Neurological Benefits of Omega-3 Fatty Acids

Abstract

The central nervous system is highly enriched in long-chain polyunsaturated fatty acid (PUFA) of the omega-6 and omega-3 series. The presence of these fatty acids as structural components of neuronal membranes influences cellular function both directly, through effects on membrane properties, and also by acting as a precursor pool for lipid-derived messengers. An adequate intake of omega-3 PUFA is essential for optimal visual function and neural development. Furthermore, there is increasing evidence that increased intake of the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may confer benefits in a variety of psychiatric and neurological disorders, and in particular neurodegenerative conditions. However, the mechanisms underlying these beneficial effects are still poorly understood. Recent evidence also indicates that in addition to the positive effects seen in chronic neurodegenerative conditions, omega-3 PUFA may also have significant neuroprotective potential in acute neurological injury. Thus, these compounds offer an intriguing prospect as potentially new therapeutic approaches in both chronic and acute conditions. The purpose of this article is to review the current evidence of the neurological benefits of omega-3 PUFA, looking specifically at neurodegenerative conditions and acute neurological injury.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aid, S., Vancassel, S., Poumes-Ballihaut, C., Chalon, S., Guesnet, P., & Lavialle, M. (2003). Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. Journal of Lipid Research, 44(8), 1545–1551.

    PubMed  CAS  Article  Google Scholar 

  2. Akbar, M., & Kim, H.-Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: Involvement of phosphatidylinositol-3 kinase pathway. Journal of Neurochemistry, 82, 655–665.

    PubMed  CAS  Article  Google Scholar 

  3. Anderton, B. H. (2002). Ageing of the brain. Mechanisms of Ageing and Development, 123, 811–817.

    PubMed  CAS  Article  Google Scholar 

  4. Arendash, G. W., Jensen, M. T., Salem, N., Jr., Hussein, N., Cracchiolo, J., Dickson, A., et al. (2007). A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer’s transgenic mice. Neuroscience, 149, 286–302.

    PubMed  CAS  Article  Google Scholar 

  5. Assayag, K., Yakunin, E., Loeb, V., Selkoe, D. J., & Sharon, R. (2007). Polyunsaturated fatty acids induce alpha-synuclein-related pathogenic changes in neuronal cells. American Journal of Pathology, 171(6), 2000–2011.

    PubMed  CAS  Article  Google Scholar 

  6. Azbill, R. D., Mu, X., Bruce-Keller, A. J., Mattson, M. P., & Springer, J. E. (1997). Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Research, 765(2), 283–290.

    PubMed  CAS  Article  Google Scholar 

  7. Babin, F., Abderrazik, M., Favier, F., Cristol, J. P., Leger, C. L., Papoz, L., et al. (1999). Differences between polyunsaturated fatty acid status of non-institutionalised elderly women and younger controls: A bioconversion defect can be suspected. European Journal of Clinical Nutrition, 53, 591–596.

    PubMed  CAS  Article  Google Scholar 

  8. Bai, L., Hof, P. R., Standaert, D. G., Xing, Y., Nelson, S. E., Young, A. B., et al. (2004). Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiology of Aging, 25, 201–208.

    PubMed  CAS  Article  Google Scholar 

  9. Barberger-Gateau, P., Letenneur, L., Deschamps, V., Peres, K., Dartigues, J.-F., & Renaud, S. (2002). Fish, meat, and risk of dementia: Cohort study. British Medical Journal, 325, 932–933.

    PubMed  Article  Google Scholar 

  10. Barcelo-Coblijn, G., Hogyes, E., Kitajka, K., Puskas, L. G., Zvara, A., Hackler, L., Jr., et al. (2003a). Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11321–11326.

    PubMed  CAS  Article  Google Scholar 

  11. Barcelo-Coblijn, G., Kitajka, K., Puskas, L. G., Hogyes, E., Zvara, A., Hackler, L., Jr., et al. (2003b). Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochimica et Biophysica Acta, 1632(1–3), 72–79.

    PubMed  CAS  Google Scholar 

  12. Bates, D., Cartlidge, N. E., French, J. M., Jackson, M. J., Nightingale, S., Shaw, D. A., et al. (1989). A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 52, 18–22.

    CAS  Article  Google Scholar 

  13. Bazan, N. G., Birkle, D. L., & Reddy, T. S. (1984). Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochemical and Biophysical Research Communications, 125(2), 741–747.

    PubMed  CAS  Article  Google Scholar 

  14. Belayev, L., Liu, Y., Zhao, W., Busto, R., & Ginsberg, M. D. (2001). Human albumin therapy of acute ischemic stroke: Marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke, 32(2), 553–560.

    PubMed  CAS  Google Scholar 

  15. Belayev, L., Marcheselli, V. L., Khoutorova, L., Rodriguez de Turco, E. B., Busto, R., Ginsberg, M. D., et al. (2005). Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke, 36(1), 118–123.

    PubMed  CAS  Article  Google Scholar 

  16. Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272(33), 20313–20316.

    PubMed  CAS  Article  Google Scholar 

  17. Beydoun, M. A., Kaufman, J. S., Satia, J. A., Rosamond, W., & Folsom, A. R. (2007). Plasma n-3 fatty acids and the risk of cognitive decline in older adults: The Atherosclerosis Risk in Communities Study. American Journal of Clinical Nutrition, 85, 1103–1111.

    PubMed  CAS  Google Scholar 

  18. Blokland, A., Honig, W., Browns, F., & Jolles, J. (1999). Cognition-enhancing properties of subchronic phosphatidylserine (PS) treatment in middle-aged rats: Comparison of bovine cortex PS with egg PS and soybean PS. Nutrition, 15(10), 778–783.

    PubMed  CAS  Article  Google Scholar 

  19. Blondeau, N., Widman, C., Lazdunski, M., & Heurteaux, C. (2002). Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience, 109(2), 231–241.

