NeuroMolecular Medicine

, Volume 10, Issue 2, pp 81–98 | Cite as

Exercise, Learned Helplessness, and the Stress-Resistant Brain

  • Benjamin N. Greenwood
  • Monika FleshnerEmail author
Original Paper


Exercise can prevent the development of stress-related mood disorders, such as depression and anxiety. The underlying neurobiological mechanisms of this effect, however, remain unknown. Recently, researchers have used animal models to begin to elucidate the potential mechanisms underlying the protective effects of physical activity. Using the behavioral consequences of uncontrollable stress or “learned helplessness” as an animal analog of depression- and anxiety-like behaviors in rats, we are investigating factors that could be important for the antidepressant and anxiolytic properties of exercise (i.e., wheel running). The current review focuses on the following: (1) the effect of exercise on the behavioral consequences of uncontrollable stress and the implications of these effects on the specificity of the “learned helplessness” animal model; (2) the neurocircuitry of learned helplessness and the role of serotonin; and (3) exercise-associated neural adaptations and neural plasticity that may contribute to the stress-resistant brain. Identifying the mechanisms by which exercise prevents learned helplessness could shed light on the complex neurobiology of depression and anxiety and potentially lead to novel strategies for the prevention of stress-related mood disorders.


Exercise Depression Stress Wheel running Serotonin 


  1. Abrams, J. K., Johnson, P. L., Hay-Schmidt, A., et al. (2005). Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience, 133, 983–997.PubMedGoogle Scholar
  2. Abrams, J. K., Johnson, P. L., Hollis, J. H., et al. (2004). Anatomic and functional topography of the dorsal raphe nucleus. Annals of the New York Academy of Sciences, 1018, 46–57.PubMedGoogle Scholar
  3. Adell, A., Celada, P., & Artigas, F. (2001). The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. Journal of Neurochemistry, 79, 172–182.PubMedGoogle Scholar
  4. Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.PubMedGoogle Scholar
  5. Aghajanian, G. K. (1985). Modulation of a transient outward current in serotonergic neurones by alpha 1-adrenoceptors. Nature, 315, 501–503.PubMedGoogle Scholar
  6. Amat, J., Baratta, M. V., Paul, E., et al. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience, 8, 365–371.PubMedGoogle Scholar
  7. Amat, J., Matus-Amat, P., Watkins, L. R., et al. (1998a). Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Research, 812, 113–120.PubMedGoogle Scholar
  8. Amat, J., Matus-Amat, P., Watkins, L. R., et al. (1998b). Escapable and inescapable stress differentially and selectively alter extracellular levels of 5-HT in the ventral hippocampus and dorsal periaqueductal gray of the rat. Brain Research, 797, 12–22.PubMedGoogle Scholar
  9. Amat, J., Paul, E., Zarza, C., et al. (2006). Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: Role of the ventral medial prefrontal cortex. Journal of Neuroscience, 26, 13264–13272.PubMedGoogle Scholar
  10. Amat, J., Sparks, P. D., Matus-Amat, P., et al. (2001). The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Research, 917, 118–126.PubMedGoogle Scholar
  11. Anderson, I. M., & Mortimore, C. (1999). 5-HT and human anxiety. Evidence from studies using acute tryptophan depletion. Advances in Experimental Medicine and Biology, 467, 43–55.PubMedGoogle Scholar
  12. Babyak, M., Blumenthal, J. A., Herman, S. P., et al. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62, 633–638.PubMedGoogle Scholar
  13. Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1992). Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiologica Scandinavica, 145, 75–76.PubMedCrossRefGoogle Scholar
  14. Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993). Serotonergic agonists and antagonists affect endurance performance in the rat. International Journal of Sports Medicine, 14, 330–333.PubMedGoogle Scholar
  15. Baker, S. C., Frith, C. D., & Dolan, R. J. (1997). The interaction between mood and cognitive function studied with PET. Psychological Medicine, 27, 565–578.PubMedGoogle Scholar
  16. Barde, Y. A. (1994). Neurotrophins: A family of proteins supporting the survival of neurons. Progress in Clinical and Biological Research, 390, 45–56.PubMedGoogle Scholar
  17. Beasley, C. M. Jr., & Potvin, J. H. (1993). Fluoxetine: Activating and sedating effects. International Clinical Psychopharmacology, 8, 271–275.PubMedCrossRefGoogle Scholar
  18. Bequet, F., Gomez-Merino, D., Berthelot, M., et al. (2001). Exercise-induced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: Effect of glucose supplementation. Acta Physiologica Scandinavica, 173, 223–230.PubMedGoogle Scholar
