Liu, Y. M., Fratkins, J. D., & LeBlanc, M. H. (2005). Grape seed extract suppresses lipid peroxidation and reduces hypoxic ischemic brain injury in neonatal rats. Brain Research Bulletin, 66, 120–127. doi: 10.1016/j.brainresbull.2005.04.006.PubMedCrossRefGoogle Scholar
  52. Feng, Y., Liu, Y. M., Leblanc, M. H., Bhatt, A. J., & Rhodes, P. G. (2007). Grape seed extract given three hours after injury suppresses lipid peroxidation and reduces hypoxic-ischemic brain injury in neonatal rats. Pediatric Research, 61, 295–300. doi: 10.1203/pdr.0b013e318030c92d.PubMedCrossRefGoogle Scholar
  53. Ferguson, L. R. (2001). Role of plant polyphenols in genomic stability. Mutation Research, 475, 89–111. doi: 10.1016/S0027-5107(01)00073-2.PubMedGoogle Scholar
  54. Fiala, M., Cribbs, D. H., Rosenthal, M., & Bernard, G. (2007). Phagocytosis of amyloid-beta and inflammation: Two faces of innate immunity in Alzheimer’s disease. Journal of Alzheimer’s Disease, 11, 457–463.PubMedGoogle Scholar
  55. Frautschy, S. A., Hu, W., Kim, P., Miller, S. A., Chu, T., Harris-White, M. E., et al. (2001). Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiology of Aging, 22, 993–1005. doi: 10.1016/S0197-4580(01)00300-1.PubMedCrossRefGoogle Scholar
  56. Gao, D., Zhang, X., Jiang, X., Peng, Y., Huang, W., Cheng, G., et al. (2006a). Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice. Life Sciences, 78, 2564–2570. doi: 10.1016/j.lfs.2005.10.030.PubMedCrossRefGoogle Scholar
  57. Gao, H. M., Hong, J. S., Zhang, W., & Liu, B. (2002). Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. Journal of Neuroscience, 22, 782–790.PubMedGoogle Scholar
  58. Gao, H. M., Hong, J. S., Zhang, W., & Liu, B. (2003a). Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: Relevance to the etiology of Parkinson’s disease. Journal of Neuroscience, 23, 1228–1236.PubMedGoogle Scholar
  59. Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003b). Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB Journal, 17, 1954–1956.PubMedGoogle Scholar
  60. Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003c). Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: Relevance to the etiology of Parkinson’s disease. FASEB Journal, 17, 1957–1959.PubMedGoogle Scholar
  61. Gao, Z. B., Chen, X. Q., & Hu, G. Y. (2006b). Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Research, 1111, 41–47. doi: 10.1016/j.brainres.2006.06.096.PubMedCrossRefGoogle Scholar
  62. Garcia-Alloza, M., Dodwell, S. A., Meyer-Luehmann, M., Hyman, B. T., & Bacskai, B. J. (2006). Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. Journal of Neuropathology and Experimental Neurology, 65, 1082–1089. doi: 10.1097/ Scholar
  63. Gelinas, S., & Martinoli, M. G. (2002). Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. Journal of Neuroscience Research, 70, 90–96. doi: 10.1002/jnr.10315.PubMedCrossRefGoogle Scholar
  64. Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology, 75, 787–809. doi: 10.1016/j.bcp.2007.08.016.PubMedCrossRefGoogle Scholar
  65. Gonzalez-Hernandez, T., Perez de la Cruz, M. A., & Mantolan-Sarmiento, B. (1996). Histochemical and immunohistochemical detection of neurons that produce nitric oxide: Effect of different fixative parameters and immunoreactivity against non-neuronal NOS antisera. Journal of Histochemistry and Cytochemistry, 44, 1399–1413.PubMedGoogle Scholar
  66. Guo, S., Yan, J., Yang, T., Yang, X., Bezard, E., & Zhao, B. (2007). Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biological Psychiatry, 62, 1353–1362. doi: 10.1016/j.biopsych.2007.04.020.PubMedCrossRefGoogle Scholar
  67. Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97, 1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x.PubMedCrossRefGoogle Scholar
  68. Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics, 476, 107–112. doi: 10.1016/ Scholar
  69. Han, Y. S., Zheng, W. H., Bastianetto, S., Chabot, J. G., & Quirion, R. (2004). Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: Involvement of protein kinase C. British Journal of Pharmacology, 141, 997–1005. doi: 10.1038/sj.bjp.0705688.PubMedCrossRefGoogle Scholar