    PubMed  CAS  Article  Google Scholar 

  20. Bolton-Smith, C., Woodward, M., & Tavendale, R. (1997). Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. European Journal of Clinical Nutrition, 51, 619–624.

    PubMed  CAS  Article  Google Scholar 

  21. Boston, P. F., Bennett, A., Horrobin, D. F., & Bennett, C. N. (2004). Ethyl-EPA in Alzheimer’s disease – A pilot study. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 71(5), 341–346.

    PubMed  CAS  Article  Google Scholar 

  22. Bourre, J.-M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., et al. (1989). The effects of dietary α-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. Journal of Nutrition, 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  23. Bousquet, M., Saint-Pierre, M., Julien, C., Salem, N., Jr., Cicchetti, F., & Calon, F. (2008). Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. The FASEB Journal, 22(4), 1213–1225.

    PubMed  CAS  Article  Google Scholar 

  24. Brenna, J. T. (2002). Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Current Opinion in Clinical Nutrition and Metabolic Care, 5(2), 127–132.

    PubMed  CAS  Article  Google Scholar 

  25. Burdge, G. C. (2006). Metabolism of a-linolenic acid in humans. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 75, 161–168.

    PubMed  CAS  Article  Google Scholar 

  26. Burdge, G. C., & Wootton, S. A. (2002). Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. British Journal of Nutrition, 88(4), 411–420.

    PubMed  CAS  Article  Google Scholar 

  27. Burgess, J. R., Stevens, L., Zhang, W., & Peck, L. (2000). Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. American Journal of Clinical Nutrition, 71(1), 327–27.

    Google Scholar 

  28. Burr, G. O., & Burr, M. M. (1929). A new deficiency disease produced by the rigid exclusion of fat from the diet. Journal of Biological Chemistry, 82, 345–367.

    CAS  Google Scholar 

  29. Burr, G. O., & Burr, M. M. (1930). On the nature and role of the essential fatty acids in nutrition. Journal of Biological Chemistry, 86, 587–621.

    CAS  Google Scholar 

  30. Butovich, I. A., Lukyanova, S. M., & Bachmann, C. (2006). Dihydroxydocosahexaenoic acids of the neuroprotectin D family: Synthesis, structure and inhibition of human 5-lipoxygenase. Journal of Lipid Research, 47(11), 2462–2474.

    PubMed  CAS  Article  Google Scholar 

  31. Calder, P. C. (2006). n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. American Journal of Clinical Nutrition, 83(6 Suppl), 1505S–1519S.

    PubMed  CAS  Google Scholar 

  32. Calon, F., Lim, G. P., Morihara, T., Yang, F., Ubeda, O., Salem, N., Jr., et al. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. European Journal of Neuroscience, 22(3), 617–626.

    PubMed  Article  Google Scholar 

  33. Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., et al. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron, 43, 633–645.

    PubMed  CAS  Article  Google Scholar 

  34. Calon, F., Tahar, A. H., Blanchet, P. J., Morissette, M., Grondin, R., Goulet, M., et al. (2000). Dopamine-receptor stimulation: Biobehavioral and biochemical consequences. Trends in Neurosciences, 23, S92–S100.

    PubMed  CAS  Article  Google Scholar 

  35. Cao, J., Schwichtenberg, K. A., Hanson, N. Q., & Tsai, M. Y. (2006). Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clinical Chemistry, 52(12), 2265–2272.

    PubMed  CAS  Article  Google Scholar 

  36. Carver, J. D., Benford, V. J., Han, B., & Cantor, A. B. (2001). The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Research Bulletin, 56(2), 79–85.

    PubMed  CAS  Article  Google Scholar 

  37. Cassarino, D. S., & Bennet, J. P., Jr. (1999). An evaluation of the role of mitochondria in neurodegenerative disease: Mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Research Reviews, 29, 1–25.

    PubMed  CAS  Article  Google Scholar 

  38. Chalon, S., Delion-Vancassel, S., Belzung, C., Guilloteau, D., Leguisquet, A.-M., Besnard, J.-C., et al. (1998). Dietary fish oil affects monoaminergic neurotransmission and behaviour in rats. Journal of Nutrition, 128, 2512–2519.

    PubMed  CAS  Google Scholar 

  39. Chambrier, C., Bastard, J. P., Rieusset, J., Chevillotte, E., Bonnefont-Rousselot, D., Therond, P., et al. (2002). Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma. Obesity Research, 10(6), 518–525.

    PubMed  CAS  Article  Google Scholar 

  40. Chen, H., Zhang, S. M., Hernán, M. A., Willett, W. C., & Ascherio, A. (2003). Dietary intakes of fat and risk of Parkinson’s disease. American Journal of Epidemiology, 157, 1007–1014.

    PubMed  Article  Google Scholar 

  41. Choi-Kwon, S., Park, K. A., Lee, H. J., Park, M. S., Lee, J. H., Jeon, S. E., et al. (2004). Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: Effect of dietary fish oil. Brain Research. Developmental Brain Research, 152(1), 11–18.

    PubMed  Article  CAS  Google Scholar 

  42. Clayton, D. A., Grosshans, D. R., & Browning, M. D. (2002). Aging and surface expression of hippocampal NMDA receptors. Journal of Biological Chemistry, 277(17), 14367–14369.

    PubMed  CAS  Article  Google Scholar 

  43. Clifford, J. J., Drago, J., Natoli, A. L., Wong, J. Y. F., Kinsella, A., Waddington, J. L., et al. (2002). Essential fatty acids given from conception prevent topographies of motor deficit in a transgenic model of Huntington’s disease. Neuroscience, 109(1), 81–88.

    PubMed  CAS  Article  Google Scholar 

  44. Corrigan, F. M., Horrobin, D. F., Skinner, E. R., Besson, J. A. O., & Cooper, M. B. (1998). Abnormal content of n-6 and n-3 long-chain unsaturated fatty acids in the phosphoglycerides and cholesterol esters of parahippocampal cortex from Alzheimer’s disease patients and its relationship to acetyl CoA content. The International Journal of Biochemistry & Cell Biology, 30(2), 197–207.

