Skip to main content

Advertisement

Log in

Impact of Air Pollution on Atopic Dermatitis: A Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Air pollution is associated with multiple health problems worldwide, contributing to increased morbidity and mortality. Atopic dermatitis (AD) is a common allergic disease, and increasing evidence has revealed a role of air pollution in the development of atopic dermatitis. Air pollutants are derived from several sources, including harmful gases such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO), as well as particulate matter (PM) of various sizes, and bioaerosols. Possible mechanisms linking air pollution to atopic dermatitis include damage to the skin barrier through oxidative stress, increased water loss, physicochemical injury, and an effect on skin microflora. Furthermore, oxidative stress triggers immune dysregulation, leading to enhanced sensitization to allergens. There have been multiple studies focusing on the association between various types of air pollutants and atopic dermatitis. Since there are many confounders in the current research, such as climate, synergistic effects of mixed pollutants, and diversity of study population, it is not surprising that inconsistencies exist between different studies regarding AD and air pollution. Still, it is generally accepted that air pollution is a risk factor for AD. Future studies should focus on how air pollution leads to AD as well as effective intervention measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Cabanillas B, Brehler AC, Novak N (2017) Atopic dermatitis phenotypes and the need for personalized medicine. Curr Opin Allergy Clin Immunol 17(4):309–315

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weidinger S, Novak N (2016) Atopic dermatitis. Lancet 387(10023):1109–1122

    Article  PubMed  Google Scholar 

  3. Mei-Yen Yong A, Tay Y-K (2017) Atopic dermatitis: Racial and ethnic differences. Dermatol Clin 35(3):395–402

    Article  CAS  PubMed  Google Scholar 

  4. Abuabara K et al (2018) The prevalence of atopic dermatitis beyond childhood: A systematic review and meta-analysis of longitudinal studies. Allergy 73(3):696–704

    Article  CAS  PubMed  Google Scholar 

  5. Kantor R, Silverberg JI (2017) Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev Clin Immunol 13(1):15–26

    Article  CAS  PubMed  Google Scholar 

  6. Cohen AJ et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389(10082):1907–1918

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu C et al (2019) Ambient particulate air pollution and daily mortality in 652 Cities. N Engl J Med 381(8):705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Puri P et al (2017) Effects of air pollution on the skin: A review. Indian J Dermatol Venereol Leprol 83(4):415–423

    Article  PubMed  Google Scholar 

  9. USEPA (2016) NArAQS table. USEPA

  10. Darby S et al (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330(7485):223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turner MC et al (2020) Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J Clin

  12. Ahn K (2014) The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol 134(5):993–9;discussion 1000

  13. Paciência I et al (2016) A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. J Toxicol Environ Health B Crit Rev 19(2):47–64

    Article  PubMed  Google Scholar 

  14. Matsui EC, Abramson SL, Sandel MT (2016) Indoor environmental control practices and asthma management. Pediatrics 138(5)

  15. Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383(9928):1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hendricks AJ, Eichenfield LF, Shi VY (2020) The impact of airborne pollution on atopic dermatitis: a literature review. Br J Dermatol 183(1):16–23

    Article  CAS  PubMed  Google Scholar 

  17. Ji H, Li XK (2016) Oxidative stress in atopic dermatitis. Oxid Med Cell Longev 2016:2721469

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dong YM et al (2019) Skin inflammation induced by ambient particulate matter in China. Sci Total Environ 682:364–373

    Article  CAS  PubMed  Google Scholar 

  19. Shin JW et al (2020) Resveratrol inhibits particulate matter-induced inflammatory responses in human keratinocytes. Int J Mol Sci 21(10)

  20. Hyun YJ et al (2019) 3,4-Dicaffeoylquinic acid protects human keratinocytes against environmental oxidative damage. J Funct Foods 52:430–441

    Article  CAS  Google Scholar 

  21. Tsukahara H et al (2003) High levels of urinary pentosidine, an advanced glycation end product, in children with acute exacerbation of atopic dermatitis: relationship with oxidative stress. Metabolism 52(12):1601–1605