  70. Hartman, R. E., Shah, A., Fagan, A. M., Schwetye, K. E., Parsadanian, M., Schulman, R. N., et al. (2006). Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiology of disease, 24, 506–515. doi: 10.1016/j.nbd.2006.08.006.PubMedCrossRefGoogle Scholar
  71. Hong, J. T., Ryu, S. R., Kim, H. J., et al. (2000). Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Research Bulletin, 53, 743–749. doi: 10.1016/S0361-9230(00)00348-8.PubMedCrossRefGoogle Scholar
  72. Hong, J. T., Ryu, S. R., Kim, H. J., Lee, J. K., Lee, S. H., Yun, Y. P., et al. (2001). Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Research, 888, 11–18. doi: 10.1016/S0006-8993(00)02935-8.PubMedCrossRefGoogle Scholar
  73. Howitz, K. T., Bitterman, K. J., Cohen, H. Y., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196. doi: 10.1038/nature01960.PubMedCrossRefGoogle Scholar
  74. Infanger, D. W., Sharma, R. V., & Davisson, R. L. (2006). NADPH oxidases of the brain: Distribution, regulation, and function. Antioxidants & Redox Signaling, 8, 1583–1596. doi: 10.1089/ars.2006.8.1583.CrossRefGoogle Scholar
  75. Jagatha, B., Mythri, R. B., Vali, S., & Bharath, M. M. (2008). Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radical Biology and Medicine, 44, 907–917. doi: 10.1016/j.freeradbiomed.2007.11.011.PubMedCrossRefGoogle Scholar
  76. Jang, J. H., & Surh, Y. J. (2003). Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radical Biology and Medicine, 34, 1100–1110. doi: 10.1016/S0891-5849(03)00062-5.PubMedCrossRefGoogle Scholar
  77. Jekabsone, A., Mander, P. K., Tickler, A., Sharpe, M., & Brown, G. C. (2006). Fibrillar beta-amyloid peptide Abeta1–40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: A cell culture study. Journal of Neuroinflammation, 3, 24. doi: 10.1186/1742-2094-3-24.PubMedCrossRefGoogle Scholar
  78. Jiang, J., Wang, W., Sun, Y. J., Hu, M., Li, F., & Zhu, D. Y. (2007). Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. European Journal of Pharmacology, 561, 54–62. doi: 10.1016/j.ejphar.2006.12.028.PubMedCrossRefGoogle Scholar
  79. Joseph, J. A., Denisova, N. A., Arendash, G., Gordon, M., Diamond, D., Shukitt-Hale, B., et al. (2003). Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutritional Neuroscience, 6, 153–162. doi: 10.1080/1028415031000111282.PubMedCrossRefGoogle Scholar
  80. Kahles, T., Luedike, P., Endres, M., Galla, H. J., Steinmetz, H., Busse, R., et al. (2007). NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke, 38, 3000–3006. doi: 10.1161/STROKEAHA.107.489765.PubMedCrossRefGoogle Scholar
  81. Kang, T. H., Hur, J. Y., Kim, H. B., Ryu, J. H., & Kim, S. Y. (2006). Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neuroscience Letters, 391, 122–126. doi: 10.1016/j.neulet.2005.08.053.PubMedCrossRefGoogle Scholar
  82. Kim, M. S., Lee, J. I., Lee, W. Y., & Kim, S. E. (2004). Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytotherapy Research, 18, 663–666. doi: 10.1002/ptr.1486.PubMedCrossRefGoogle Scholar
  83. Kim, Y. A., Kim, G. Y., Park, K. Y., & Choi, Y. H. (2007). Resveratrol inhibits nitric oxide and prostaglandin E2 production by lipopolysaccharide-activated C6 microglia. Journal of Medicinal Food, 10, 218–224. doi: 10.1089/jmf.2006.143.PubMedCrossRefGoogle Scholar
  84. Kim, Y. A., Lim, S. Y., Rhee, S. H., Park, K. Y., Kim, C. H., Choi, B. T., et al. (2006). Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in beta-amyloid-treated C6 glioma cells. International Journal of Molecular Medicine, 17, 1069–1075.PubMedGoogle Scholar
  85. Kishida, K. T., & Klann, E. (2007). Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxidants & Redox Signaling, 9, 233–244. doi: 10.1089/ars.2007.9.233.CrossRefGoogle Scholar
  86. Kishida, K. T., Pao, M., Holland, S. M., & Klann, E. (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. Journal of Neurochemistry, 94, 299–306. doi: 10.1111/j.1471-4159.2005.03189.x.PubMedCrossRefGoogle Scholar