    CAS  Article  Google Scholar 

  45. Corwin, J., Dean, I., Reginald, L., Bartus, R. T., Rotrosen, J., & Watkins, D. L. (1985). Behavioural effects of phosphatidylserine in the aged Fischer 344 rat: Amelioration of passive avoidance deficits without changes in psychomotor task performance. Neurobiology of Aging, 6(1), 11–15.

    PubMed  CAS  Article  Google Scholar 

  46. Cunnane, S. C., Ho, S. Y., Dore-Duffy, P., Ells, K. R., & Horrobin, D. F. (1989). Essential fatty acid and lipid profiles in plasma and erythrocytes in patients with multiple sclerosis. American Journal of Clinical Nutrition, 50, 801–806.

    PubMed  CAS  Google Scholar 

  47. de Lau, L. M., Bornebroek, M., Witteman, J. C., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2005). Dietary fatty acids and the risk of Parkinson disease: The Rotterdam study. Neurology, 64(12), 2040–2045.

    PubMed  Article  CAS  Google Scholar 

  48. de Rijk, M. C., Breteler, M. M., Graveland, G. A., Ott, A., Grobbee, D. E., & van der Meche, F. G. (1995). Prevalence of Parkinson’s disease in the elderly: The Rotterdam Study. Neurology, 45, 2143–2146.

    PubMed  Google Scholar 

  49. de Rijk, M. C., Rocca, W. A., Anderson, D. W., Melcon, M. O., Breteler, M. M., & Maraganore, D. M. (1997). A population perspective on diagnostic criteria for Parkinson’s disease. Neurology, 48, 1277–1281.

    PubMed  Google Scholar 

  50. de Urquiza, A. M., Liu, S., Sjoberg, M., Zetterstrom, R. H., Griffiths, W., Sjovall, J., et al. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 290(5499), 2140–2144.

    PubMed  Article  Google Scholar 

  51. Delion, S., Chalon, S., Guilloteau, D., Besnard, J. C., & Durand, G. (1996). Alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. Journal of Neurochemistry, 66(4), 1582–1591.

    PubMed  CAS  Google Scholar 

  52. Delion, S., Chalon, S., Herault, J., Guilloteau, D., Besnard, J.-C., & Durand, G. (1994). Chronic dietary α-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. Journal of Nutrition, 124, 2466–2476.

    PubMed  CAS  Google Scholar 

  53. Duplus, E., & Forest, C. (2002). Is there a single mechanism for fatty acid regulation of gene transcription? Biochemical Pharmacology, 64, 893–901.

    PubMed  CAS  Article  Google Scholar 

  54. Dyall, S. C., Michael, G. J., Whelpton, R., Scott, A. G., & Michael-Titus, A. T. (2007). Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiology of Aging, 28(3), 424–439.

    PubMed  CAS  Article  Google Scholar 

  55. Dyerberg, J. (1993). Epidemiology of n-3 fatty acids and disease. In R. De Caterina, S. Endres, S. D. Kristensen, & E. B. Schmidt (Eds.), n-3 Fatty acids and vascular disease (pp. 3–10). London: Springer-Verlag.

    Google Scholar 

  56. Favreliere, S., Stadelmann-Ingrand, S., Huguet, F., De Javel, D., Piriou, A., Tallineau, C., et al. (2000). Age-related changes in ethanolamine glycerophospholipids fatty acid levels in rat frontal cortex and hippocampus. Neurobiology of Aging, 21, 653–660.

    CAS  Article  Google Scholar 

  57. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. European Journal of Clinical Investigation, 35(11), 691–699.

    PubMed  CAS  Article  Google Scholar 

  58. Foster, T. C., & Kumar, A. (2002). Calcium dysregulation in the aging brain. Neuroscientist, 8(4), 297–301.

    PubMed  CAS  Google Scholar 

  59. Franks, N. P., & Honoré, E. (2004). The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends in Pharmacological Sciences, 25(11), 601–608.

    PubMed  CAS  Article  Google Scholar 

  60. Freund-Levi, Y., Eriksdotter-Jonhagen, M., Cederholm, T., Basun, H., Faxen-Irving, G., Garlind, A., et al. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: A randomized double-blind trial. Archives of Neurology, 63(10), 1402–1408.

    PubMed  Article  Google Scholar 

  61. Frohman, E. M., Filippi, M., Stuve, O., Waxman, S. G., Corboy, J., Phillips, J. T., et al. (2005). Characterizing the mechanisms of progression in multiple sclerosis: Evidence and new hypotheses for future directions. Archives in Neurology, 62, 1345–1356.

    CAS  Article  Google Scholar 

  62. Gerster, H. (1998). Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? International Journal for Vitamin and Nutrition Research, 68(3), 159–173.

    PubMed  CAS  Google Scholar 

  63. Glozman, S., Green, P., & Yavin, E. (1998). Intraamniotic ethyl docosahexaenoate administration protects fetal rat brain from ischemic stress. Journal of Neurochemistry, 70(6), 2484–2491.

    PubMed  CAS  Article  Google Scholar 

  64. Green, K. N., Martinez-Coria, H., Khashwji, H., Hall, E. B., Yurko-Mauro, K. A., Ellis, L., et al. (2007). Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. Journal of Neuroscience, 27(16), 4385–4395.

    PubMed  CAS  Article  Google Scholar 

  65. Hall, E. D., & Braughler, J. M. (1986). Role of lipid peroxidation in post-traumatic spinal cord degeneration: A review. Central Nervous System Trauma, 3(4), 281–294.

    PubMed  CAS  Google Scholar 

  66. Hall, E. D., & Springer, J. E. (2004). Neuroprotection and acute spinal cord injury: A reappraisal. NeuroRX, 1(1), 80–100.