    Article  CAS  PubMed  Google Scholar 

  22. Tsukahara H et al (2003) Oxidative stress and altered antioxidant defenses in children with acute exacerbation of atopic dermatitis. Life Sci 72(22):2509–2516

    Article  CAS  PubMed  Google Scholar 

  23. Niwa Y et al (2003) Protein oxidative damage in the stratum corneum: Evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan. Br J Dermatol 149(2):248–254

    Article  CAS  PubMed  Google Scholar 

  24. Chung J, Oh SY, Shin YK (2009) Association of glutathione-S-transferase polymorphisms with atopic dermatitis risk in preschool age children. Clin Chem Lab Med 47(12):1475–1481

    Article  CAS  PubMed  Google Scholar 

  25. Amin MN et al (2015) Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema. Arch Dermatol Res 307(7):617–623

    Article  CAS  PubMed  Google Scholar 

  26. Song S et al (2013) Exposure to ambient ultrafine particles and urinary 8-hydroxyl-2-deoxyguanosine in children with and without eczema. Sci Total Environ 458–460:408–413

    Article  PubMed  Google Scholar 

  27. Sivaranjani N, Rao SV, Rajeev G (2013) Role of reactive oxygen species and antioxidants in atopic dermatitis. J Clin Diagn Res 7(12):2683–2685

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bertino L et al (2020) Oxidative stress and atopic dermatitis. Antioxidants (Basel) 9(3)

  29. Choi H et al (2008) Curcumin attenuates cytochrome P450 induction in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin by ROS-dependently degrading AhR and ARNT. Cancer Sci 99(12):2518–2524

    Article  CAS  PubMed  Google Scholar 

  30. Wullaert A, Bonnet MC, Pasparakis M (2011) NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 21(1):146–158

    Article  CAS  PubMed  Google Scholar 

  31. Cheng W et al (2021) Inhibition of inflammation-induced injury and cell migration by coelonin and militarine in PM(2.5)-exposed human lung alveolar epithelial A549 cells. Eur J Pharmacol 896:173931

  32. Tsuji G et al (2011) An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. J Dermatol Sci 62(1):42–49

    CAS  PubMed  Google Scholar 

  33. Jeong SH et al (2010) Up-regulation of TNF-alpha secretion by cigarette smoke is mediated by Egr-1 in HaCaT human keratinocytes. Exp Dermatol 19(8):e206–e212

    Article  PubMed  Google Scholar 

  34. Orciani M et al (2017) T helper (Th)1, Th17 and Th2 imbalance in mesenchymal stem cells of adult patients with atopic dermatitis: at the origin of the problem. Br J Dermatol 176(6):1569–1576

    Article  CAS  PubMed  Google Scholar 

  35. Kruk J, Duchnik E (2014) Oxidative stress and skin diseases: possible role of physical activity. Asian Pac J Cancer Prev 15(2):561–568

    Article  PubMed  Google Scholar 

  36. Laudańska H, Reduta T, Szmitkowska D (2003) Evaluation of skin barrier function in allergic contact dermatitis and atopic dermatitis using method of the continuous TEWL measurement. Rocz Akad Med Bialymst 48:123–127

    PubMed  Google Scholar 

  37. Montero-Vilchez T et al (2021) Skin barrier function in psoriasis and atopic dermatitis: transepidermal water loss and temperature as useful tools to assess disease severity. J Clin Med 10(2)

  38. Kelleher M et al (2015) Skin barrier dysfunction measured by transepidermal water loss at 2 days and 2 months predates and predicts atopic dermatitis at 1 year. J Allergy Clin Immunol 135(4):930–5.e1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Horimukai K et al (2016) Transepidermal water loss measurement during infancy can predict the subsequent development of atopic dermatitis regardless of filaggrin mutations. Allergol Int 65(1):103–108

    Article  CAS  PubMed  Google Scholar 

  40. Pan TL et al (2015) The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 78(1):51–60

    Article  CAS  PubMed  Google Scholar 

  41. Woo YR et al (2020) Air pollution and Atopic Dermatitis (AD): the impact of Particulate Matter (PM(10)) on an AD mouse-model. Int J Mol Sci 21(17)