  19. Binder, E., Droste, S. K., Ohl, F., et al. (2004). Regular voluntary exercise reduces anxiety-related behaviour and impulsiveness in mice. Behavioural Brain Research, 155, 197–206.PubMedGoogle Scholar
  20. Bjornebekk, A., Mathe, A. A., & Brene, S. (2005). The antidepressant effect of running is associated with increased hippocampal cell proliferation. International Journal of Neuropsychopharmacology, 8, 357–368.PubMedGoogle Scholar
  21. Bjornebekk, A., Mathe, A. A., & Brene, S. (2006). Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls. Neuropsychopharmacology, 31, 256–264.PubMedGoogle Scholar
  22. Bland, S. T., Tamlyn, J. P., Barrientos, R. M., et al. (2007). Expression of fibroblast growth factor-2 and brain-derived neurotrophic factor mRNA in the medial prefrontal cortex and hippocampus after uncontrollable or controllable stress. Neuroscience, 144, 1219–1228.PubMedGoogle Scholar
  23. Blomstrand, E., Perrett, D., Parry-Billings, M., et al. (1989). Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat Acta Physiologica Scandinavica, 136, 473–481.PubMedGoogle Scholar
  24. Blumenthal, J. A., Babyak, M. A., Moore, K. A., et al. (1999). Effects of exercise training on older patients with major depression. Archives of Internal Medicine, 159, 2349–2356.PubMedGoogle Scholar
  25. Bremner, J. D., Staib, L. H., Kaloupek, D., et al. (1999). Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biological Psychiatry, 45, 806–816.PubMedGoogle Scholar
  26. Brosse, A. L., Sheets, E. S., Lett, H. S., et al. (2002). Exercise and the treatment of clinical depression in adults: Recent findings and future directions. Sports Medicine, 32, 741–760.PubMedGoogle Scholar
  27. Brown, L., Rosellini, R. A., Samuels, O. B., et al. (1982). Evidence for a serotonergic mechanism of the learned helplessness phenomenon. Pharmacology Biochemistry and Behavior, 17, 877–883.Google Scholar
  28. Burghardt, P. R., Fulk, L. J., Hand, G. A., et al. (2004). The effects of chronic treadmill and wheel running on behavior in rats. Brain Research, 1019, 84–96.PubMedGoogle Scholar
  29. Burghardt, P. R., Pasumarthi, R. K., Wilson, M. A., et al. (2006). Alterations in fear conditioning and amygdalar activation following chronic wheel running in rats. Pharmacology Biochemistry and Behavior, 84, 306–312.Google Scholar
  30. Campisi, J., Leem, T. H., Greenwood, B. N., et al. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 284, R520–R530.Google Scholar
  31. Chambliss, H. O., Van Hoomissen, J. D., & Holmes, P. V. (2004). Effects of chronic activity wheel running and imipramine on masculine copulatory behavior after olfactory bulbectomy. Physiology & Behavior, 82, 593–600.Google Scholar
  32. Chaouloff, F. (1994). Influence of physical exercise on 5-HT1A receptor- and anxiety-related behaviours. Neuroscience Letters, 176, 226–230.PubMedGoogle Scholar
  33. Clark, M. S., McDevitt, R. A., & Neumaier, J. F. (2006). Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. Journal of Comparative Neurology, 498, 611–623.PubMedGoogle Scholar
  34. Colcombe, S. J., Erickson, K. I., Scalf, P. E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 1166–1170.Google Scholar
  35. Coppen, A. J., & Doogan, D. P. (1988). Serotonin and its place in the pathogenesis of depression. Journal of Clinical Psychiatry, 49(Suppl), 4–11.PubMedGoogle Scholar
  36. Cotman, C. W., & Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. Exercise and Sport Sciences Reviews, 30, 75–79.PubMedGoogle Scholar
  37. Cusin, C., Fava, M., Amsterdam, J. D., et al. (2007). Early symptomatic worsening during treatment with fluoxetine in major depressive disorder: Prevalence and implications. Journal of Clinical Psychiatry, 68, 52–57.PubMedCrossRefGoogle Scholar
  38. Czeh, B., Müller-Keuker, J. I., Rygula, R., et al. (2006). Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: Hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology, 32, 1490–1503.PubMedGoogle Scholar
  39. Davis, J. M., & Bailey, S. P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sports and Exercise, 29, 45–57.PubMedGoogle Scholar
  40. Day, H. E., Greenwood, B. N., Hammack, S. E., et al. (2004). Differential expression of 5HT-1A, alpha1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. Journal of Comparative Neurology, 474, 364–78.PubMedGoogle Scholar
  41. Day, H. E., Wolf, E. M., Herlihy, L., Campeau, S. (2006). The effect of voluntary exercise on the acute HPA axis response to mild stress in rats. Neuroscience Meeting Planner. Atlanta, GA: Society for Neuroscience Online, Program No. 563.20.Google Scholar
  42. Delgado, P. L., Miller, H. L., Salomon, R. M., et al. (1999). Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: Implications for the role of serotonin in the mechanism of antidepressant action. Biological Psychiatry, 46, 212–220.PubMedGoogle Scholar
