NeuroMolecular Medicine

, Volume 9, Issue 3, pp 255–263 | Cite as

Differential Regulation of Smac/DIABLO and Hsp-70 during Brain Maturation

Original Paper


The heat shock protein (Hsp) system is a cell defense mechanism constitutively expressed at the basal state and essential for cell survival in response to damaging stimuli. Apoptosis is a physiological cell death program that preserves tissue homeostasis. We investigated the intrinsic pathway of apoptosis at various stages of brain maturation in CD-1 mice, triggered by two mitochondrial proapoptotic proteins, cytochrome c and Smac/DIABLO, and the pathway’s regulation by Hsp-70. Smac/DIABLO and Hsp-70 proteins were upregulated 2-fold and 1.5–3-fold, respectively, after birth. In contrast, in the presence of cytochrome c/2′-deoxyadenosine 5′-triphosphate (dATP), caspase activity in mouse brain cell-free extracts increased 90-fold and 61-fold, at fetal and neonatal stages, whereas no activation was detected 15 days postnatally or at any subsequent times. These results indicate that the activation pattern of the intrinsic pathway of apoptosis undergoes a marked shift during postnatal maturation.


Aging Apoptosis Brain maturation Caspase activation Cytochrome c-mediated apoptosis Development Hsp-70 regulation Intrinsic pathway Neuronal cell death Smac/DIABLO regulation 