    PubMed  Article  Google Scholar 

  67. Hamilton, J., Greiner, R. S., Salem, N., Jr., & Kim, H.-Y. (2000). n-3 Fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids, 35, 863–869.

    PubMed  CAS  Article  Google Scholar 

  68. Hashimoto, M., Hossain, S., Shimada, T., & Shido, O. (2006). Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity. Clinical and Experimental Pharmacology and Physiology, 33(10), 934–939.

    PubMed  CAS  Article  Google Scholar 

  69. Hashimoto, M., Hossain, S., Shimada, T., Sugioka, K., Yamasaki, H., Fujii, Y., et al. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. Journal of Neurochemistry, 81(5), 1084–1091.

    PubMed  CAS  Article  Google Scholar 

  70. Hering, H., & Sheng, M. (2001). Denritic spines: Structure, dynamics and regulation. Nature Reviews Neuroscience, 2, 880–888.

    PubMed  CAS  Article  Google Scholar 

  71. Heude, B., Ducimetiere, P., & Berr, C. (2003). Cognitive decline and fatty acid composition of erythrocyte membranes – The EVA Study. American Journal of Clinical Nutrition, 77(4), 803–808.

    PubMed  CAS  Google Scholar 

  72. Heurteaux, C., Guy, N., Laigle, C., Blondeau, N., Duprat, F., Mazzuca, M., Lang-Lazdunski, L., Widmann, C., Zanzouri, M., Romey, G., Lazdunski, M. (2004). TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO Journal, 23(13), 2684–2695.

    Google Scholar 

  73. Hof, P. R., Duan, H., Page, T. L., Einstein, M., Wicinski, B., He, Y., et al. (2002). Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Research, 928(1–2), 175–186.

    PubMed  CAS  Article  Google Scholar 

  74. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., & Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry, 278(17), 14677–14687.

    PubMed  CAS  Article  Google Scholar 

  75. Hong, M. P., Kim, H. I., Shin, Y. K., Lee, C. S., Park, M., & Song, J. H. (2004). Effects of free fatty acids on sodium currents in rat dorsal root ganglion neurons. Brain Research, 1008(1), 81–91.

    PubMed  CAS  Article  Google Scholar 

  76. Horrobin, D. F., & Bennet, C. N. (1999). New gene targets related to schizophrenia and other psychiatric disorders: Enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 60(3), 141–167.

    PubMed  CAS  Article  Google Scholar 

  77. Horrocks, L. A., & Yeo, Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacological Research, 40(3), 211–225.

    PubMed  CAS  Article  Google Scholar 

  78. Huang, W. L., King, V. R., Curran, O. E., Dyall, S. C., Ward, R. E., Lal, N., et al. (2007). A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain, 130, 3004–3019.

    PubMed  CAS  Article  Google Scholar 

  79. Infante, J. P., & Huszagh, V. A. (1998). Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids. FEBS Letters, 431, 1–6.

    PubMed  CAS  Article  Google Scholar 

  80. Jacobs, B., Driscoll, L., & Schall, M. (1997). Life-span dendritic and spine changes in areas 10 and 18 of human cortex: Quantitative Golgi study. Journal of Comparative Neurology, 386, 661–680.

    PubMed  CAS  Article  Google Scholar 

  81. Jenner, P. (2001). Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends in Neurosciences, 24, 245–247.

    PubMed  CAS  Article  Google Scholar 

  82. Johnson, E. J., & Schaefer, E. J. (2006). Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration. American Journal of Clinical Nutrition, 83(6 Suppl), 1494S–1498S.

    PubMed  CAS  Google Scholar 

  83. Julien, C., Berthiaume, L., Hadj-Tahar, A., Rajput, A. H., & Bedard, T. (2006). Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochemistry International, 48, 404–414.

    PubMed  CAS  Article  Google Scholar 

  84. Jump, D. B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 277, 8755–8758.

    PubMed  CAS  Article  Google Scholar 

  85. Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A., & Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of Neurology, 42(5), 776–782.

    PubMed  CAS  Article  Google Scholar 

  86. Kalmijn, S., van Boxtel, M. P., Ocke, M., Verschuren, W. M., Kromhout, D., & Launer, L. J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology, 62(2), 275–280.

    PubMed  CAS  Google Scholar 

  87. Kasai, H., Chung, M. H., Jones, D. S., Inoue, H., Ishikawa, H., Kamiya, H., et al. (1991). 8-Hydroxyguanine, a DNA adduct formed by oxygen radicals: Its implication on oxygen radical-involved mutagenesis/carcinogenesis. Journal of Toxicological Sciences, 16(Suppl 1), 95–105.

    PubMed  CAS  Google Scholar 

  88. Kim, H. Y. (2007). Novel metabolism of docosahexaenoic acid in neural cells. Journal of Biological Chemistry, 282(26), 18661–18665.

    PubMed  CAS  Article  Google Scholar 

  89. King, V. R., Huang, W. L., Dyall, S. C., Curran, O. E., Priestley, J. V., & Michael-Titus, A. T. (2006). Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. Journal of Neuroscience, 26(17), 4672–4680.

    PubMed  CAS  Article  Google Scholar 

  90. Kitajka, K., Puskas, L. G., Zvara, A., Hackle, L., Jr., Barcelo-Cobijn, G., Yeo, Y. K., et al. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2619–2624.

    PubMed  CAS  Article  Google Scholar 

  91. Kocak, H., Oner, P., & Oztas, B. (2000). Comparison of the activities of Na+, K+-ATPase in brains of rats at different ages. Gerontology, 48, 279–281.

    Google Scholar 

  92. Koch, M., Ramsaransing, G. S. M., Fokkema, M. R., Heersema, D. J., & De Keyser, J. (2006). Erythrocyte membrane fatty acids in benign and progressive forms of multiple sclerosis. Journal of the Neurological Sciences, 244, 123–126.