  43. Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145, 79–83.PubMedGoogle Scholar
  44. Dishman, R. K. (1997). The norepinephrine hypothesis. In W. P. Morgan (Ed.), Physical activity and mental health. Washington, DC: Taylor & Francis.Google Scholar
  45. Dishman, R. K., Berthoud, H.-R., Booth, F. W., et al. (2006). Neurobiology of exercise. Obesity (Silver Spring), 14, 345–356.Google Scholar
  46. Dishman, R. K., Renner, K. J., Youngstedt, S. D., et al. (1997a). Activity wheel running reduces escape latency and alters brain monoamine levels after footshock. Brain Research Bulletin, 42, 399–406.PubMedGoogle Scholar
  47. Dishman, R. K., Warren, J. M., & Hong, S. (2000). Treadmill exercise training blunts suppression of splenic natural killer cell cytolysis after footshock. Journal of Applied Physiology, 88, 2176–2182.PubMedGoogle Scholar
  48. Dishman, R. K., Warren, J. M., Youngstedt, S. D., et al. (1997b). Brain monoamines, exercise, and behavioral stress: Animal models. Medicine and Science in Sports and Exercise, 29, 63–74.PubMedGoogle Scholar
  49. Dong, H. W., Petrovich, G. D., Watts, A. G., et al. (2001). Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. Journal of Comparative Neurology, 436, 430–455.PubMedGoogle Scholar
  50. Drevets, W. C. (2000). Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res., 126, 413–431.PubMedGoogle Scholar
  51. Droste, S. K., Chandramohan, Y., Hill, L. E., et al. (2007). Voluntary exercise impacts on the rat hypothalamic–pituitary–adrenocortical axis mainly at the adrenal level. Neuroendocrinology, 86, 26–37.PubMedGoogle Scholar
  52. Droste, S. K., Gesing, A., Ulbricht, S., et al. (2003). Effects of long-term voluntary exercise on the mouse hypothalamic–pituitary–adrenocortical axis. Endocrinology, 144, 3012–3023.PubMedGoogle Scholar
  53. Droste, S. K., Schweizer, M. C., Ulbricht, S., et al. (2006). Long-term voluntary exercise and the mouse hypothalamic–pituitary–adrenocortical axis: Impact of concurrent treatment with the antidepressant drug tianeptine. Journal of Neuroendocrinology, 18, 915–925.PubMedGoogle Scholar
  54. Drugan, R. C., Ryan, S. M., Minor, T. R., et al. (1984). Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacology Biochemistry and Behavior, 21, 749–754.Google Scholar
  55. Duman, R. S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine, 5, 11–25.PubMedGoogle Scholar
  56. Duman, R. S. (2005). Neurotrophic factors and regulation of mood: Role of exercise, diet and metabolism. Neurobiology of Aging, 26(Suppl 1), 88–93.PubMedGoogle Scholar
  57. Duman, R. S., Heninger, G. R., & Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54, 597–606.PubMedGoogle Scholar
  58. Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 1116–1127.PubMedGoogle Scholar
  59. Dunn, A. L., & Dishman, R. K. (1991). Exercise and the neurobiology of depression. Exercise and Sport Sciences Reviews, 19, 41–98.PubMedGoogle Scholar
  60. Dunn, A. L., Reigle, T. G., & Youngstedt, S. D. (1996). Brain monoamines and metabolites after treadmill training and wheel running in rats. Medicine and Science in Sports and Exercise, 28, 204–209.PubMedGoogle Scholar
  61. Dunn, A. L., Trivedi, M. H., & O’Neal, H. A. (2001). Physical activity dose–response effects on outcomes of depression and anxiety. Medicine and Science in Sports and Exercise, 33(6 Suppl), S587–S597.PubMedGoogle Scholar
  62. Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M., & Herman, J. P. (2003). The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. European Journal of Neuroscience, 18, 2357–2364.PubMedGoogle Scholar
  63. Fleshner, M. (2000). Exercise and neuroendocrine regulation of antibody production: Protective effect of physical activity on stress-induced suppression of the specific antibody response. International Journal of Sports Medicine, 21(Suppl 1), S14–S19.PubMedGoogle Scholar
  64. Foley, T. E., Greenwood, B. N., Day, H. E., et al. (2006). Elevated central monoamine receptor mRNA in rats bred for high endurance capacity: Implications for central fatigue. Behavioural Brain Research, 174, 132–42.PubMedGoogle Scholar
  65. Fox, K. R. (1999). The influence of physical activity on mental well-being. Public Health Nutrition, 2, 411–418.PubMedGoogle Scholar
  66. Gerrits, M., Westenbroek, C., Fokkema, D. S., et al. (2003). Increased stress vulnerability after a prefrontal cortex lesion in female rats. Brain Research Bulletin, 61, 627–635.PubMedGoogle Scholar
  67. Gold, P. W., & Chrousos, G. P. (1999). The endocrinology of melancholic and atypical depression: Relation to neurocircuitry and somatic consequences. Proceedings of the Association of American Physicians, 111, 22–34.PubMedGoogle Scholar
  68. Gomez-Merino, D., Béquet, F., Berthelot, M., et al. (2001). Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neuroscience Letters, 301, 143–146.PubMedGoogle Scholar