  87. Koshimura, I., Imai, H., Hidano, T., Endo, K., Mochizuki, H., Kondo, T., et al. (1997). Dimethoxyphenylethylamine and tetrahydropapaverine are toxic to the nigrostriatal system. Brain Research, 773, 108–116. doi: 10.1016/S0006-8993(97)00922-0.PubMedCrossRefGoogle Scholar
  88. Kotilinek, L. A., Westerman, M. A., Wang, Q., et al. (2008). Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity. Brain, 131, 651–664. doi: 10.1093/brain/awn008.PubMedCrossRefGoogle Scholar
  89. Kriem, B., Sponne, I., Fifre, A., et al. (2005). Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB Journal, 19, 85–87.PubMedGoogle Scholar
  90. Lambeth, J. D. (2007). Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radical Biology and Medicine, 43, 332–347. doi: 10.1016/j.freeradbiomed.2007.03.027.PubMedCrossRefGoogle Scholar
  91. Langston, J. W., Irwin, I., & Ricaurte, G. A. (1987). Neurotoxins, parkinsonism and Parkinson’s disease. Pharmacology and Therapeutics, 32, 19–49. doi: 10.1016/0163-7258(87)90062-3.PubMedCrossRefGoogle Scholar
  92. Levites, Y., Amit, T., Youdim, M. B., & Mandel, S. (2002a). Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. Journal of Biological Chemistry, 277, 30574–30580. doi: 10.1074/jbc.M202832200.PubMedCrossRefGoogle Scholar
  93. Levites, Y., Youdim, M. B., Maor, G., & Mandel, S. (2002b). Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochemical Pharmacology, 63, 21–29. doi: 10.1016/S0006-2952(01)00813-9.PubMedCrossRefGoogle Scholar
  94. Li, M., Pisalyaput, K., Galvan, M., & Tenner, A. J. (2004). Macrophage colony stimulatory factor and interferon-gamma trigger distinct mechanisms for augmentation of beta-amyloid-induced microglia-mediated neurotoxicity. Journal of Neurochemistry, 91, 623–633. doi: 10.1111/j.1471-4159.2004.02765.x.PubMedCrossRefGoogle Scholar
  95. Li, X., & Sun, A. Y. (1999). Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. Journal of Neural Transmission, 106, 1–21. doi: 10.1007/s007020050137.PubMedCrossRefGoogle Scholar
  96. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21, 8370–8377.PubMedGoogle Scholar
  97. Lim, H. J., Lee, K. S., Lee, S., Park, J. H., Choi, H. E., Go, S. H., et al. (2007a). 15d-PGJ2 stimulates HO-1 expression through p38 MAP kinase and Nrf-2 pathway in rat vascular smooth muscle cells. Toxicology and Applied Pharmacology, 223, 20–27. doi: 10.1016/j.taap.2007.04.019.PubMedCrossRefGoogle Scholar
  98. Lim, M. L., Mercer, L. D., Nagley, P., & Beart, P. M. (2007b). Rotenone and MPP+ preferentially redistribute apoptosis-inducing factor in apoptotic dopamine neurons. NeuroReport, 18, 307–312. doi: 10.1097/WNR.0b013e32801b3ca6.PubMedCrossRefGoogle Scholar
  99. Liou, H. H., Tsai, M. C., Chen, C. J., Jeng, J. S., Chang, Y. C., Chen, S. Y., et al. (1997). Environmental risk factors and Parkinson’s disease: A case-control study in Taiwan. Neurology, 48, 1583–1588.PubMedGoogle Scholar
  100. Lu, K. T., Chiou, R. Y., Chen, L. G., Chen, M. H., Tseng, W. T., Hsieh, H. T., et al. (2006). Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation. Journal of Agricultural and Food Chemistry, 54, 3126–3131. doi: 10.1021/jf053011q.PubMedCrossRefGoogle Scholar
  101. Manach, C., & Donovan, J. L. (2004). Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Research, 38, 771–785. doi: 10.1080/10715760410001727858.PubMedCrossRefGoogle Scholar
  102. Mancuso, C., Scapagini, G., Curro, D., Giuffrida Stella, A. M., De Marco, C., Butterfield, D. A., et al. (2007). Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Frontiers in Bioscience, 12, 1107–1123. doi: 10.2741/2130.PubMedCrossRefGoogle Scholar
  103. Mandel, S., Weinreb, O., Amit, T., & Youdim, M. B. (2004). Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. Journal of Neurochemistry, 88, 1555–1569.PubMedCrossRefGoogle Scholar
  104. Mandel, S., & Youdim, M. B. (2004). Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Biology and Medicine, 37, 304–317. doi: 10.1016/j.freeradbiomed.2004.04.012.PubMedCrossRefGoogle Scholar
  105. Mander, P. K., Jekabsone, A., & Brown, G. C. (2006). Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. Journal of Immunology, 176, 1046–1052.Google Scholar