    PubMed  CAS  Article  Google Scholar 

  93. Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J. C., et al. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. Journal of Neurochemistry, 89, 695–702.

    PubMed  CAS  Article  Google Scholar 

  94. Kotchabhakdi, N., Tipyasang, R., Thangnipon, W., Jutapukdeekun, N., & Jindaduangratn, C. (2003). Effects of different dosages of docosahexanoic acid (DHA) intake on maze-learning ability and densities of dendritic spines in rats, Washington, DC, Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2003. Online. Program No. 941.17

  95. Kyle, D. J., Schaefer, E., Patton, G., & Beiser, A. (1999). Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids, 34(Suppl), S245.

    PubMed  CAS  Article  Google Scholar 

  96. Lane, M. A., & Bailey, S. J. (2005). Role of retinoid signalling in the adult brain. Progress in Neurobiology, 75, 275–293.

    PubMed  CAS  Article  Google Scholar 

  97. Lang-Lazdunski, L., Blondeau, N., Jarretou, G., Lazdunski, M., & Heurteaux, C. (2003). Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. Journal of Vascular Surgery, 38(3), 564–575.

    PubMed  Article  Google Scholar 

  98. Lauritzen, I., Blondeau, N., Heurteaux, C., Widman, C., Romey, G., & Lazdunski, M. (2000). Polyunsaturated fatty acids are potent neuroprotectors. EMBO Journal, 19, 1784–1793.

    PubMed  CAS  Article  Google Scholar 

  99. Lauterbach, E. C., Cummings, J. L., Duffy, J., Coffey, C. E., Kaufer, D., Lovell, M. M., et al. (1998). Neuropsychiatric correlates and treatment of lenticulostriatal diseases: A review of the literature and overview of research opportunities in Huntington’s, Wilson’s, and Fahr’s diseases. Journal of Neuropsychiatry and Clinical Neurosciences, 10, 249–266.

    PubMed  CAS  Google Scholar 

  100. Lengqvist, J., Mata De Urquiza, A., Bergman, A. C., Willson, T. M., Sjovall, J., Perlmann, T., et al. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Molecular and Cellular Proteomics, 3(7), 692–703.

    PubMed  CAS  Article  Google Scholar 

  101. Lim, G. P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., et al. (2005). A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. Journal of Neuroscience, 25(12), 3032–3040.

    PubMed  CAS  Article  Google Scholar 

  102. Link, C. D. (1995). Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 92, 9368–9372.

    PubMed  CAS  Article  Google Scholar 

  103. Lopez, G. H., Ilincheta de Boschero, M. G., Castagnet, P. I., & Giusto, N. M. (1995). Age-associated changes in the content and fatty acid composition of brain glycerophospholipids. Comparative Biochemistry and Physiology, 112B(2), 331–343.

    CAS  Google Scholar 

  104. Lukiw, W. J., Cui, J. G., Marcheselli, V. L., Bodker, M., Botkjaer, A., Gotlinger, K., et al. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. Journal of Clinical Investigation, 115(10), 2774–2783.

    PubMed  CAS  Article  Google Scholar 

  105. Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84(1), 87–136.

    PubMed  CAS  Article  Google Scholar 

  106. Ma, Q.-L., Teter, B., Ubeda, O. J., Morihara, T., Dhoot, D., Nyby, M. D., et al. (2007). Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer’s Disease (AD): Relevance to AD prevention. Journal of Neuroscience, 27(52), 14299–14307.

    PubMed  CAS  Article  Google Scholar 

  107. Magnusson, K. R. (1998). The aging of the NMDA receptor complex. Frontiers in Bioscience, 3, e70–e80.

    PubMed  CAS  Google Scholar 

  108. Marcheselli, V. L., Hong, S., Lukiw, W. J., Hua, T. X., Gronert, K., Musto, A., et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-informatory gene expression. Journal of Biological Chemistry, 278(44), 43807–43817.

    PubMed  CAS  Article  Google Scholar 

  109. Margulies, J. E., Cohen, R. W., Levine, M. S., & Watson, J. B. (1993). Decreased GluR2(B) receptor subunit mRNA expression in cerebellar neurons at risk for degeneration. Developmental Neuroscience, 15(2), 110–120.

    PubMed  CAS  Article  Google Scholar 

  110. Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23(1), 134–147.

    PubMed  CAS  Article  Google Scholar 

  111. Markham, J. A., & Juraska, J. M. (2002). Aging and sex influence the anatomy of the rat anterior cingulate cortex. Neurobiology of Aging, 23, 579–588.

    PubMed  Article  Google Scholar 

  112. Marsden, C. D. (1994). Problems with long-term levodopa therapy for Parkinson’s disease. Clinical Neuropharmacology, 17(suppl 2), S32–S44.

    PubMed  Google Scholar 

  113. Marteinsdottir, I., Horrobin, D. F., Stenfors, C., Theodorsson, E., & Mathe, A. A. (1998). Changes in dietary fatty acids alter phospholipid fatty acid composition in selected regions of rat brain. Progress in Neuro-psychopharmacology, 22, 1007–1021.

    CAS  Article  Google Scholar 

  114. Martin, D. S., Spencer, P., Horrobin, D. F., & Lynch, M. A. (2002). Long-term potentiation in aged rats is restored when the age-related decrease in polyunsaturated fatty acid concentration is reversed. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 67(2–3), 121–130.

    PubMed  CAS  Article  Google Scholar 

  115. Martinez, M., Vazquez, E., Garcia-Silva, M. T., Manzanares, J., Bertran, J. M., Castello, F., et al. (2000). Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. American Journal of Clinical Nutrition, 71(1), 376S–175.

    PubMed  CAS  Google Scholar 

  116. McGahon, B. M., Martin, D. S., Horrobin, D. F., & Lynch, M. A. (1999). Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience, 94(1), 305–314.

    PubMed  CAS  Article  Google Scholar 

  117. McGeer, P. L., Yasojima, K., & McGeer, E. G. (2001). Inflammation in Parkinson’s disease. Advances in Neurology, 86, 83–89.