  69. Gomez-Pinilla, F., So, V., & Kesslak, J. P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: Neural substrates for increased cognition associated with exercise. Neuroscience, 85, 53–61.PubMedGoogle Scholar
  70. Gorman, J. M. (1996). Comorbid depression and anxiety spectrum disorders. Depress and Anxiety, 4, 160–168.Google Scholar
  71. Graeff, F. G., Guimarães, F. S., De Andrade, T. G., et al. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology Biochemistry and Behavior, 54, 129–141.Google Scholar
  72. Graeff, F. G., Silveira, M. C., Nogueira, R. L., et al. (1993). Role of the amygdala and periaqueductal gray in anxiety and panic. Behavioural Brain Research, 58, 123–131.PubMedGoogle Scholar
  73. Graeff, F. G., Viana, M. B., & Mora, P. O. (1997). Dual role of 5-HT in defense and anxiety. Neuroscience and Biobehavioral Reviews, 21, 791–799.PubMedGoogle Scholar
  74. Grahn, R., Hammack, S. E., Will, M. J., et al. (2002). Blockade of alpha1 adrenoreceptors in the dorsal raphe nucleus prevents enhanced conditioned fear and impaired escape performance following uncontrollable stressor exposure in rats. Behavioural Brain Research, 134, 387–392.PubMedGoogle Scholar
  75. Grahn, R. E., Will, M. J., Hammack, S. E., et al. (1999). Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Research, 826, 35–43.PubMedGoogle Scholar
  76. Grant, M. M., & Weiss, J. M. (2001). Effects of chronic antidepressant drug administration and electroconvulsive shock on locus coeruleus electrophysiologic activity. Biological Psychiatry, 49, 117–129.PubMedGoogle Scholar
  77. Greenwood, B. N., Foley, T. E., Burhans, D., et al. (2005a). The consequences of uncontrollable stress are sensitive to duration of prior wheel running. Brain Research, 1033, 164–178.PubMedGoogle Scholar
  78. Greenwood, B. N., Foley, T., Day, H., et al. (2005b). Wheel running alters serotonin (5-HT) transporter, 5-HT(1A), 5-HT(1B), and alpha(1b)-adrenergic receptor mRNA in the rat raphe nuclei. Biological Psychiatry, 57, 559–568.PubMedGoogle Scholar
  79. Greenwood, B. N., Foley, T. E., Day, H. E., et al. (2003a). Freewheel running prevents learned helplessness/behavioral depression: Role of dorsal raphe serotonergic neurons. Journal of Neuroscience, 23, 2889–2898.PubMedGoogle Scholar
  80. Greenwood, B. N., Kennedy, S., Smith, T. P., et al. (2003b). Voluntary freewheel running selectively modulates catecholamine content in peripheral tissue and c-Fos expression in the central sympathetic circuit following exposure to uncontrollable stress in rats. Neuroscience, 120, 269–281.PubMedGoogle Scholar
  81. Greenwood, B. N., Strong, P. V., Foley, T. E., et al. (2007a). Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus. Neuroscience, 144, 1193–1208.PubMedGoogle Scholar
  82. Greenwood, B. N., Strong, P. V., Dorey, A. A., et al. (2007b). Therapeutic effects of exercise: Wheel running reverses stress-induced interference with shuttle box escape. Behavioral Neuroscience.Google Scholar
  83. Hajos, M., Richards, C. D., Székely, A. D., et al. (1998). An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience, 87, 95–108.PubMedGoogle Scholar
  84. Harada, T., Okagawa, S., & Kubota, K. (2004). Jogging improved performance of a behavioral branching task: Implications for prefrontal activation. Neuroscience Research, 49, 325–337.PubMedGoogle Scholar
  85. Hervas, I., Queiroz, C. M., Adell, A., et al. (2000). Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. British Journal of Pharmacology, 130, 160–166.PubMedGoogle Scholar
  86. Hillman, C. H., Belopolsky, A. V., Snook, E. M., et al. (2004). Physical activity and executive control: Implications for increased cognitive health during older adulthood. Research Quarterly for Exercise and Sport, 75, 176–185.PubMedGoogle Scholar
  87. Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37, 1967–1974.PubMedGoogle Scholar
  88. Hillman, C. H., Motl, R. W., Pontifex, M. B., et al. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25, 678–687.PubMedGoogle Scholar
  89. Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48, 307–314.PubMedGoogle Scholar
  90. Ide, K., Horn, A., & Secher, N. H. (1999). Cerebral metabolic response to submaximal exercise. Journal of Applied Physiology, 87, 1604–1608.PubMedGoogle Scholar
  91. Imai, H., Steindler, D. A., & Kitai, S. T. (1986). The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. Journal of Comparative Neurology, 243, 363–380.PubMedGoogle Scholar
  92. Jacobs, B. L. (1991). Serotonin and behavior: Emphasis on motor control. Journal of Clinical Psychiatry, 52, 17–23.PubMedGoogle Scholar
  93. Jacobs, B. L., & Azmitia, E. C. (1992). Structure and function of the brain serotonin system. Physiological Reviews, 72, 165–229.PubMedGoogle Scholar