  106. Marambaud, P., Zhao, H., & Davies, P. (2005). Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. Journal of Biological Chemistry, 280, 37377–37382. doi: 10.1074/jbc.M508246200.PubMedCrossRefGoogle Scholar
  107. Masuda, M., Suzuki, N., Taniguchi, S., Oikawa, T., Nonaka, T., Iwatsubo, T., et al. (2006). Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry, 45, 6085–6094. doi: 10.1021/bi0600749.PubMedCrossRefGoogle Scholar
  108. Mattson, M. P. (2007). Calcium and neurodegeneration. Aging Cell, 6, 337–350. doi: 10.1111/j.1474-9726.2007.00275.x.PubMedCrossRefGoogle Scholar
  109. Mattson, M. P. (2008). Dietary factors, hormesis and health. Ageing Research Reviews, 7, 43–48. doi: 10.1016/j.arr.2007.08.004.PubMedCrossRefGoogle Scholar
  110. McGeer, P. L., Itagaki, S., Akiyama, H., & McGeer, E. G. (1988). Rate of cell death in parkinsonism indicates active neuropathological process. Annals of Neurology, 24, 574–576. doi: 10.1002/ana.410240415.PubMedCrossRefGoogle Scholar
  111. McKeel, D. W., Jr., Price, J. L., Miller, J. P., Grant, E. A., Xiong, C., Berg, L., et al. (2004). Neuropathologic criteria for diagnosing Alzheimer disease in persons with pure dementia of Alzheimer type. Journal of Neuropathology and Experimental Neurology, 63, 1028–1037.PubMedGoogle Scholar
  112. Mercer, L. D., Kelly, B. L., Horne, M. K., & Beart, P. M. (2005). Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: Investigations in primary rat mesencephalic cultures. Biochemical Pharmacology, 69, 339–345. doi: 10.1016/j.bcp.2004.09.018.PubMedCrossRefGoogle Scholar
  113. Miller, R. L., James-Kracke, M., Sun, G. Y., & Sun, A. Y. (2008). Oxidative and inflammatory pathways in Parkinson’s disease. Neurochemical Research. doi: 10.1007/s11064-008-9656-2.
  114. Miller, R. L., Sun, G. Y., & Sun, A. Y. (2007). Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Research, 1167, 129–139. doi: 10.1016/j.brainres.2007.06.046.PubMedCrossRefGoogle Scholar
  115. Morelli, V., & Naquin, C. (2002). Alternative therapies for traditional disease states: Menopause. American Family Physician, 66, 129–134.PubMedGoogle Scholar
  116. Ndiaye, M., Chataigneau, M., Lobysheva, I., Chataigneau, T., & Schini-Kerth, V. B. (2005). Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB Journal, 19, 455–457.PubMedGoogle Scholar
  117. Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. Journal of Neuroscience Research, 75, 742–750. doi: 10.1002/jnr.20025.PubMedCrossRefGoogle Scholar
  118. Ono, K., Naiki, H., & Yamada, M. (2006). The development of preventives and therapeutics for Alzheimer’s disease that inhibit the formation of beta-amyloid fibrils (fAbeta), as well as destabilize preformed fAbeta. Current Pharmaceutical Design, 12, 4357–4375. doi: 10.2174/138161206778793010.PubMedCrossRefGoogle Scholar
  119. Ono, K., & Yamada, M. (2006). Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. Journal of Neurochemistry, 97, 105–115. doi: 10.1111/j.1471-4159.2006.03707.x.PubMedCrossRefGoogle Scholar
  120. Pandey, N., Strider, J., Nolan, W. C., Yan, S. X., & Galvin, J. E. (2008). Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathologica, 115, 479–489. doi: 10.1007/s00401-007-0332-4.PubMedCrossRefGoogle Scholar
  121. Pu, F., Mishima, K., Egashira, N., et al. (2004). Protective effect of buckwheat polyphenols against long-lasting impairment of spatial memory associated with hippocampal neuronal damage in rats subjected to repeated cerebral ischemia. Journal of Pharmacological Sciences, 94, 393–402. doi: 10.1254/jphs.94.393.PubMedCrossRefGoogle Scholar
  122. Rahman, M., Riaz, M., & Desai, U. R. (2007). Synthesis of biologically relevant biflavanoids—A review. Chemistry and Biodiversity, 4, 2495–2527. doi: 10.1002/cbdv.200790205.PubMedCrossRefGoogle Scholar
  123. Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. European Journal of Pharmacology, 545, 51–64. doi: 10.1016/j.ejphar.2006.06.025.PubMedCrossRefGoogle Scholar
  124. Raskin, I., Ribnicky, D. M., Komarnytsky, S., et al. (2002). Plants and human health in the twenty-first century. Trends in Biotechnology, 20, 522–531. doi: 10.1016/S0167-7799(02)02080-2.PubMedCrossRefGoogle Scholar