    PubMed  CAS  Google Scholar 

  118. Mesches, M. H., Gemma, C., Veng, L. M., Allgeier, C., Young, D. A., Browning, M. D., et al. (2004). Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiology of Aging, 25(3), 315–324.

    PubMed  CAS  Article  Google Scholar 

  119. Mirnikjoo, B., Brown, S. E., Kim, F. S., Marangell, L. B., Sweatt, D. J., & Weeber, E. J. (2001). Protein kinase inhibition by omega-3 fatty acids. Journal of Biological Chemistry, 276(14), 10888–10896.

    PubMed  CAS  Article  Google Scholar 

  120. Mishina, M., Sakimura, K., Mori, H., Kushiya, E., Harabayashi, M., Uchino, S., et al. (1991). A single amino acid residue determines the Ca2+ permeability of AMPA-selective glutamate receptor channels. Biochemical and Biophysical Research Communications, 180(2), 813–821.

    PubMed  CAS  Article  Google Scholar 

  121. Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Wilson, R. S., et al. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of Neurology, 60(7), 940–946.

    PubMed  Article  Google Scholar 

  122. Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N., & Bazan, N. G. (2004). Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8491–8496.

    PubMed  CAS  Article  Google Scholar 

  123. Murck, H., & Manku, M. (2007). Ethyl-EPA in Huntington disease: Potentially relevant mechanism of action. Brain Research Bulletin, 72(2–3), 159–164.

    PubMed  CAS  Article  Google Scholar 

  124. Murphy, M. F., Sramek, J. J., Kurtz, N. M., Carta, A., & Cutler, N. R. (1998). Alzheimer’s Disease: Optimizing the development of the next generation of therapeutic compounds. London: Greenwich Medical Media Ltd.

    Google Scholar 

  125. Murray, T. J. (2006). Diagnosis and treatment of multiple sclerosis. British Medical Journal, 332, 525–527.

    PubMed  CAS  Article  Google Scholar 

  126. Nadler, J. V., Perry, B. W., & Cotman, C. W. (1978). Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature, 271(5646), 676–677.

    PubMed  CAS  Article  Google Scholar 

  127. Nakamura, M. T., & Nara, T. Y. (2003). Essential fatty acid synthesis and its regulation in mammals. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 145–150.

    PubMed  CAS  Article  Google Scholar 

  128. Niu, S. L., Mitchell, D. C., Lim, S. Y., Wen, Z. M., Kim, H. Y., Salem, N., Jr., et al. (2004). Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. Journal of Biological Chemistry, 279(30), 31098–31104.

    PubMed  CAS  Article  Google Scholar 

  129. Nordvik, I., Myhr, K.-M., Nyland, H., & Bjerve, K. S. (2000). Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurologica Scandinavica, 102, 143–149.

    PubMed  CAS  Article  Google Scholar 

  130. Offe, K., Dodson, S. E., Shoemaker, J. T., Fritz, J. J., Gearing, M., Levey, A. I., et al. (2006). The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. Journal of Neuroscience, 26(5), 1596–1603.

    PubMed  CAS  Article  Google Scholar 

  131. Pagliusi, S. R., Gerrard, P., Abdallah, M., Talabot, D., & Catsicas, S. (1994). Age-related changes in expression of AMPA-selective glutamate receptor subunits: Is calcium-permeability altered in hippocampal neurons? Neuroscience, 61(3), 429–433.

    PubMed  CAS  Article  Google Scholar 

  132. Passafaro, M., Nakagawa, T., Sala, C., & Sheng, M. (2003). Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature, 424(6949), 677–681.

    PubMed  CAS  Article  Google Scholar 

  133. Pawlosky, R. J., Hibbeln, J. R., Novotny, J. A., & Salem, N., Jr. (2001). Physiological compartmental analysis of α-linolenic acid metabolism in adult humans. Journal of Lipid Research, 42, 1257–1265.

    PubMed  CAS  Google Scholar 

  134. Peet, M. (2002). Essential fatty acids: Theoretical aspects and treatment implications for schizophrenia and depression. Advances in Psychiatric Treatment, 8, 223–229.

    Article  Google Scholar 

  135. Peet, M., Murphy, B., Shay, J., & Horrobin, D. F. (1998). Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biological Psychiatry, 43, 315–319.

    PubMed  CAS  Article  Google Scholar 

  136. Petroni, A., Bertagnolio, B., La Spada, P., Blasevich, M., Papini, N., Govoni, S., et al. (1998). The β-oxidation of arachidonic acid and the synthesis of docosahexaenoic acid are selectively and consistently altered in skin fibroblasts from three Zellweger patients versus X-adrenoleukodystrophy, Alzheimer and control subjects. Neuroscience Letters, 250, 145–148.

    PubMed  CAS  Article  Google Scholar 

  137. Profyris, C., Cheema, S. S., Zang, D., Azari, M. F., Boyle, K., Petratos, S. (2004). Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease, 15, 415–436.

    Google Scholar 

  138. Prolla, T. A., & Mattson, M. P. (2001). Molecular mechanisms of brain aging and neurodegenerative disorders: Lessons from dietary restriction. Trends in Neurosciences, 24(11), S21–S31.

    PubMed  CAS  Article  Google Scholar 

  139. Puri, B. K., Bydder, G. M., Counsell, S. J., Corridan, B. J., Richardson, A. J., Hajnal, J. V., et al. (2003). MRI and neuropsychological improvement in Huntington disease following ethyl-EPA treatment. NeuroReport, 13(1), 123–126.

    Article  Google Scholar 

  140. Puri, B. K., Leavitt, B. R., Hayden, M. R., Ross, C. A., Rosenblatt, A., Greenamyre, J. T., et al. (2005). Ethyl-EPA in Huntington disease: A double-blind, randomized, placebo-controlled trial. Neurology India, 65(2), 286–292.

    CAS  Article  Google Scholar 

  141. Relton, J. K., Strijbos, P. J. L. M., Cooper, A. L., & Rothwell, N. J. (1993). Dietary N-3 fatty acids inhibit ischaemic and excitotoxic brain damage in the rat. Brain Research Bulletin, 32(3), 223–226.

    PubMed  CAS  Article  Google Scholar 

  142. Rodriguez de Turco, E. B., Belayev, L., Liu, Y., Busto, R., Parkins, N., Bazan, N. G., et al. (2002). Systemic fatty acid responses to transient focal cerebral ischemia: Influence of neuroprotectant therapy with human albumin. Journal of Neurochemistry, 83(3), 515–524.

    PubMed  CAS  Article  Google Scholar 

  143. Rose, D. P., & Connolly, J. M. (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology and Therapeutics, 83, 217–244.

    PubMed  CAS  Article  Google Scholar 

  144. Ross, B., Seguin, J., & Sieswerda, L. (2007). Omega-3 fatty acids as treatments for mental illness: Which disorder and which fatty acid? Lipids in Health and Disease, 6(1), 21.

    PubMed  Article  CAS  Google Scholar 

  145. Salvati, S., Natali, F., Attorri, L., Di Benedetto, R., Leonardi, F., Di Biase, A., et al. (2008). Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. Journal of Neuroscience Research, 86(4), 776–784.

    PubMed  CAS  Article  Google Scholar 

  146. Samadi, P., Gregoire, L., Rouillard, C., Bedard, P. J., Di Paolo, T., & Levesque, D. (2006). Docosahexaenoic acid reduces Levodopa-induced dyskinesias in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine monkeys. Annals of Neurology, 59, 282–288.

    PubMed  CAS  Article  Google Scholar 

  147. Sanders, T. A. (2000). Polyunsaturated fatty acids in the food chain in Europe. American Journal of Clinical Nutrition, 71(1), 176S–178S.

    PubMed  CAS  Google Scholar 

  148. Schaefer, E., Bongard, V., Beiser, A., Lamon-Fava, S., Robins, S. J., Au, R., et al. (2006). Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: The Framingham Heart Study. Archives in Neurology, 63, 1545–1550.

    Article  Google Scholar 

  149. Segovia, G., Porras, A., Del Arco, A., & Mora, F. (2001). Glutamatergic neurotransmission in aging: A critical perspective. Mechanisms of Ageing and Development, 122(1), 1–29.

    PubMed  CAS  Article  Google Scholar 

  150. Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.

    PubMed  CAS  Google Scholar 

  151. Serhan, C. N., Hong, S., Gronert, K., Colgan, S. P., Devchand, P. R., Mirick, G., et al. (2002). Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. Journal of Experimental Medicine, 196(8), 1025–1037.

    PubMed  CAS  Article  Google Scholar 

  152. Serot, J.-M., Christmann, D., Dubost, T., & Couturier, M. (1997). Cerebrospinal fluid transthyretin: Aging and late onset Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 63, 506–508.

    CAS  Article  Google Scholar 

  153. Seung Kim, H. F., Weeber, E. J., Sweatt, D. J., Stoll, A. L., & Marangell, L. B. (2001). Inhibitory effects of omega-3 fatty acids on protein kinase C activity. Molecular Psychiatry, 6, 246–248.

    PubMed  CAS  Article  Google Scholar 

  154. Shapiro, H. (2003). Could n-3 polyunsaturated fatty acids reduce pathological pain by direct actions on the nervous system? Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 219–224.

    PubMed  CAS  Article  Google Scholar 

  155. Sharon, R., Bar-Joseph, I., Frosch, M. P., Walsh, D. M., Hamilton, J. A., & Selkoe, D. J. (2003). The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron, 37(4), 583–595.

    PubMed  CAS  Article  Google Scholar 

  156. Simopoulos, A. P. (1999). Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 60(5–6), 421–429.

    PubMed  CAS  Article  Google Scholar 

  157. Sinclair, H. M. (1956). Deficiency of essential fatty acids and atherosclerosis, etcetera. Lancet, i, 381–383.

    Google Scholar 

  158. Sinclair, H. M. (1990). History of essential fatty acids. In D. F. Horrobin (Ed.), Omega-6 essential fatty acids. Pathophysiology and roles in clinical medicine (pp. 1–20). New York: Wiley-Liss.

    Google Scholar 

  159. Skinner, E. R., Watt, C., Besson, J. A. O., & Best, P. V. (1989). Lipid composition of different regions of the brain in patients with Alzheimer’s disease. Biochemical Society Transactions, 17, 213–214.

    CAS  Google Scholar 

  160. Soderberg, M., Edlund, C., Kristensson, K., & Dallner, G. (1991). Fatty acid composition of brain phospholipids in aging and Alzheimer’s disease. Lipids, 26(6), 421–425.

    PubMed  CAS  Article  Google Scholar 

  161. Sonntag, W. E., Bennett, S. A., Khan, A. S., Thornton, P. L., Xu, X., Ingram, R. L., et al. (2000). Age and insulin-like growth factor-1 modulate N-methyl-D-aspartate receptor subtype expression in rats. Brain Research Bulletin, 51(4), 331–338.

    PubMed  CAS  Article  Google Scholar 

  162. Sprecher, H. (2000). Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica et Biophysica Acta, 1486, 219–231.

    PubMed  CAS  Google Scholar 

  163. Su, H.-M., Moser, A. B., Moser, H. W., & Watkins, P. A. (2001). Peroxisomal straight-chain acyl CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. Journal of Biological Chemistry, 276(41), 38115–38120.

    PubMed  CAS  Google Scholar 

  164. Svenningsson, P., Nishi, A., Fisone, G., Girault, J. A., Nairn, A. C., & Greengard, P. (2004). DARPP-32: An integrator of neurotransmission. Annual Review of Pharmacology and Toxicology, 44, 269–296.