  94. Jacobs, B. L., & Fornal, C. A. (1997). Serotonin and motor activity. Current Opinion in Neurobiology, 7, 820–825.PubMedGoogle Scholar
  95. Jick, H., Kaye, J. A., & Jick, S. S. (2004). Antidepressants and the risk of suicidal behaviors. JAMA, 292, 338–343.PubMedGoogle Scholar
  96. Jinks, A. L., & McGregor, I. S. (1997). Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Research, 772, 181–190.PubMedGoogle Scholar
  97. Kazakov, V. N., Kravtsov, P. Ya., Krakhotkina, E. D., et al. (1993). Sources of cortical, hypothalamic and spinal serotonergic projections: Topical organization within the nucleus raphe dorsalis. Neuroscience, 56, 157–164.PubMedGoogle Scholar
  98. Kendler, K. S., Karkowski, L. M., & Prescott, C. A. (1999). Causal relationship between stressful life events and the onset of major depression. American Journal of Psychiatry, 156, 837–841.PubMedGoogle Scholar
  99. Kennedy, S. H., Evans, K. R., Krüger, S., et al. (2001). Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. American Journal of Psychiatry, 158, 899–905.PubMedGoogle Scholar
  100. Kennedy, S. L., Smith, T. P., & Fleshner, M. (2005). Resting cellular and physiological effects of freewheel running. Medicine and Science in Sports and Exercise, 37, 79–83.PubMedGoogle Scholar
  101. Kimura, F., & Nakamura, S. (1987). Postnatal development of alpha-adrenoceptor-mediated autoinhibition in the locus coeruleus. Brain Research, 432, 21–26.PubMedGoogle Scholar
  102. Kirby, L. G., Chou-Green, J. M., Davis, K., et al. (1997). The effects of different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Research, 760, 218–230.PubMedGoogle Scholar
  103. Kramer, A. F., Colcombe, S., Erickson, K., et al. (2002). Effects of aerobic fitness training on human cortical function: A proposal. Journal of Molecular Neuroscience, 19, 227–231.PubMedGoogle Scholar
  104. Kramer, A. F., Colcombe, S., McAuley, E., et al. (2005). Fitness, aging and neurocognitive function. Neurobiology of Aging, 26(Suppl 1), 124–127.PubMedGoogle Scholar
  105. Kramer, A. F., Erickson, K. I., & Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology, 101, 1237–1242.PubMedGoogle Scholar
  106. Kramer, A. F., Hahn, S., Cohen, N. J., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.PubMedGoogle Scholar
  107. Lawlor, D. A., & Hopker, S. W. (2001). The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ, 322, 763–767.PubMedGoogle Scholar
  108. Lee, H. S., Kim, M.-A., Valentino, R. J., et al. (2003). Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Research, 963, 57–71.PubMedGoogle Scholar
  109. Lett, B. T., Grant, V. L., Byrne, M. J., et al. (2000). Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite, 34, 87–94.PubMedGoogle Scholar
  110. Lo, D. C. (1995). Neurotrophic factors and synaptic plasticity. Neuron, 15, 979–981.PubMedGoogle Scholar
  111. Lowry, C. A. (2002). Functional subsets of serotonergic neurones: Implications for control of the hypothalamic–pituitary–adrenal axis. Journal of Neuroendocrinology, 14, 911–923.PubMedGoogle Scholar
  112. Lowry, C. A., Johnson, P. L., Hay-Schmidt, A., et al. (2005). Modulation of anxiety circuits by serotonergic systems. Stress, 8, 233–246.PubMedCrossRefGoogle Scholar
  113. Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biological Psychiatry, 44, 151–162.PubMedGoogle Scholar
  114. Maier, S. F. (1984). Learned helplessness and animal models of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 8, 435–446.Google Scholar
  115. Maier, S. F. (1990). Role of fear in mediating shuttle escape learning deficit produced by inescapable shock. Journal of Experimental Psychology-Animal Behavior Processes, 16, 137–149.PubMedGoogle Scholar
  116. Maier, S. F. (2001). Exposure to the stressor environment prevents the temporal dissipation of behavioral depression/learned helplessness. Biological Psychiatry, 49, 763–773.PubMedGoogle Scholar
  117. Maier, S. F., Amat, J., Baratta, M. V., et al. (2006). Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clinical Neuroscience, 8, 397–406.Google Scholar
  118. Maier, S. F., Busch, C. R., Maswood, S., et al. (1995a). The dorsal raphe nucleus is a site of action mediating the behavioral effects of the benzodiazepine receptor inverse agonist DMCM. Behavioral Neuroscience, 109, 759–766.PubMedGoogle Scholar
  119. Maier, S. F., Grahn, R. E., Kalman, B. A., et al. (1993). The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock. Behavioral Neuroscience, 107, 377–388.PubMedGoogle Scholar
  120. Maier, S. F., Grahn, R. E., & Watkins, L. R. (1995b). 8-OH-DPAT microinjected in the region of the dorsal raphe nucleus blocks and reverses the enhancement of fear conditioning and interference with escape produced by exposure to inescapable shock. Behavioral Neuroscience, 109, 404–412.PubMedGoogle Scholar