  42. Douwes J et al (2017) Determinants of hand dermatitis, urticaria and loss of skin barrier function in professional cleaners in New Zealand. Int J Occup Environ Health 23(2):110–119

    Article  PubMed  Google Scholar 

  43. Xian M et al (2016) Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J Allergy Clin Immunol 138(3):890-893.e9

    Article  CAS  PubMed  Google Scholar 

  44. Wang M et al (2019) Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J Allergy Clin Immunol 143(5):1892–1903

    Article  CAS  PubMed  Google Scholar 

  45. McAleer MA, Irvine AD (2013) The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol 131(2):280–291

    Article  CAS  PubMed  Google Scholar 

  46. Elias PM, Schmuth M (2009) Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol 9(5):437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Palmer CN et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38(4):441–446

    Article  CAS  PubMed  Google Scholar 

  48. Flohr C et al (2010) Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age. Br J Dermatol 163(6):1333–1336

    Article  CAS  PubMed  Google Scholar 

  49. Eberlein-König B et al (1998) Influence of airborne nitrogen dioxide or formaldehyde on parameters of skin function and cellular activation in patients with atopic eczema and control subjects. J Allergy Clin Immunol 101(1 Pt 1):141–143

    Article  PubMed  Google Scholar 

  50. Valacchi G et al (2012) Cutaneous responses to environmental stressors. Ann N Y Acad Sci 1271(1):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Green M et al (2022) Transepidermal water loss (TEWL): environment and pollution—A systematic review. Skin Health and Disease n/a(n/a):e104

  52. Akdeniz M et al (2018) Transepidermal water loss in healthy adults: a systematic review and meta-analysis update. Br J Dermatol 179(5):1049–1055

    Article  CAS  PubMed  Google Scholar 

  53. Peer RP, Burli A, Maibach HI (2022) Unbearable transepidermal water loss (TEWL) experimental variability: why? Arch Dermatol Res 314(2):99–119

    Article  PubMed  Google Scholar 

  54. Denda M et al (1998) Low humidity stimulates epidermal DNA synthesis and amplifies the hyperproliferative response to barrier disruption: implication for seasonal exacerbations of inflammatory dermatoses. J Invest Dermatol 111(5):873–878

    Article  CAS  PubMed  Google Scholar 

  55. Langan SM, Irvine AD (2013) Childhood eczema and the importance of the physical environment. J Invest Dermatol 133(7):1706–1709

    Article  CAS  PubMed  Google Scholar 

  56. Cork MJ et al (2009) Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129(8):1892–1908

    Article  CAS  PubMed  Google Scholar 

  57. Boralevi F et al (2008) Epicutaneous aeroallergen sensitization in atopic dermatitis infants - determining the role of epidermal barrier impairment. Allergy 63(2):205–210

    Article  CAS  PubMed  Google Scholar 

  58. Huang N et al (2020) Traffic-derived air pollution compromises skin barrier function and stratum corneum redox status: A population study. J Cosmet Dermatol 19(7):1751–1759

    Article  PubMed  Google Scholar 

  59. Shamsipour M et al (2020) Short-term effects of exposure to air pollution on biophysical parameters of skin in a panel of healthy adults. Dermatol Ther 33(6):e14536

    Article  CAS  PubMed  Google Scholar 

  60. Oh SJ et al (2021) Effects of particulate matter on healthy skin: a comparative study between high- and low-particulate matter periods. Ann Dermatol 33(3):263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weidinger S et al (2018) Atopic dermatitis. Nat Rev Dis Primers 4(1):1

    Article  PubMed  Google Scholar 

  62. Langan SM, Irvine AD, Weidinger S (2020) Atopic dermatitis. Lancet 396(10247):345–360

    Article  CAS  PubMed  Google Scholar 

  63. Gandhi NA et al (2016) Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov 15(1):35–50

    Article  CAS  PubMed  Google Scholar 

  64. Looman KIM et al (2020) Associations of Th2, Th17, Treg cells, and IgA(+) memory B cells with atopic disease in children: the generation R study. Allergy 75(1):178–187