  125. Rathore, P., Dohare, P., Varma, S., Ray, A., Sharma, U., Jaganathanan, N. R., et al. (2008). Curcuma oil: Reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochemical Research, 33, 1672–1682.PubMedCrossRefGoogle Scholar
  126. Raval, A. P., Dave, K. R., & Perez-Pinzon, M. A. (2006). Resveratrol mimics ischemic preconditioning in the brain. Journal of Cerebral Blood Flow and Metabolism, 26, 1141–1147.PubMedGoogle Scholar
  127. Rezai-Zadeh, K., Shytle, D., Sun, N., et al. (2005). Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. Journal of Neuroscience, 25, 8807–8814. doi: 10.1523/JNEUROSCI.1521-05.2005.PubMedCrossRefGoogle Scholar
  128. Rice-Evans, C., & Miller, N. (1997). Measurement of the antioxidant status of dietary constituents, low density lipoproteins and plasma. Prostaglandins, Leukotrienes and Essential Fatty Acids, 57, 499–505. doi: 10.1016/S0952-3278(97)90435-X.CrossRefGoogle Scholar
  129. Ringman, J. M., Frautschy, S. A., Cole, G. M., Masterman, D. L., & Cummings, J. L. (2005). A potential role of the curry spice curcumin in Alzheimer’s disease. Current Alzheimer Research, 2, 131–136. doi: 10.2174/1567205053585882.PubMedCrossRefGoogle Scholar
  130. Ritz, M. F., Ratajczak, P., Curin, Y., Cam, E., Mendelowitsch, A., Pinet, F., et al. (2008). Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. The Journal of Nutrition, 138, 519–525.PubMedGoogle Scholar
  131. Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19–34. doi: 10.1146/annurev.nutr.22.111401.144957.PubMedCrossRefGoogle Scholar
  132. Saito, A., Maier, C. M., Narasimhan, P., et al. (2005). Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Molecular Neurobiology, 31, 105–116. doi: 10.1385/MN:31:1-3:105.PubMedCrossRefGoogle Scholar
  133. Saleem, S., Ahmad, M., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., et al. (2006). Behavioral and histologic neuroprotection of aqueous garlic extract after reversible focal cerebral ischemia. Journal of Medicinal Food, 9, 537–544. doi: 10.1089/jmf.2006.9.537.PubMedCrossRefGoogle Scholar
  134. Salvioli, S., Sikora, E., Cooper, E. L., & Franceschi, C. (2007). Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evidence-Based Complementary and Alternative Medicine, 4, 181–190. doi: 10.1093/ecam/nem043.PubMedCrossRefGoogle Scholar
  135. Sang, N., & Chen, C. (2006). Lipid signaling and synaptic plasticity. Neuroscientist, 12, 425–434. doi: 10.1177/1073858406290794.PubMedCrossRefGoogle Scholar
  136. Santangelo, C., Vari, R., Scazzocchio, B., Di Benedetto, R., Filesi, C., & Masella, R. (2007). Polyphenols, intracellular signalling and inflammation. Annali dell Istituto Superiore di Sanita, 43, 394–405.PubMedGoogle Scholar
  137. Schapira, A. H. (1996). Neurotoxicity and the mechanisms of cell death in Parkinson’s disease. Advances in Neurology, 69, 161–165.PubMedGoogle Scholar
  138. Schober, A. (2004). Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell and Tissue Research, 318, 215–224. doi: 10.1007/s00441-004-0938-y.PubMedCrossRefGoogle Scholar
  139. Schroeter, H., Bahia, P., Spencer, J. P., Sheppard, O., Rattray, M., Cadenas, E., et al. (2007). (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. Journal of Neurochemistry, 101, 1596–1606. doi: 10.1111/j.1471-4159.2006.04434.x.PubMedCrossRefGoogle Scholar
  140. Selkoe, D. J. (2001). Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. Journal of Alzheimer’s Disease, 3, 75–80.PubMedGoogle Scholar
  141. Sharma, M., & Gupta, Y. K. (2002). Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sciences, 71, 2489–2498. doi: 10.1016/S0024-3205(02)02083-0.PubMedCrossRefGoogle Scholar
  142. Shelat, P. B., Chalimoniuk, M., Wang, J. H., Strosznajder, J. B., Lee, J. C., Sun, A. Y., et al. (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A(2) in cortical neurons. Journal of Neurochemistry, 106, 45–55.PubMedCrossRefGoogle Scholar
  143. Shen, L., & Zhang, J. (2003). Ginsenoside Rgl increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neuroscience Letters, 344, 1–4. doi: 10.1016/S0304-3940(03)00318-5.