  121. Maier, S. F., Kalman, B. A., & Grahn, R. E. (1994). Chlordiazepoxide microinjected into the region of the dorsal reduced by inescapable shock whether administered before inescapable shock oraphe nucleus eliminates the interference with escape responding pro escape testing. Behavioral Neuroscience, 108, 121–130.PubMedGoogle Scholar
  122. Maier, S. F., & Seligman, M. E. P. (1976). Learned helplessness: Theory and evidence. JEP: Gen., 105, 3–46.Google Scholar
  123. Maier, S. F., Seligman, M. E. P., & Soloman, R. L. (1969). Pavlovian fear conditioning and learned helplessness. In B. A. Campbell & R. M. Church (Eds.), Punishment. NY: Appleton-Century-Crofts.Google Scholar
  124. Maier, S. F., & Watkins, L. R. (1998). Stressor controllability, anxiety, and serotonin. Cognitive Therapy and Research., 22, 595–613.Google Scholar
  125. Maier, S. F., & Watkins, L. R. (2005). Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience and Biobehavioral Reviews, 29, 829–841.PubMedGoogle Scholar
  126. Malberg, J. E., & Duman, R. S. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: Reversal by fluoxetine treatment. Neuropsychopharmacology, 28, 1562–1571.PubMedGoogle Scholar
  127. Martinsen, E. W. (1990a) Benefits of exercise for the treatment of depression. Sports Medicine, 9, 380–389.PubMedGoogle Scholar
  128. Martinsen, E. W. (1990b). Physical fitness, anxiety and depression. British Journal of Hospital Medicine, 43, 194, 196, 199.Google Scholar
  129. Martinsen, E. W. (1994). Physical activity and depression: Clinical experience. Acta Psychiatrica Scandinavica Supplement, 377, 23–27.Google Scholar
  130. Martinsen, E. W., Hoffart, A., & Solberg, O. (1989). Comparing aerobic with nonaerobic forms of exercise in the treatment of clinical depression: A randomized trial. Comprehensive Psychiatry, 30, 324–331.PubMedGoogle Scholar
  131. Martinsen, E. W., & Morgan, W. P. (1997). Antidepressant effects of physical activity. In W. P. Morgan (Ed.), Physical activity and mental health. Washington, DC: Taylor & Francis.Google Scholar
  132. Maswood, S., Barter, J. E., Watkins, L. R., et al. (1998). Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Research, 783, 115–120.PubMedGoogle Scholar
  133. Maudhuit, C., Hamon, M., & Adrien, J. (1995). Electrophysiological activity of raphe dorsalis serotoninergic neurones in a possible model of endogenous depression. Neuroreport, 6, 681–684.PubMedGoogle Scholar
  134. Moraska, A., Deak, T., Spencer, R. L., et al. (2000). Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 279, R1321–R1329.Google Scholar
  135. Morgan, W. P. (1985). Affective beneficence of vigorous physical activity. Medicine and Science in Sports and Exercise, 17, 94–100.PubMedGoogle Scholar
  136. Mutrie, N. (2000). The relationship between physical activity and clinically defined depression. In S. J. H. Biddle, K. R. Fox, & S. H. Boutcher (Eds.), Physical activity and psychological well-being. NY: Routledge.Google Scholar
  137. Neeper, S. A., Gómez-Pinilla, F., Choi, J., et al. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMedGoogle Scholar
  138. Neeper, S. A., Gómez-Pinilla, F., Choi, J., et al. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726, 49–56.PubMedGoogle Scholar
  139. Ninan, P. T. (1999). The functional anatomy, neurochemistry, and pharmacology of anxiety. Journal of Clinical Psychiatry, 60(Suppl 22), 12–17.PubMedGoogle Scholar
  140. North, T. C., McCullagh, P., & Tran, Z. V. (1990). Effect of exercise on depression. Exercise and Sport Sciences Reviews, 18, 379–415.PubMedGoogle Scholar
  141. O’Leary, O. F., Bechtholt, A. J., Crowley, J. J., et al. (2007). Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl), 192, 357–371.Google Scholar
  142. Owens, M. J., & Nemeroff, C. B. (1994). Role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clinical Chemistry, 40, 288–295.PubMedGoogle Scholar
  143. Paluska, S. A., & Schwenk, T. L. (2000). Physical activity and mental health: Current concepts. Sports Medicine, 29, 167–180.PubMedGoogle Scholar
  144. Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates. NY: Academic Press.Google Scholar
  145. Petty, F., Kramer, G. L., Wu, J., et al. (1997). Posttraumatic stress and depression. A neurochemical anatomy of the learned helplessness animal model. Annals of the New York Academy of Sciences, 821, 529–532.PubMedGoogle Scholar
  146. Peyron, C., Luppi, P. H., Fort, P., et al. (1996). Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. Journal of Comparative Neurology, 364, 402–413.PubMedGoogle Scholar
  147. Peyron, C., Petit, J.-M. C., Jouvet, M., & Luppi, P.-H. (1998). Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience, 82, 443–468.PubMedGoogle Scholar
  148. Pollack, M. H. (2005). Comorbid anxiety and depression. Journal of Clinical Psychiatry, 66(Suppl 8), 22–29.PubMedGoogle Scholar