  1. Adrain, C., Creagh, E. M., & Martin, S. J. (2001). Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO Journal, 20, 6627–6636.PubMedCrossRefGoogle Scholar
  2. Arnoult, D., Gaume, B., Karbowski, M., et al. (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO Journal, 22, 4385–4399.PubMedCrossRefGoogle Scholar
  3. Bartling, B., Lewensohn, R., & Zhivotovsky, B. (2004). Endogenously released Smac is insufficient to mediate cell death of human lung carcinoma in response to etoposide. Experimental Cell Research, 298, 83–95.PubMedCrossRefGoogle Scholar
  4. Beere, H. M. (2004). “The stress of dying”: The role of heat shock proteins in the regulation of apoptosis. Journal of Cell Science, 117, 2641–2651.PubMedCrossRefGoogle Scholar
  5. Beere, H. M., Wolf, B. B., Cain, K., et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.PubMedCrossRefGoogle Scholar
  6. Carson, J. P., Behnam, M., Sutton, J. N., et al. (2002). Smac is required for cytochrome c-induced apoptosis in prostate cancer LNCaP cells. Cancer Research, 62, 18–23.PubMedGoogle Scholar
  7. Chauhan, D., Hideshima, T., Rosen, S., et al. (2001). Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. Journal of Biological Chemistry, 276, 24453–24456.PubMedCrossRefGoogle Scholar
  8. Creagh, E. M., Murphy, B. M., Duriez, P. J., et al. (2004). Smac/Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis proteins. Journal of Biological Chemistry, 279, 26906–26914.PubMedCrossRefGoogle Scholar
  9. Deshmukh, M., Du, C., Wang, X., & Johnson, E. M. Jr. (2002). Exogenous smac induces competence and permits caspase activation in sympathetic neurons. Journal of Neuroscience, 22, 8018–8027.PubMedGoogle Scholar
  10. Dirsch, V. M., Muller, I. M., Eichhorst, S. T., et al. (2003). Cephalostatin 1 selectively triggers the release of Smac/DIABLO and subsequent apoptosis that is characterized by an increased density of the mitochondrial matrix. Cancer Research, 63, 8869–8876.PubMedGoogle Scholar
  11. Du, C., Fang, M., Li, Y., et al. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33–42.PubMedCrossRefGoogle Scholar
  12. Ekert, P. G., & Vaux, D. L. (2005). The mitochondrial death squad: Hardened killers or innocent bystanders? Current Opinion in Cell Biology, 17, 626–630.PubMedCrossRefGoogle Scholar
  13. Ferri, K. F., & Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nature Cell Biology, 3, E255–E263.PubMedCrossRefGoogle Scholar
  14. Garrido, C., Bruey, J. M., Fromentin, A., et al. (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB Journal, 13, 2061–2070.PubMedGoogle Scholar
  15. Gutsmann-Conrad, A., Heydari, A. R., You, S., & Richardson, A. (1998). The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Experimental Cell Research, 241, 404–413.PubMedCrossRefGoogle Scholar
  16. Gutsmann-Conrad, A., Pahlavani, M. A., Heydari, A. R., & Richardson, A. (1999). Expression of heat shock protein 70 decreases with age in hepatocytes and splenocytes from female rats. Mechanisms of Ageing and Development, 107, 255–270.PubMedCrossRefGoogle Scholar
  17. Hansen, T. M., Smith, D. J., & Nagley, P. (2006). Smac/DIABLO is not released from mitochondria during apoptotic signalling in cells deficient in cytochrome c. Cell Death and Differentiation, 13, 1181–1190.PubMedCrossRefGoogle Scholar
  18. Hu, X. L., Olsson, T., Johansson, I. M., et al. (2004). Dynamic changes of the anti- and pro-apoptotic proteins Bcl-w, Bcl-2, and Bax with Smac/Diablo mitochondrial release after photothrombotic ring stroke in rats. European Journal of Neuroscience, 20, 1177–1188.PubMedCrossRefGoogle Scholar
  19. Hunter, A. M., Kottachchi, D., Lewis, J., et al. (2003). A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac/DIABLO. Journal of Biological Chemistry, 278, 7494–7499.PubMedCrossRefGoogle Scholar
  20. Jin, Z., & El-Deiry, W. S. (2005). Overview of cell death signaling pathways. Cancer Biology and Therapy, 4, 139–163.PubMedCrossRefGoogle Scholar
  21. Kandasamy, K., Srinivasula, S. M., Alnemri, E. S., et al. (2003). Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: Differential regulation of cytochrome c and Smac/DIABLO release. Cancer Research, 63, 1712–1721.PubMedGoogle Scholar
  22. Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacological Therapy, 80, 183–201.CrossRefGoogle Scholar
  23. Kuan, C. Y., Roth, K. A., Flavell, R. A., & Rakic, P. (2000). Mechanisms of programmed cell death in the developing brain. Trends in Neuroscience, 23, 291–297.CrossRefGoogle Scholar
  24. Li, P., Nijhawan, D., Budihardjo, I., et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479–489.PubMedCrossRefGoogle Scholar
  25. Liu, X., Kim, C. N., Yang, J., et al. (1996). Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell, 86, 147–157.PubMedCrossRefGoogle Scholar
  26. Lotocki, G., Alonso, O. F., Frydel, B., et al. (2003). Monoubiquitination and cellular distribution of XIAP in neurons after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 23, 1129–1136.PubMedGoogle Scholar
  27. Maiello, M., Boeri, D., Sampietro, L. et al. (1998). Basal synthesis of heat shock protein 70 increases with age in rat kidneys. Gerontology, 44, 15–20.PubMedCrossRefGoogle Scholar
  28. McArdle, A., Dillmann, W. H., Mestril, R., et al. (2004). Overexpression of HSP-70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB Journal, 18, 355–357.PubMedGoogle Scholar
  29. Moore, S. A., Lopez, A., Richardson, A., & Pahlavani, M. A. (1998). Effect of age and dietary restriction on expression of heat shock protein 70 in rat alveolar macrophages. Mechanisms of Ageing and Development, 104, 59–73.PubMedCrossRefGoogle Scholar
  30. Okada, H., Suh, W. K., Jin, J., et al. (2002). Generation and characterization of Smac/DIABLO-deficient mice. Molecular and Cellular Biology, 22, 3509–3517.PubMedCrossRefGoogle Scholar
  31. Ota, K., Yakovlev, A. G., Itaya, A., et al. (2002). Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver. Journal of Biochemistry (Tokyo), 131, 131–135.Google Scholar