  144. Shibata, H., Katsuki, H., Okawara, M., Kume, T., & Akaike, A. (2006). c-Jun N-terminal kinase inhibition and alpha-tocopherol protect midbrain dopaminergic neurons from interferon-gamma/lipopolysaccharide-induced injury without affecting nitric oxide production. Journal of Neuroscience Research, 83, 102–109. doi: 10.1002/jnr.20700.PubMedCrossRefGoogle Scholar
  145. Shin, D. H., Bae, Y. C., Kim-Han, J. S., Lee, J. H., Choi, I. Y., Son, K. H., et al. (2006). Polyphenol amentoflavone affords neuroprotection against neonatal hypoxic-ischemic brain damage via multiple mechanisms. Journal of Neurochemistry, 96, 561–572. doi: 10.1111/j.1471-4159.2005.03582.x.PubMedCrossRefGoogle Scholar
  146. Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neurodegenerative diseases. Annual Review of Pharmacology and Toxicology, 36, 83–106. doi: 10.1146/ Scholar
  147. Simonyi, A., Wang, Q., Miller, R. L., Yusof, M., Shelat, P. B., Sun, A. Y., et al. (2005). Polyphenols in cerebral ischemia: Novel targets for neuroprotection. Molecular Neurobiology, 31, 135–147. doi: 10.1385/MN:31:1-3:135.PubMedCrossRefGoogle Scholar
  148. Simonyi, A., Woods, D., Sun, A. Y., & Sun, G. Y. (2002). Grape polyphenols inhibit chronic ethanol-induced COX-2 mRNA expression in rat brain. Alcoholism, Clinical and Experimental Research, 26, 352–357.PubMedGoogle Scholar
  149. Snyder, E. M., Nong, Y., Almeida, C. G., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058. doi: 10.1038/nn1503.PubMedCrossRefGoogle Scholar
  150. Stackman, R. W., Eckenstein, F., Frei, B., Kulhanek, D., Nowlin, J., & Quinn, J. F. (2003). Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Experimental Neurology, 184, 510–520. doi: 10.1016/S0014-4886(03)00399-6.PubMedCrossRefGoogle Scholar
  151. Stolk, J., Hiltermann, T. J., Dijkman, J. H., & Verhoeven, A. J. (1994). Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. American Journal of Respiratory Cell and Molecular Biology, 11, 95–102.PubMedGoogle Scholar
  152. Storch, A., Jost, W. H., Vieregge, P., et al. (2007). Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Archives of Neurology, 64, 938–944. doi: 10.1001/archneur.64.7.nct60005.PubMedCrossRefGoogle Scholar
  153. Sun, A. Y., & Chen, Y. M. (1998). Oxidative stress and neurodegenerative disorders. Journal of Biomedical Science, 5, 401–414. doi: 10.1007/BF02255928.PubMedCrossRefGoogle Scholar
  154. Sun, A. Y., Yang, W. L., & Kim, H. D. (1993). Free radical and lipid peroxidation in manganese-induced neuronal cell injury. Annals of the New York Academy of Sciences, 679, 358–363. doi: 10.1111/j.1749-6632.1993.tb18322.x.PubMedCrossRefGoogle Scholar
  155. Sun, G. Y., Xia, J., Draczynska-Lusiak, B., Simonyi, A., & Sun, A. Y. (1999a). Grape polyphenols protect neurodegenerative changes induced by chronic ethanol administration. NeuroReport, 10, 93–96. doi: 10.1097/00001756-199901180-00018.PubMedCrossRefGoogle Scholar
  156. Sun, G. Y., Xia, J., Xu, J., Allenbrand, B., Simonyi, A., Rudeen, P. K., et al. (1999b). Dietary supplementation of grape polyphenols to rats ameliorates chronic ethanol-induced changes in hepatic morphology without altering changes in hepatic lipids. The Journal of Nutrition, 129, 1814–1819.PubMedGoogle Scholar
  157. Sutherland, B. A., Rahman, R. M., & Appleton, I. (2006). Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. The Journal of Nutritional Biochemistry, 17, 291–306. doi: 10.1016/j.jnutbio.2005.10.005.PubMedCrossRefGoogle Scholar
  158. Sweeney, M. I., Kalt, W., MacKinnon, S. L., Ashby, J., & Gottschall-Pass, K. T. (2002). Feeding rats diets enriched in lowbush blueberries for six weeks decreases ischemia-induced brain damage. Nutritional Neuroscience, 5, 427–431. doi: 10.1080/1028415021000055970.PubMedCrossRefGoogle Scholar