  149. Quitkin, F. M., Bowden, C., Stokes, P., et al. (1996). Can the effects of antidepressants be observed in the first two weeks of treatment? Neuropsychopharmacology, 15, 390–394.PubMedGoogle Scholar
  150. Rajkowska, G. (2000). Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biological Psychiatry, 48, 766–777.PubMedGoogle Scholar
  151. Rajkowska, G. (2002). Cell pathology in mood disorders. Seminars in Clinical Neuropsychiatry, 7, 281–292.PubMedGoogle Scholar
  152. Rangel, A., Villarroel, V., & Hernandez, L. (2003). Anxiolysis followed by anxiogenesis relates to coping and corticosterone after medial prefrontal cortical damage in rats. Brain Research, 992, 96–103.PubMedGoogle Scholar
  153. Ressler, K. J., & Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress and Anxiety, 12(Suppl 1), 2–19.Google Scholar
  154. Riad, M., Watkins, K. C., Doucet, E., et al. (2001). Agonist-induced internalization of serotonin-1a receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). Journal of Neuroscience, 21, 8378–8386.PubMedGoogle Scholar
  155. Riad, M., Zimmer, L., Rbah, L., et al. (2004). Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. Journal of Neuroscience, 24, 5420–5426.PubMedGoogle Scholar
  156. Salmon, P. (2001). Effects of physical exercise on anxiety, depression, and sensitivity to stress: A unifying theory. Clinical Psychology Review, 21, 33–61.PubMedGoogle Scholar
  157. Sasse, S. K., Greenwood, B. N., Masini, C. V., Nyhuis, T. J., Fleshner, M., Day, H. E. W., Campeau, S. (in press). Six weeks of voluntary wheel running facilitates hypothalamopituitary-adrenocortical axis response habituation to repeated audiogenic stress exposures in male Sprague-Dawley rats. Stress.Google Scholar
  158. Scully, D., Kremer, J., Meade, M. M., et al. (1998). Physical exercise and psychological well being: A critical review. British Journal of Sports Medicine, 32, 111–120.PubMedGoogle Scholar
  159. Seligman, M. E., & Beagley, G. (1975). Learned helplessness in the rat. Journal of Comparative and Physiological Psychology, 88, 534–541.PubMedGoogle Scholar
  160. Sherman, A. D., Sacquitne, J. L., & Petty, F. (1982). Specificity of the learned helplessness model of depression. Pharmacology Biochemistry and Behavior, 16, 449–454.Google Scholar
  161. Shirayama, Y., Chen, A. C.-H., Nakagawa, S., et al. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. Journal of Neuroscience, 22, 3251–3261.PubMedGoogle Scholar
  162. Short, K. R., Patel, M. R., Lee, S. H., et al. (2000). Uncontrollable stress induced both anxiety and downregulation of dorsal raphe 5-HT1a receptors in rats: Both follow the same timecourse. Society for Neuroscience Abstracts, 26, 22–67.Google Scholar
  163. Simson, P. E., & Weiss, J. M. (1987). Alpha-2 receptor blockade increases responsiveness of locus coeruleus neurons to excitatory stimulation. Journal of Neuroscience, 7, 1732–1740.PubMedGoogle Scholar
  164. Simson, P. G., Weiss, J. M., Hoffman, L. J., et al. (1986). Reversal of behavioral depression by infusion of an alpha-2 adrenergic agonist into the locus coeruleus. Neuropharmacology, 25, 385–389.PubMedGoogle Scholar
  165. Singh, N. A., Clements, K. M., & Fiatarone, M. A. (1997). A randomized controlled trial of progressive resistance training in depressed elders. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52, M27–M35.Google Scholar
  166. Smith, M. A., Makino, S., Kvetnansky, R., et al. (1995). Effects of stress on neurotrophic factor expression in the rat brain. Annals of the New York Academy of Sciences, 771, 234–239.PubMedGoogle Scholar
  167. Soares, J., Holmes, P. V., Renner, K. J., et al. (1999). Brain noradrenergic responses to footshock after chronic activity-wheel running. Behavioral Neuroscience, 113, 558–566.PubMedGoogle Scholar
  168. Solberg, L. C., Hortaon, T. H., & Turek, F. W. (1999). Circadian rhythms and depression: Effects of exercise in an animal model. American Journal of Physiology, 276, R152–R161.PubMedGoogle Scholar
  169. Stamford, J. A., Davidson, C., McLaughlin, D. P., et al. (2000). Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: Parallel purposes or pointless plurality? Trends in Neurosciences, 23, 459–465.PubMedGoogle Scholar
  170. Staub, D. R., Evans, A. K., & Lowry, C. A. (2006). Evidence supporting a role for corticotropin-releasing factor type 2 (CRF2) receptors in the regulation of subpopulations of serotonergic neurons. Brain Research, 1070, 77–89.PubMedGoogle Scholar
  171. Suh, M. R., Jung, H. H., Kim, S. B., et al. (2002). Effects of regular exercise on anxiety, depression, and quality of life in maintenance hemodialysis patients. Renal Failure, 24, 337–345.PubMedGoogle Scholar
  172. Suzuki, M., Miyai, I., Ono, T., et al. (2002). Running induces prefrontal activation. An optical imaging study. Abstracts Viewer/Itinerary planner, Society for neuroscience, Washington, DC, Program No. 854.10.Google Scholar
  173. Takase, L. F., Nogueira, M. I., Bland, S. T., et al. (2005). Effect of number of tailshocks on learned helplessness and activation of serotonergic and noradrenergic neurons in the rat. Behavioural Brain Research, 162, 299–306.PubMedGoogle Scholar
  174. Taki, Y., Kinomura, S., Awata, S., et al. (2005). Male elderly subthreshold depression patients have smaller volume of medial part of prefrontal cortex and precentral gyrus compared with age-matched normal subjects: A voxel-based morphometry. Journal of Affective Disorders, 88, 313–320.PubMedGoogle Scholar
  175. Tavares, R. F., & Correa, F. M. (2006). Role of the medial prefrontal cortex in cardiovascular responses to acute restraint in rats. Neuroscience, 143, 231–240.PubMedGoogle Scholar
  176. Trulson, M. E., & Crisp, T. (1984). Role of norepinephrine in regulating the activity of serotonin-containing dorsal raphe neurons. Life Sciences, 35, 511–515.PubMedGoogle Scholar
  177. Van der Borght, K., Havekes, R., Bos, T., et al. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMedGoogle Scholar
  178. Van Hoomissen, J. D., Holmes, P. V., Zellner, A. S., et al. (2004). Effects of beta-adrenoreceptor blockade during chronic exercise on contextual fear conditioning and mRNA for galanin and brain-derived neurotrophic factor. Behavioral Neuroscience, 118, 1378–1390.PubMedGoogle Scholar
  179. van Praag, H. M. (2005). Can stress cause depression? World Journal of Biological Psychiatry, 6(Suppl 2), 5–22.PubMedGoogle Scholar
  180. van Praag, H., Christie, B. R., Sejnowski, T. J. et al. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMedGoogle Scholar
  181. Varga, V., Székely, A. D., Csillag, A., et al. (2001). Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience, 106, 783–92.PubMedGoogle Scholar
  182. Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 2580–2590.PubMedGoogle Scholar
  183. Vertes, R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51, 32–58.PubMedGoogle Scholar
  184. Walker, D. L., Toufexis, D. J., & Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. European Journal of Pharmacology, 463, 199–216.PubMedGoogle Scholar
  185. Weiss, J. M., Bonsall, R. W., Demetrikopoulos, M. K., et al. (1998). Galanin: A significant role in depression? Annals of the New York Academy of Sciences, 863, 364–382.PubMedGoogle Scholar
  186. Weiss, J. M., Boss-Williams, K., Moore, J., et al. (2005). Testing the hypothesis that locus coeruleus hyperactivity produces depression-related changes via galanin. Neuropeptides, 39, 281–287.PubMedGoogle Scholar
  187. Weiss, J. M., Demetrikoppoulos, M. K., West, C. H. K., et al. (1996). Hypothesis linking the noradrenergic and dopaminergic systems in depression. Depression, 3, 225–245.Google Scholar
  188. Weiss, J. M., Goodman, P. A., Losito, B. G., et al. (1981). Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine, and serotonin levels in various regions of the rat brain. Brain Research Reviews, 3, 167–205.Google Scholar
  189. Weiss, J. M., & Kilts, C. D. (1998). Animal models of depression and schizophrenia. In C. B. Nemeroff & A. F. Schatzberg (Eds.), The American psychiatric press textbook of psychopharmacology (2nd ed., pp. 89–131). Washington, DC: American Psychiatric Press Inc.Google Scholar
  190. Weiss, J. M., & Simson, P. G. (1985). Neurochemical basis of stress-induced depression. Psychopharmacology Bulletin, 21, 447–457.PubMedGoogle Scholar
  191. Weiss, J. M., & Simson, P. G. (1986). Depression in an animal model: Focus on the locus ceruleus. Ciba Foundation Symposia, 123, 191–215.PubMedGoogle Scholar
  192. Werme, M., Messer, C., Olso, L., et al. (2002). Delta FosB Regulates Wheel Running. Journal of Neuroscience, 22, 8133–8138.PubMedGoogle Scholar
  193. Williams, J. L., & Maier, S. F. (1977). Transituational immunization and therapy of learned helplessness in the rat. Journal of Experimental Psychology-Animal Behavior Processes, 3, 240–253.Google Scholar
  194. Willner, P. (1986). Validation criteria for animal models of human mental disorders: Learned helplessness as a paradigm case. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 10, 677–690.Google Scholar
  195. Zheng, H., Liu, Y., Li, W., et al. (2006). Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behavioural Brain Research, 168, 47–55.PubMedGoogle Scholar
  196. Zhu, M. Y., Klimek, V., Dilley, G. E., et al. (1999). Elevated levels of tyrosine hydroxylase in the locus coeruleus in major depression. Biological Psychiatry, 46, 1275–1286.PubMedGoogle Scholar
  197. Zienowicz, M., Wislowska-Stanek, A., Lehner, M., et al. (2006). Fluoxetine-induced anxiety and nervousness. Pharmacology Report, 58, 115–119.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Department of Integrative Physiology, Center for NeuroscienceUniversity of Colorado-BoulderBoulderUSA

Personalised recommendations