    Article  CAS  PubMed  Google Scholar 

  65. Miller RL, Peden DB (2014) Environmental effects on immune responses in patients with atopy and asthma. J Allergy Clin Immunol 134(5):1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ryu YS et al (2019) Particulate matter induces inflammatory cytokine production via activation of NFκB by TLR5-NOX4-ROS signaling in human skin keratinocyte and mouse skin. Redox Biol 21:101080

    Article  CAS  PubMed  Google Scholar 

  67. Cervellati F et al (2020) Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 240:124746

    Article  CAS  PubMed  Google Scholar 

  68. Go HN et al (2020) Effects of chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) on Th2/Th17-related immune modulation in an atopic dermatitis mouse model. Sci Rep 10(1):4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmidt-Weber CB, Akdis M, Akdis CA (2007) TH17 cells in the big picture of immunology. J Allergy Clin Immunol 120(2):247–254

    Article  CAS  PubMed  Google Scholar 

  70. Morgenstern V et al (2008) Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 177(12):1331–1337

    Article  PubMed  Google Scholar 

  71. Bowatte G et al (2015) The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy 70(3):245–256

    Article  CAS  PubMed  Google Scholar 

  72. Knor T, Meholjić-Fetahović A, Mehmedagić A (2011) Stratum corneum hydration and skin surface pH in patients with atopic dermatitis. Acta Dermatovenerol Croat 19(4):242–247

    CAS  PubMed  Google Scholar 

  73. Kim J et al (2016) Airborne formaldehyde causes skin barrier dysfunction in atopic dermatitis. Br J Dermatol 175(2):357–363

    Article  CAS  PubMed  Google Scholar 

  74. Cecchi L, D’Amato G, Annesi-Maesano I (2018) External exposome and allergic respiratory and skin diseases. J Allergy Clin Immunol 141(3):846–857

    Article  PubMed  Google Scholar 

  75. Jinnestål CL et al (2014) Skin barrier impairment correlates with cutaneous Staphylococcus aureus colonization and sensitization to skin-associated microbial antigens in adult patients with atopic dermatitis. Int J Dermatol 53(1):27–33

    Article  PubMed  Google Scholar 

  76. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16(3):143–155

    Article  CAS  PubMed  Google Scholar 

  77. Janvier X et al (2020) Deleterious effects of an air pollutant (NO(2)) on a selection of commensal skin bacterial strains, potential contributor to dysbiosis? Front Microbiol 11:591839

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang CC et al (2015) Prenatal air pollutant exposure and occurrence of atopic dermatitis. Br J Dermatol 173(4):981–988

    Article  CAS  PubMed  Google Scholar 

  79. Pénard-Morand C et al (2010) Long-term exposure to close-proximity air pollution and asthma and allergies in urban children. Eur Respir J 36(1):33–40

    Article  PubMed  Google Scholar 

  80. Hasunuma H et al (2014) Decline of ambient air pollution levels due to measures to control automobile emissions and effects on the prevalence of respiratory and allergic disorders among children in Japan. Environ Res 131:111–118

    Article  CAS  PubMed  Google Scholar 

  81. Kathuria P, Silverberg JI (2016) Association of pollution and climate with atopic eczema in US children. Pediatr Allergy Immunol 27(5):478–485

    Article  CAS  PubMed  Google Scholar 

  82. Belugina IN et al (2018) Outdoor environment, ozone, radionuclide-associated aerosols and incidences of infantile eczema in Minsk. Belarus J Eur Acad Dermatol Venereol 32(11):1977–1985

    Article  CAS  PubMed  Google Scholar 

  83. Guo Q et al (2019) The interactive effects between air pollution and meteorological factors on the hospital outpatient visits for atopic dermatitis in Beijing, China: a time-series analysis. J Eur Acad Dermatol Venereol 33(12):2362–2370