  159. Tang, L. L., Ye, K., Yang, X. F., & Zheng, J. S. (2007). Apocynin attenuates cerebral infarction after transient focal ischaemia in rats. Journal of International Medical Research, 35, 517–522.PubMedGoogle Scholar
  160. Tchantchou, F., Xu, Y., Wu, Y., Christen, Y., & Luo, Y. (2007). EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB Journal, 21, 2400–2408. doi: 10.1096/fj.06-7649com.PubMedCrossRefGoogle Scholar
  161. Tohda, C., Matsumoto, N., Zou, K., Meselhy, M. R., & Komatsu, K. (2004). Abeta(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology, 29, 860–868. doi: 10.1038/sj.npp.1300388.PubMedCrossRefGoogle Scholar
  162. Tsai, S. K., Hung, L. M., Fu, Y. T., Cheng, H., Nien, M. W., Liu, H. Y., et al. (2007). Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats. Journal of Vascular Surgery, 46, 346–353. doi: 10.1016/j.jvs.2007.04.044.PubMedCrossRefGoogle Scholar
  163. Vafeiadou, K., Vauzour, D., & Spencer, J. P. (2007). Neuroinflammation and its modulation by flavonoids. Endocrine, Metabolic & Immune Disorders Drug Targets, 7, 211–224. doi: 10.2174/187153007781662521.CrossRefGoogle Scholar
  164. Vauzour, D., Vafeiadou, K., Corona, G., Pollard, S. E., Tzounis, X., & Spencer, J. P. (2007). Champagne wine polyphenols protect primary cortical neurons against peroxynitrite-induced injury. Journal of Agricultural and Food Chemistry, 55, 2854–2860. doi: 10.1021/jf063304z.PubMedCrossRefGoogle Scholar
  165. Voko, Z., Hollander, M., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2003). Dietary antioxidants and the risk of ischemic stroke: The Rotterdam Study. Neurology, 61, 1273–1275.PubMedGoogle Scholar
  166. Wang, C. N., Chi, C. W., Lin, Y. L., Chen, C. F., & Shiao, Y. J. (2001). The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. Journal of Biological Chemistry, 276, 5287–5295. doi: 10.1074/jbc.M006406200.PubMedCrossRefGoogle Scholar
  167. Wang, J., Ho, L., Zhao, Z., et al. (2006a). Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB Journal, 20, 2313–2320. doi: 10.1096/fj.06-6281com.PubMedCrossRefGoogle Scholar
  168. Wang, Q., Simonyi, A., Li, W., Sisk, B. A., Miller, R. L., Macdonald, R. S., et al. (2005a). Dietary grape supplement ameliorates cerebral ischemia-induced neuronal death in gerbils. Molecular Nutrition & Food Research, 49, 443–451. doi: 10.1002/mnfr.200500019.CrossRefGoogle Scholar
  169. Wang, Q., Smith, R. E., Luchtefeld, R., Sun, A. Y., Simonyi, A., Luo, R., et al. (2008). Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine, 15, 496–503.PubMedCrossRefGoogle Scholar
  170. Wang, Q., Sun, A. Y., Simonyi, A., et al. (2005b). Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. Journal of Neuroscience Research, 82, 138–148. doi: 10.1002/jnr.20610.PubMedCrossRefGoogle Scholar
  171. Wang, Q., Tompkins, K. D., Simonyi, A., Korthuis, R. J., Sun, A. Y., & Sun, G. Y. (2006b). Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Research, 1090, 182–189. doi: 10.1016/j.brainres.2006.03.060.PubMedCrossRefGoogle Scholar
  172. Wang, Q., Xu, J., Rottinghaus, G. E., Simonyi, A., Lubahn, D., Sun, G. Y., et al. (2002). Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Research, 958, 439–447. doi: 10.1016/S0006-8993(02)03543-6.PubMedCrossRefGoogle Scholar
  173. Wang, Q., Yu, S., Simonyi, A., Sun, G. Y., & Sun, A. Y. (2005c). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Molecular Neurobiology, 31, 3–16. doi: 10.1385/MN:31:1-3:003.PubMedCrossRefGoogle Scholar
  174. Wang, X., Su, B., Perry, G., Smith, M. A., & Zhu, X. (2007). Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine, 43, 1569–1573. doi: 10.1016/j.freeradbiomed.2007.09.007.PubMedCrossRefGoogle Scholar