  32. Pandey, P., Farber, R., Nakazawa, A., et al. (2000). Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene, 19, 1975–1981.PubMedCrossRefGoogle Scholar
  33. Rehm, M., Dussmann, H., & Prehn, J. H. (2003). Real-time single cell analysis of Smac/DIABLO release during apoptosis. Journal of Cell Biology, 162, 1031–1043.PubMedCrossRefGoogle Scholar
  34. Saito, A., Hayashi, T., Okuno, S. et al. (2003). Interaction between XIAP and Smac/DIABLO in the mouse brain after transient focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 23, 1010–1019.PubMedGoogle Scholar
  35. Saito, A., Hayashi, T., Okuno, S., et al. (2004). Oxidative stress is associated with XIAP and Smac/DIABLO signaling pathways in mouse brains after transient focal cerebral ischemia. Stroke, 35, 1443–1448.PubMedCrossRefGoogle Scholar
  36. Saleh, A., Srinivasula, S. M., Acharya, S., et al. (1999). Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. Journal of Biological Chemistry, 274, 17941–17945.PubMedCrossRefGoogle Scholar
  37. Saleh, A., Srinivasula, S. M., Balkir, L., et al. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp-70. Nature Cell Biology, 2, 476–483.PubMedCrossRefGoogle Scholar
  38. Shibata, M., Hattori, H., Sasaki, T. et al. (2002). Subcellular localization of a promoter and an inhibitor of apoptosis (Smac/DIABLO and XIAP) during brain ischemia/reperfusion. Neuroreports, 13, 1985–1988.CrossRefGoogle Scholar
  39. Shigenaga, M. K., Hagen, T. M., & Ames, B. N. (1994). Oxidative damage and mitochondrial decay in aging. Proceedings of the National Academy of Sciences USA, 91, 10771–10778.CrossRefGoogle Scholar
  40. Shiozaki, E. N., & Shi, Y. (2004). Caspases, IAPs and Smac/DIABLO: Mechanisms from structural biology. Trends in Biochemical Sciences, 29, 486–494.PubMedCrossRefGoogle Scholar
  41. Siegelin, M., Touzani, O., Toutain, J., et al. (2005a). Induction and redistribution of XAF1, a new antagonist of XIAP in the rat brain after transient focal ischemia. Neurobiology of Disease, 20, 509–518.PubMedCrossRefGoogle Scholar
  42. Siegelin, M. D., Kossatz, L. S., Winckler, J., & Rami, A. (2005b). Regulation of XIAP and Smac/DIABLO in the rat hippocampus following transient forebrain ischemia. Neurochemistry International, 46, 41–51.PubMedCrossRefGoogle Scholar
  43. Skulachev, V. P. (2001). The programmed death phenomena, aging, and the Samurai law of biology. Experimental Gerontology, 36, 995–1024.PubMedCrossRefGoogle Scholar
  44. Srinivasula, S. M., Datta, P., Fan, X. J., et al. (2000). Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. Journal of Biological Chemistry, 275, 36152–36157.PubMedCrossRefGoogle Scholar
  45. Srinivasula, S. M., Hegde, R., Saleh, A., et al. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 410, 112–116.PubMedCrossRefGoogle Scholar
  46. Stoka, V., Chen, S. F., Turk, V., & Bredesen, D. E. (2005). Developmental shift in the apostat: Comparison of neurones and astrocytes. FEBS Letters, 579, 6147–6150.PubMedCrossRefGoogle Scholar
  47. Stoka, V., Turk, V., & Bredesen, D. E. (2006). Differential regulation of the intrinsic pathway of apoptosis in brain and liver during ageing. FEBS Letters, 580, 3739–3745.PubMedCrossRefGoogle Scholar
  48. Sugawara, T., Noshita, N., Lewen, A. et al. (2002). Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. Journal of Neuroscience, 22, 209–217.PubMedGoogle Scholar
  49. Takai, D., Inoue, K., Shisa, H. et al. (1995). Age-associated changes of mitochondrial translation and respiratory function in mouse brain. Biochemical and Biophysical Research Communications, 217, 668–674.PubMedCrossRefGoogle Scholar
  50. Tanaka, H., Yokota, H., Jover, T. et al. (2004). Ischemic preconditioning: Neuronal survival in the face of caspase-3 activation. Journal of Neuroscience, 24, 2750–2759.PubMedCrossRefGoogle Scholar
  51. Tandara, A. A., Kloeters, O., Kim, I., et al. (2006). Age effect on HSP-70: Decreased resistance to ischemic and oxidative stress in HDF. The Journal of Surgical Research, 132, 32–39.PubMedCrossRefGoogle Scholar
  52. van Loo, G., Saelens, X., van Gurp, M., et al. (2002). The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differentiation, 9, 1031–1042.CrossRefGoogle Scholar
  53. Verhagen, A. M., Ekert, P. G., Pakusch, M., et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102, 43–53.PubMedCrossRefGoogle Scholar
  54. Verhagen, A. M., Silke, J., Ekert, P. G., et al. (2002). HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. Journal of Biological Chemistry, 277, 445–454.PubMedCrossRefGoogle Scholar
  55. Yao, M., Nguyen, T. V., & Pike, C. J. (2005). Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. Journal of Neuroscience, 25, 1149–1158.PubMedCrossRefGoogle Scholar
  56. Yin, K. J., Lee, J. M., Chen, S. D., et al. (2002). Amyloid-beta induces Smac release via AP-1/Bim activation in cerebral endothelial cells. Journal of Neuroscience, 22, 9764–9770.PubMedGoogle Scholar
  57. Yakovlev, A. G., Ota, K., Wang, G., et al. (2001). Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. Journal of Neuroscience, 21, 7439–7446.PubMedGoogle Scholar
  58. Zhou, L. L., Zhou, L. Y., Luo, K. Q., & Chang, D. C. (2005). Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis, 10, 289–299.PubMedCrossRefGoogle Scholar
  59. Zhu, C., Wang, X., Xu, F., et al. (2005). The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differentiation, 12, 162–176.CrossRefGoogle Scholar
  60. Zou, H., Li, Y., Liu, X., & Wang, X. (1999). An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. Journal of Biological Chemistry, 274, 11549–11556.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Veronika Stoka
    • 1
    • 2
  • Vito Turk
    • 2
  • Dale E. Bredesen
    • 1
    • 3
  1. 1.Buck Institute for Age ResearchNovatoUSA
  2. 2.Department of Biochemistry, Molecular and Structural BiologyJ. Stefan InstituteLjubljanaSlovenia
  3. 3.Department of NeurologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations