Skip to main content
Log in

Soluble Neuroprotective Antioxidant Uric Acid Analogs Ameliorate Ischemic Brain Injury in Mice

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Uric acid is a major antioxidant in the blood of humans that can protect cultured neurons against oxidative and metabolic insults. However, uric acid has a very low solubility which compromises its potential clinical use for neurodegenerative disorders. Here we describe the synthesis, characterization and preclinical development of neuroprotective methyl- and sulfur-containing analogs of uric acid with increased solubility. In vitro and cell culture screening identified 1,7-dimethyluric acid (mUA2) and 6,8-dithiouric acid (sUA2) as two analogs with high antioxidant and neuroprotective activities. When administered intravenously in mice, uric acid analogs mUA2 and sUA2 lessened damage to the brain and improved functional outcome in an ischemia-reperfusion mouse model of stroke. Analogs sUA2 and mUA2 were also effective in reducing damage to the cerebral cortex when administered up to 4 h after stroke onset in a permanent middle cerebral artery occlusion mouse model. These findings suggest a therapeutic potential for soluble analogs of uric acid in the treatment of stroke and related neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ames, B. N., Cathcart, R., Schwiers, E., & Hochstein, P. (1981). Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 78, 6858–6862.

    Article  PubMed  CAS  Google Scholar 

  • Arumugam, T. V., Chan, S. L., Jo, D. G., et al. (2006). Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature Medicine, 12, 621–623.

    Article  PubMed  CAS  Google Scholar 

  • Arumugam, T. V., Salter, J. W., Chidlow, J. H., Ballantyne, C. M., Kevil, C. G., & Granger, D. N. (2004). Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. American Journal of Physiology. Heart and Circulatory Physiology, 287, H2555–H2560.

    Article  PubMed  CAS  Google Scholar 

  • Beaman, A. G., Gerster, J. F., & Robins, R. K. (1962). The preparation of various bromopurines. The Journal of Organic Chemistry, 27, 986–990.

    Article  CAS  Google Scholar 

  • Begley, J. G., Butterfield, D. A., Keller, J. N., Koppal, T., Drake, J., & Mattson, M. P. (1998). Cryopreservation of rat cortical synaptosomes and analysis of glucose and glutamate transporter activities, and mitochondrial function. Brain Research. Brain Research Protocols, 3, 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of Cerebral Blood flow and Metabolism, 21, 2–14.

    PubMed  CAS  Google Scholar 

  • Cronstein, B. N., & Terkeltaub, R. (2006). The inflammatory process of gout and its treatment. Arthritis Research & Therapy, 8(1), S3.

    Article  CAS  Google Scholar 

  • Cutler, R. G. (1984). Urate and ascorbate: Their possible roles as antioxidants in determining longevity of mammalian species. Archives of Gerontology and Geriatrics, 3, 321–348.

    Article  PubMed  CAS  Google Scholar 

  • Dalbeth, N., & Haskard, D. O. (2005). Inflammation and tissue damage in crystal deposition diseases. Current Opinion in Rheumatology, 17, 314–318.

    Article  PubMed  Google Scholar 

  • Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39, 889–909.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, D. A., & Forman, H. J. (2002). Glutathione in defense and signaling: Lessons from a small thiol. Annals of the New York Academy of Sciences, 973, 488–504.

    Article  PubMed  CAS  Google Scholar 

  • Eliasson, M. J., Huang, Z., Ferrante, R. J., Sasamata, M., Molliver, M. E., Snyder, S. H., & Moskowitz, M. A. (1999). Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. The Journal of Neuroscience, 19, 5910–5918.

    PubMed  CAS  Google Scholar 

  • Furukawa, K., Fu, W., Li, Y., Witke, W., Kwiatkowski, D. J., & Mattson, M. P. (1997). The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. The Journal of Neuroscience, 17, 8178–8186.

    PubMed  CAS  Google Scholar 

  • Ghoneim, A. I., Abdel-Naim, A. B., Khalifa, A. E., & El-Denshary, E. S. (2002). Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacological Research, 46, 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Glantzounis, G. K., Tsimoyiannis, E. C., Kappas, A. M., & Galaris, D. A. (2005). Uric acid and oxidative stress. Current Pharmaceutical Design, 11, 4145–4151.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Q., Sebastian, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., & Mattson, M. P. (1999). Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: Central roles of superoxide production and caspase activation. Journal of Neurochemistry, 72, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  • Hall, E. D. (1997). Brain attack. Acute therapeutic interventions. Free radical scavengers and antioxidants. Neurosurgery Clinics of North America, 8, 195–206.

    PubMed  CAS  Google Scholar 

  • Hooper, D. C., Bagasra, O., Marini, J. C., et al. (1997). Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 94, 2528–2533.

    Article  PubMed  CAS  Google Scholar 

  • Ingall, T. (2004). Stroke–incidence, mortality, morbidity and risk. Journal of Insurance Medicine, 36, 143–152.

    PubMed  Google Scholar 

  • Keller, J. N., Guo, Q., Holtsberg, F. W., Bruce-Keller, A. J., & Mattson, M. P. (1998). Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. The Journal of Neuroscience, 18, 4439–4450.

    PubMed  CAS  Google Scholar 

  • Keller, J. N., Kindy, M. S., Holtsberg, F. W., St Clair, D. K., Yen, H. C., Germeyer, A., Steiner, S. M., Bruce-Keller, A. J., Hutchins, J. B., & Mattson, M. P. (1998). Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. The Journal of Neuroscience, 18, 687–697.

    PubMed  CAS  Google Scholar 

  • Keller, J. N., Pang, Z., Geddes, J. W., Begley, J. G., Germeyer, A., Waeg, G., & Mattson, M. P. (1997). Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. The Journal of Neuroscience, 69, 273–284.

    CAS  Google Scholar 

  • Keuzenkamp-Jansen, C. W., DeAbreu, R. A., Bokkerink, J. P., Lambooy, M. A., & Trijbels, J. M. (1996). Metabolism of intravenously administered high-dose 6-mercaptopurine with and without allopurinol treatment in patients with non-Hodgkin lymphoma. Journal of Pediatric Hematology/Oncology, 18, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Keynes, R. G., & Garthwaite, J. (2004). Nitric oxide and its role in ischaemic brain injury. Current Molecular Medicine, 4, 179–191.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, T., Reaume, A. G., Huang, T. T., Carlson, E., Murakami, K., Chen, S. F., Hoffman, E. K., Scott, R. W., Epstein, C. J., & Chan, P. H. (1997). Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. The Journal of Neuroscience, 17, 4180–4189.

    PubMed  CAS  Google Scholar 

  • Kuo, W. Y., & Tang, T. K. (1998). Effects of G6PD overexpression in NIH3T3 cells treated with tert-butyl hydroperoxide or paraquat. Free Radical Biology & Medicine, 24, 1130–1138.

    Article  CAS  Google Scholar 

  • Lekishvili, T., Sassoon, J., Thompsett, A. R., Green, A., Ironside, J. W., & Brown, D. R. (2004). BSE and vCJD cause disturbance to uric acid levels. Experimental Neurology, 190, 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Klein, G., Sun, P., & Buchan, A. M. (2000). CoQ10 fails to protect brain against focal and global ischemia in rats. Brain Research, 877, 7–11.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  • Liu, D., Wu, L., Breyer, R., Mattson, M. P., & Andreasson, K. (2005). Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Annals of Neurology, 57, 758–761.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, S., Weinreb, O., Amit, T., & Youdim, M. B. (2004). Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. Journal of Neurochemistry, 88, 1555–1569.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, T., Kozai, S., & Sasaki, F. (2000). Method for the synthesis of uric acid derivatives. Nucleosides Nucleotides Nucleic Acids, 19, 1193–1203.

    Article  PubMed  CAS  Google Scholar 

  • Milionis, H. J., Kalantzi, K. J., Goudevenos, J. A., Seferiadis, K., Mikhailidis, D. P., & Elisaf, M. S. (2005). Serum uric acid levels and risk for acute ischaemic non-embolic stroke in elderly subjects. Journal of Internal Medicine, 258, 435–441.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, K., Kondo, T., Kawase, M., Li, Y., Sato, S., Chen, S. F., & Chan, P. H. (1998). Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. The Journal of Neuroscience, 18, 205–213.

    PubMed  CAS  Google Scholar 

  • Nishida, Y. (1991). Inhibition of lipid peroxidation by methylated analogues of uric acid. The Journal of Pharmacy and Pharmacology, 43, 885–887.

    PubMed  CAS  Google Scholar 

  • Schlotte, V., Sevanian, A., Hochstein, P., & Weithmann, K. U. (1998). Effect of uric acid and chemical analogues on oxidation of human low density lipoprotein in vitro. Free Radical Biology & Medicine, 25, 839–847.

    Article  CAS  Google Scholar 

  • Scott, G. S., Cuzzocrea, S., Genovese, T., Koprowski, H., & Hooper, D. C. (2005). Uric acid protects against secondary damage after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 102, 3483–3488.

    Article  PubMed  CAS  Google Scholar 

  • Selim, M. H., & Ratan, R. R. (2004). The role of iron neurotoxicity in ischemic stroke. Ageing Research Reviews, 3, 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, H., Batine-Haberle, I., & Warner, D. S. (2002). Catalytic antioxidants as novel pharmacologic approaches to treatment of ischemic brain injury. Drug News & Perspectives, 15, 654–665.

    Article  CAS  Google Scholar 

  • Ste-Marie, L., Vachon, P., Vachon, L., Bemeur, C., Guertin, M. C., & Montgomery, J. (2000). Hydroxyl radical production in the cortex and striatum in a rat model of focal cerebral ischemia. The Canadian Journal of Neurological Sciences, 27, 152–159.

    PubMed  CAS  Google Scholar 

  • Stinefelt, B., Leonard, S. S., Blemings, K. P., Shi, X., & Klandorf, H. (2005). Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Annals of Clinical and Laboratory Science, 35, 37–45.

    PubMed  CAS  Google Scholar 

  • Toncev, G., Milicic, B., Toncev, S., & Samardzic, G. (2002). Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood-brain barrier dysfunction. European Journal of Neurology, 9, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Wannamethee, S. G. (2005). Serum uric acid and risk of coronary heart disease. Current Pharmaceutical Design, 11, 4125–4132.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z. F., Bruce-Keller, A. J., Goodman, Y., & Mattson, M. P. (1998). Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. Journal of Neuroscience Research, 53, 613–625.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Kobori, N., Aronowski, J., & Dash, P. K. (2006). Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neuroscience Letters, 393, 108–112.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Z., Lee, J. E., & Yenari, M. A. (2003). Stroke: Molecular mechanisms and potential targets for treatment. Current Molecular Medicine, 3, 361–372.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute on Aging Intramural Research Program. We thank Mohammed R Mughal for managing the mouse colony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Additional information

Frank Haberman, Sung-Chun Tang and Thiruma V. Arumugam contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberman, F., Tang, SC., Arumugam, T.V. et al. Soluble Neuroprotective Antioxidant Uric Acid Analogs Ameliorate Ischemic Brain Injury in Mice. Neuromol Med 9, 315–323 (2007). https://doi.org/10.1007/s12017-007-8010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-007-8010-1

Keywords

Navigation