    Article  CAS  PubMed  Google Scholar 

  84. Liu W et al (2016) Associations of gestational and early life exposures to ambient air pollution with childhood atopic eczema in Shanghai. China Sci Total Environ 572:34–42

    Article  CAS  PubMed  Google Scholar 

  85. Park SK, Kim JS, Seo HM (2022) Exposure to air pollution and incidence of atopic dermatitis in the general population: A national population-based retrospective cohort study. J Am Acad Dermatol 87(6):1321–1327

    Article  CAS  PubMed  Google Scholar 

  86. Lopez DJ et al (2021) Association between ambient air pollution and development and persistence of atopic and non-atopic eczema in a cohort of adults. Allergy 76(8):2524–2534

    Article  CAS  PubMed  Google Scholar 

  87. Hu Y et al (2022) Environmental Exposure and Childhood Atopic Dermatitis in Shanghai: A Season-Stratified Time-Series Analysis. Dermatology 238(1):101–108

    Article  PubMed  Google Scholar 

  88. Patella V et al (2020) Atopic dermatitis severity during exposure to air pollutants and weather changes with an Artificial Neural Network (ANN) analysis. Pediatr Allergy Immunol 31(8):938–945

    Article  PubMed  Google Scholar 

  89. Wang J et al (2022) Eczema, facial erythema, and seborrheic dermatitis symptoms among young adults in China in relation to ambient air pollution, climate, and home environment. Indoor Air 32(1):e12918

    Article  CAS  PubMed  Google Scholar 

  90. Tang KT et al (2017) Adult atopic dermatitis and exposure to air pollutants-a nationwide population-based study. Ann Allergy Asthma Immunol 118(3):351–355

    Article  PubMed  Google Scholar 

  91. Kim J et al (2016) Association of carbon monoxide levels with allergic diseases in children. Allergy Asthma Proc 37(1):e1-7

    Article  CAS  PubMed  Google Scholar 

  92. Kim YM et al (2017) Short-term effects of weather and air pollution on atopic dermatitis symptoms in children: A panel study in Korea. PLoS One 12(4):e0175229

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kim YM et al (2017) Comparison of diverse estimation methods for personal exposure to air pollutants and associations with allergic symptoms: The Allergy & Gene-Environment Link (ANGEL) study. Sci Total Environ 579:1127–1136

    Article  CAS  PubMed  Google Scholar 

  94. Noh SR et al (2019) Spectrum of susceptibility to air quality and weather in individual children with atopic dermatitis. Pediatr Allergy Immunol 30(2):179–187

    Article  PubMed  Google Scholar 

  95. Lee JY et al (2018) Preventive effect of residential green space on infantile atopic dermatitis associated with prenatal air pollution exposure. Int J Environ Res Public Health 15(1)

  96. Schnass W et al (2018) Traffic-related air pollution and eczema in the elderly: Findings from the SALIA cohort. Int J Hyg Environ Health 221(6):861–867

    Article  CAS  PubMed  Google Scholar 

  97. Ye C et al (2022) Air pollution and weather conditions are associated with daily outpatient visits of atopic dermatitis in shanghai, china. Dermatology p. 1–11

  98. Park TH et al (2022) Associations of particulate matter with atopic dermatitis and chronic inflammatory skin diseases in South Korea. Clin Exp Dermatol 47(2):325–334

    Article  CAS  PubMed  Google Scholar 

  99. Baek JO, Cho J, Roh JY (2021) Associations between ambient air pollution and medical care visits for atopic dermatitis. Environ Res 195:110153

    Article  CAS  PubMed  Google Scholar 

  100. Wang HL et al (2021) Association between air pollution and atopic dermatitis in Guangzhou, China: modification by age and season. Br J Dermatol 184(6):1068–1076

    Article  CAS  PubMed  Google Scholar 

  101. Kim YM et al (2021) Harmful Effect of Indoor Formaldehyde on Atopic Dermatitis in Children: A Longitudinal Study. Allergy Asthma Immunol Res 13(3):468–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. WHO (2005) Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. WHO

  103. Kim KH, Kabir E, Kabir S (2015) A review on the human health impact of airborne particulate matter. Environ Int 74:136–143

    Article  CAS  PubMed  Google Scholar 

  104. Russell AG et al (2018) Impacts of Regulations on Air Quality and Emergency Department Visits in the Atlanta Metropolitan Area, 1999–2013. Res Rep Health Eff Inst 195:1–93

    Google Scholar 

  105. Hasheminassab S et al (2013) Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin. Atmos Environ 79:529–539

    Article  CAS  Google Scholar 

  106. Shah L et al (2016) Use of a Robotic Sampler (PIPER) for Evaluation of Particulate Matter Exposure and Eczema in Preschoolers. Int J Environ Res Public Health 13(2):242

    Article  PubMed  PubMed Central  Google Scholar 

  107. Song S et al (2011) Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis. Environ Res 111(3):394–399

    Article  CAS  PubMed  Google Scholar 

  108. Oh I et al (2018) Association between particulate matter concentration and symptoms of atopic dermatitis in children living in an industrial urban area of South Korea. Environ Res 160:462–468

    Article  CAS  PubMed  Google Scholar 

  109. Kim YM et al (2018) The effects of particulate matter on atopic dermatitis symptoms are influenced by weather type: Application of spatial synoptic classification (SSC). Int J Hyg Environ Health 221(5):823–829

    Article  CAS  PubMed  Google Scholar 

  110. Ngoc LTN et al (2017) Systematic review and meta-analysis of human skin diseases due to particulate matter. Int J Environ Res Public Health 14(12)

  111. Fadadu RP et al (2021) Association of wildfire air pollution and health care use for atopic dermatitis and itch. JAMA Dermatol 157(6):658–666

    Article  PubMed  Google Scholar 

  112. Min KD et al (2020) Association between exposure to traffic-related air pollution and pediatric allergic diseases based on modeled air pollution concentrations and traffic measures in Seoul, Korea: a comparative analysis. Environ Health 19(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schäfer T et al (1996) Atopic eczema and other manifestations of atopy: results of a study in East and West Germany. Allergy 51(8):532–539

    Article  PubMed  Google Scholar 

  114. Miyake Y et al (2010) Residential proximity to main roads during pregnancy and the risk of allergic disorders in Japanese infants: the osaka maternal and child health study. Pediatr Allergy Immunol 21(1 Pt 1):22–28

    Article  PubMed  Google Scholar 

  115. Sriyaraj K, Priest N, Shutes B (2008) Environmental factors influencing the prevalence of respiratory diseases and allergies among schoolchildren in Chiang Mai. Thailand Int J Environ Health Res 18(2):129–148

    Article  PubMed  Google Scholar 

  116. Yi SJ et al (2017) Association between Exposure to traffic-related air pollution and prevalence of allergic diseases in children, Seoul. Korea Biomed Res Int 2017:4216107

    PubMed  Google Scholar 

  117. Lee YL et al (2008) Traffic-related air pollution, climate, and prevalence of eczema in Taiwanese school children. J Invest Dermatol 128(10):2412–2420

    Article  CAS  PubMed  Google Scholar 

  118. Weschler CJ, Carslaw N (2018) Indoor chemistry. Environ Sci Technol 52(5):2419–2428

    Article  CAS  PubMed  Google Scholar 

  119. Bönisch U et al (2012) Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model. PLoS One 7(7):e39817

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kwon JH et al (2015) Indoor total volatile organic compounds exposure at 6 months followed by atopic dermatitis at 3 years in children. Pediatr Allergy Immunol 26(4):352–358

    Article  PubMed  Google Scholar 

  121. Cooke TF (1991) Indoor air pollutants. A literature review Rev Environ Health 9(3):137–160

    CAS  PubMed  Google Scholar 

  122. Tagiyeva N, Sheikh A (2014) Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults. Expert Rev Clin Immunol 10(12):1611–1639

    Article  CAS  PubMed  Google Scholar 

  123. Wang C et al (2021) Association of exposure to hydrocarbon air pollution with the incidence of atopic dermatitis in children. Ital J Pediatr 47(1):202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim J et al (2013) Symptoms of atopic dermatitis are influenced by outdoor air pollution. J Allergy Clin Immunol 132(2):495–8.e1

    Article  CAS  PubMed  Google Scholar 

  125. Zhou C et al (2013) The relationships between ambient air pollutants and childhood asthma and eczema are modified by emotion and conduct problems. Ann Epidemiol 23(12):778–783

    Article  PubMed  Google Scholar 

  126. Lee JH et al (2012) Surveillance of home environment in children with atopic dermatitis: a questionnaire survey. Asia Pac Allergy 2(1):59–66

    Article  PubMed  PubMed Central  Google Scholar 

  127. Weisse K et al (2012) The LINA cohort: indoor chemical exposure, circulating eosinophil/basophil (Eo/B) progenitors and early life skin manifestations. Clin Exp Allergy 42(9):1337–1346

    Article  CAS  PubMed  Google Scholar 

  128. Araki A et al (2014) Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants. Indoor Air 24(1):3–15

    Article  CAS  PubMed  Google Scholar 

  129. Hsu NY et al (2012) Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air 22(3):186–199

    Article  CAS  PubMed  Google Scholar 

  130. Matsunaga I et al (2008) Ambient formaldehyde levels and allergic disorders among Japanese pregnant women: baseline data from the Osaka maternal and child health study. Ann Epidemiol 18(1):78–84

    Article  PubMed  Google Scholar 

  131. Choi H et al (2010) Common household chemicals and the allergy risks in pre-school age children. PLoS One 5(10):e13423

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lovreglio P et al (2009) Indoor formaldehyde and acetaldehyde levels in the province of Bari, South Italy, and estimated health risk. J Environ Monit 11(5):955–961

    Article  CAS  PubMed  Google Scholar 

  133. Tang KT et al (2020) The relationship between exposure to polycyclic aromatic hydrocarbons and adult atopic dermatitis. Asian Pac J Allergy Immunol

  134. Kim SY, Sim S, Choi HG (2017) Atopic dermatitis is associated with active and passive cigarette smoking in adolescents. PLoS One 12(11):e0187453

    Article  PubMed  PubMed Central  Google Scholar 

  135. Abdualrasool M et al (2018) Exposure to Environmental Tobacco Smoke and Prevalence of Atopic Dermatitis among Adolescents in Kuwait. Dermatology 234(5–6):186–191

    Article  PubMed  Google Scholar 

  136. Jing D et al (2020) Associations of second-hand smoke exposure with hand eczema and atopic dermatitis among college students in China. Sci Rep 10(1):17400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tanaka K et al (2017) Pre- and postnatal smoking exposure and risk of atopic eczema in young japanese children: a prospective prebirth cohort Study. Nicotine Tob Res 19(7):804–809

    PubMed  Google Scholar 

  138. Dotterud CK et al (2013) The impact of pre- and postnatal exposures on allergy related diseases in childhood: a controlled multicentre intervention study in primary health care. BMC Public Health 13:123

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lee CH et al (2011) Lifetime exposure to cigarette smoking and the development of adult-onset atopic dermatitis. Br J Dermatol 164(3):483–489

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Herberth G et al (2014) Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 133(2):543–550

    Article  CAS  PubMed  Google Scholar 

  141. Wang IJ et al (2013) Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy 43(5):535–543

    Article  CAS  PubMed  Google Scholar 

  142. Kummer V, Thiel WR (2008) Bioaerosols–sources and control measures. Int J Hyg Environ Health 211(3–4):299–307

    Article  PubMed  Google Scholar 

  143. Araki A et al (2012) The relationship between exposure to microbial volatile organic compound and allergy prevalence in single-family homes. Sci Total Environ 423:18–26

    Article  CAS  PubMed  Google Scholar 

  144. Kim KH, Kabir E, Jahan SA (2018) Airborne bioaerosols and their impact on human health. J Environ Sci (China) 67:23–35

    Article  CAS  PubMed  Google Scholar 

  145. Kallawicha K et al (2016) Exposure to ambient bioaerosols is associated with allergic skin diseases in Greater Taipei residents. Environ Pollut 216:845–850

    Article  CAS  PubMed  Google Scholar 

  146. Chao L et al (2022) Effects of ambient temperature on outpatient visits for dermatitis in Xinxiang, China: a time-series analysis. Environ Sci Pollut Res Int 29(11):15999–16005

    Article  PubMed  Google Scholar 

  147. Hu Y et al (2021) Environmental exposure and childhood atopic dermatitis in shanghai: a season-stratified time-series analysis. Dermatology p. 1–8

  148. Poole JA et al (2019) Impact of weather and climate change with indoor and outdoor air quality in asthma: a work group report of the AAAAI environmental exposure and respiratory health committee. J Allergy Clin Immunol 143(5):1702–1710

    Article  PubMed  Google Scholar 

  149. Hu Y et al (2020) Relative impact of meteorological factors and air pollutants on childhood allergic diseases in Shanghai. China Sci Total Environ 706:135975

    Article  CAS  PubMed  Google Scholar 

  150. Ruokolainen L et al (2015) Green areas around homes reduce atopic sensitization in children. Allergy 70(2):195–202

    Article  CAS  PubMed  Google Scholar 

  151. Rook GA (2013) Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci U S A 110(46):18360–18367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hurault G et al (2021) Impact of environmental factors in predicting daily severity scores of atopic dermatitis. Clin Transl Allergy 11(2):e12019

    Article  PubMed  PubMed Central  Google Scholar 

  153. Huang Y et al (2021) Prenatal exposure to air pollutants and childhood atopic dermatitis and allergic rhinitis adopting machine learning approaches: 14-year follow-up birth cohort study. Sci Total Environ 777:145982

    Article  CAS  PubMed  Google Scholar 

  154. Shen H et al (2021) Individual and population level protection from particulate matter exposure by wearing facemasks. Environ Int 146:106026

    Article  CAS  PubMed  Google Scholar 

  155. Carlsten C et al (2020) Personal strategies to minimise effects of air pollution on respiratory health: advice for providers, patients and the public. Eur Respir J 55(6)

  156. Love WE, Nedorost ST (2009) Fabric preferences of atopic dermatitis patients. Dermatitis 20(1):29–33

    Article  PubMed  Google Scholar 

  157. Sanda T et al (1992) Effectiveness of house dust-mite allergen avoidance through clean room therapy in patients with atopic dermatitis. J Allergy Clin Immunol 89(3):653–657

    Article  CAS  PubMed  Google Scholar 

  158. Yoon S-H et al (2011) The environmental and educational management effects of atopic dermatitis in a seoul elementary school. Pard 21(4):285–293

  159. Kim SH et al (2014) Mold occurring on the air cleaner high-efficiency particulate air filters used in the houses of child patients with atopic dermatitis. Mycobiology 42(3):286–290

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yang W et al (2019) China’s pathway to a low carbon economy. Carbon Balance Manag 14(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  161. Sharma M, Dasappa S (2017) Emission reduction potentials of improved cookstoves and their issues in adoption: An Indian outlook. J Environ Manage 204(Pt 1):442–453

    Article  PubMed  Google Scholar 

  162. Ambasta A, Buonocore JJ (2018) Carbon pricing: a win-win environmental and public health policy. Can J Public Health 109(5–6):779–781

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The figures are created with BioRender.com.

Funding

This work was supported by the Beijing Natural Science Foundation [grant number 7191008], the National Natural Science Foundation of China [grant number 81971515], and CAMS Innovation Fund for Medical Sciences [grant number 2020-I2M-C&T-B-001].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Chang, Rui Tang or Jin-Lyu Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 137 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Dai, Y., Akar-Ghibril, N. et al. Impact of Air Pollution on Atopic Dermatitis: A Comprehensive Review. Clinic Rev Allerg Immunol 65, 121–135 (2023). https://doi.org/10.1007/s12016-022-08957-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-022-08957-7

Keywords

Navigation