  175. Wang, Y., Chang, C. F., Chou, J., Chen, H. L., Deng, X., Harvey, B. K., et al. (2005d). Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Experimental Neurology, 193, 75–84. doi: 10.1016/j.expneurol.2004.12.014.PubMedCrossRefGoogle Scholar
  176. Weinreb, O., Amit, T., & Youdim, M. B. (2008). The application of proteomics for studying the neurorescue activity of the polyphenol (-)-epigallocatechin-3-gallate. Archives of Biochemistry and Biophysics, 476, 152–160. doi: 10.1016/ Scholar
  177. Weinreb, O., Mandel, S., Amit, T., & Youdim, M. B. (2004). Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. Journal of Nutritional Biochemistry, 15, 506–516. doi: 10.1016/j.jnutbio.2004.05.002.PubMedCrossRefGoogle Scholar
  178. West, T., Atzeva, M., & Holtzman, D. M. (2007). Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Developmental Neuroscience, 29, 363–372. doi: 10.1159/000105477.PubMedCrossRefGoogle Scholar
  179. Wu, A., Ying, Z., & Gomez-Pinilla, F. (2006). Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Experimental Neurology, 197, 309–317. doi: 10.1016/j.expneurol.2005.09.004.PubMedCrossRefGoogle Scholar
  180. Wu, D. C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H., et al. (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 100, 6145–6150. doi: 10.1073/pnas.0937239100.PubMedCrossRefGoogle Scholar
  181. Wu, X. F., Block, M. L., Zhang, W., Qin, L., Wilson, B., Zhang, W. Q., et al. (2005). The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxidants & Redox Signaling, 7, 654–661. doi: 10.1089/ars.2005.7.654.CrossRefGoogle Scholar
  182. Yang, F., Lim, G. P., Begum, A. N., et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280, 5892–5901. doi: 10.1074/jbc.M404751200.PubMedCrossRefGoogle Scholar
  183. Yang, W., & Sun, A. Y. (1998a). Paraquat-induced free radical reaction in mouse brain microsomes. Neurochemical Research, 23, 47–53. doi: 10.1023/A:1022497319548.PubMedCrossRefGoogle Scholar
  184. Yang, W. L., & Sun, A. Y. (1998b). Paraquat-induced cell death in PC12 cells. Neurochemical Research, 23, 1387–1394. doi: 10.1023/A:1020750706762.PubMedCrossRefGoogle Scholar
  185. Yi, H., Akao, Y., Maruyama, W., Chen, K., Shih, J., & Naoi, M. (2006). Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. Journal of Neurochemistry, 96, 541–549. doi: 10.1111/j.1471-4159.2005.03573.x.PubMedCrossRefGoogle Scholar
  186. Youdim, K. A., & Joseph, J. A. (2001). A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radical Biology and Medicine, 30, 583–594. doi: 10.1016/S0891-5849(00)00510-4.PubMedCrossRefGoogle Scholar
  187. Zbarsky, V., Datla, K. P., Parkar, S., Rai, D. K., Aruoma, O. I., & Dexter, D. T. (2005). Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Research, 39, 1119–1125. doi: 10.1080/10715760500233113.PubMedCrossRefGoogle Scholar
  188. Zhang, W., Wang, T., Qin, L., Gao, H. M., Wilson, B., Ali, S. F., et al. (2004). Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: Role of NADPH oxidase. FASEB Journal, 18, 589–591.PubMedGoogle Scholar
  189. Zhu, D., Lai, Y., Shelat, P. B., Hu, C., Sun, G. Y., & Lee, J. C. (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. Journal of Neuroscience, 26, 11111–11119. doi: 10.1523/JNEUROSCI.3505-06.2006.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Albert Y. Sun
    • 1
    • 2
  • Qun Wang
    • 1
  • Agnes Simonyi
    • 3
  • Grace Y. Sun
    • 2
    • 3
  1. 1.Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaUSA
  2. 2.Department of Pathology and Anatomical SciencesUniversity of MissouriColumbiaUSA
  3. 3.Department of BiochemistryUniversity of MissouriColumbiaUSA

Personalised recommendations