    PubMed  CAS  Article  Google Scholar 

  165. Swank, R. L., Lerstad, O., Strom, A., & Backer, J. (1952). Multiple sclerosis in rural Norway: Its geographic and occupational incidence in relation to nutrition. New England Journal of Medicine, 246, 721–728.

    CAS  Google Scholar 

  166. Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401(6748), 63–69.

    PubMed  CAS  Article  Google Scholar 

  167. Tapiero, H., Nguyen Ba, G., Couvreur, P., & Tew, K. D. (2002). Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomedicine & Pharmacotherapy, 56(5), 215–222.

    CAS  Article  Google Scholar 

  168. Thomas, B., & Flint Beal, M. (2007). Parkinson’s disease. Human Molecular Genetics, 16, R183–R194.

    PubMed  CAS  Article  Google Scholar 

  169. Tully, A. M., Roche, H. M., Doyle, R., Fallon, C., Bruce, I., Lawlor, B., et al. (2003). Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: A case-control study. British Journal of Nutrition, 89(4), 483–489.

    PubMed  CAS  Article  Google Scholar 

  170. Vaddadi, K. S., Soosai, E., Chiu, E., & Dingjan, P. (2002). A randomised, placebo-controlled, double blind study of treatment of Huntington’s disease with unsaturated fatty acids. NeuroReport, 13(1), 29–33.

    PubMed  CAS  Article  Google Scholar 

  171. van Dellen, A., Welch, J., Dixon, R. M., Cordery, P., York, D., Styles, P., et al. (2000). N-acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington’s disease mice. NeuroReport, 11, 3751–3757.

    PubMed  Article  Google Scholar 

  172. van Gelder, B. M., Tijhuis, M., Kalmijn, S., & Kromhout, D. (2007). Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: The Zutphen Elderly Study. American Journal of Clinical Nutrition, 85, 1142–1147.

    PubMed  Google Scholar 

  173. Van Raamsdonka, J. M., Pearsona, J., Rogersa, D. A., Lua, G., Barakauskasb, V. E., Barrb, A. M., et al. (2005). Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease. Experimental Neurology, 196, 266–272.

    Article  CAS  Google Scholar 

  174. Vancassel, S., Leman, S., Hanonick, L., Denis, S., Roger, J., Nollet, M., et al. (2008). N-3 polyunsaturated fatty acids supplementation reverses stress-induced modifications on brain monoamine levels in mice. Journal of Lipid Research, 49, 340–348.

    PubMed  CAS  Article  Google Scholar 

  175. Viani, P., Cervato, G., Fiorilli, A., & Cestaro, B. (1991). Age-related differences in synaptosomal peroxidative damage and membrane properties. Journal of Neurochemistry, 56, 253–258.

    PubMed  CAS  Article  Google Scholar 

  176. Voss, A., Reinhart, M., Sankarappa, S., & Sprecher, H. (1991). The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. Journal of Biological Chemistry, 266(30), 19995–20000.

    PubMed  CAS  Google Scholar 

  177. Vreugdenhil, M., Bruehl, C., Voskuyl, R. A., Kang, J. X., Leaf, A., & Wadman, W. J. (1996). Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proceedings of the National Academy of Sciences of the United States of America, 93(22), 12559–12563.

    PubMed  CAS  Article  Google Scholar 

  178. Weinstock-Guttman, B., Baier, M., Park, Y., Feichter, J., Lee-Kwen, P., Gallagher, E., et al. (2005). Lowfat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 397–404.

    PubMed  CAS  Article  Google Scholar 

  179. Xu, S. J., Chen, Z., Zhu, L. J., Shen, H. Q., & Luo, J. H. (2005a). Visual recognition memory is related to basic expression level of NMDA receptor NR1/NR2B subtype in hippocampus and striatum of rats. Acta Pharmacologica Sinica, 26(2), 177–180.

    PubMed  CAS  Article  Google Scholar 

  180. Xu, W., Chi, L., Xu, R., Ke, Y., Luo, C., Cai, J., et al. (2005b). Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord, 43(4), 204–213.

    PubMed  CAS  Article  Google Scholar 

  181. Yehuda, S., Rabinovtz, S., Carasso, R. L., & Mostofsky, D. I. (1996). Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life. International Journal of Neuroscience, 87(3–4), 141–149.

    PubMed  CAS  Article  Google Scholar 

  182. Yehuda, S., Rabinovitz, S., Carasso, R. L., & Mostofsky, D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiology of Aging, 23, 843–853.

    PubMed  CAS  Article  Google Scholar 

  183. Zhang, J., Perry, G., Smith, M. A., Robertson, D., Olson, S. J., Graham, D. G., et al. (1999). Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. American Journal of Pathology, 154(5), 1423–1429.

    PubMed  CAS  Google Scholar 

  184. Zimmer, L., Delpal, S., Guilloteau, D., Aioun, J., Durand, G., & Chalon, S. (2000). Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neuroscience Letters, 284(1–2), 25–28.

    PubMed  CAS  Article  Google Scholar 

  185. Zimmer, L., Hembert, S., Durand, G., Breton, P., Guilloteau, D., Besnard, J. C., et al. (1998). Chronic n-3 polyunsaturated fatty acid diet-deficiency acts on dopamine metabolism in the rat frontal cortex: A microdialysis study. Neuroscience Letters, 240(3), 177–181.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. C. Dyall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dyall, S.C., Michael-Titus, A.T. Neurological Benefits of Omega-3 Fatty Acids. Neuromol Med 10, 219–235 (2008). https://doi.org/10.1007/s12017-008-8036-z

Download citation

Keywords

  • Eicosapentaenoic acid
  • Docosahexaenoic acid
  • Ageing
  • Alzheimer’s disease
  • Parkinson’s disease
  • Huntington’s disease
  • Multiple sclerosis
  • Spinal cord injury
  • Neurodegeneration