Skip to main content

Advertisement

Log in

Inflammaging and Osteoarthritis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Osteoarthritis is a highly prevalent disease particularly in subjects over 65 years of age worldwide. While in the past it was considered a mere consequence of cartilage degradation leading to anatomical and functional joint impairment, in recent decades, there has been a more dynamic view with the synovium, the cartilage, and the subchondral bone producing inflammatory mediators which ultimately lead to cartilage damage. Inflammaging is defined as a chronic, sterile, low-grade inflammation state driven by endogenous signals in the absence of infections, occurring with aging. This chronic status is linked to the production of reactive oxygen species and molecules involved in the development of age-related disease such as cancer, diabetes, and cardiovascular and neurodegenerative diseases. Inflammaging contributes to osteoarthritis development where both the innate and the adaptive immune response are involved. Elevated systemic and local inflammatory cytokines and senescent molecules promote cartilage degradation, and antigens derived from damaged joints further trigger inflammation through inflammasome activation. B and T lymphocyte populations also change with inflammaging and OA, with reduced regulatory functions, thus implicating self-reactivity as an additional mechanism of joint damage. The discovery of the underlying pathogenic pathways may help to identify potential therapeutic targets for the management or the prevention of osteoarthritis. We will provide a comprehensive evaluation of the current literature on the role of inflammaging in osteoarthritis and discuss the emerging therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Bland JH, Cooper SM (1984) Osteoarthritis: a review of the cell biology involved and evidence for reversibility. Management rationally related to known genesis and pathophysiology. Semin Arthritis Rheum 14:106–133

    Article  CAS  PubMed  Google Scholar 

  2. Hutton CW (1989) Osteoarthritis: the cause not result of joint failure? Ann Rheum Dis 48:958–961. https://doi.org/10.1136/ard.48.11.958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Litwic A, Edwards MH, Dennison EM, Cooper C (2013) Epidemiology and burden of osteoarthritis. Br Med Bull 105:185–199. https://doi.org/10.1093/bmb/lds038

    Article  PubMed  Google Scholar 

  4. Altman R, Alarcón G, Appelrouth D et al (1991) The American college of rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 34:505–514. https://doi.org/10.1002/art.1780340502

    Article  CAS  PubMed  Google Scholar 

  5. Altman R, Asch E, Bloch D et al (1986) Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum 29:1039–1049. https://doi.org/10.1002/art.1780290816

    Article  CAS  PubMed  Google Scholar 

  6. Altman R, Alarcon G, Appelrouth D et al (1990) The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. Arthritis Rheum 33:1601–1610. https://doi.org/10.1002/art.1780331101

    Article  CAS  PubMed  Google Scholar 

  7. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16:494–502. https://doi.org/10.1136/ard.16.4.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma L, Chmiel JS, Almagor O et al (2014) Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol 66:1811–1819. https://doi.org/10.1002/art.38611

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hunter DJ, March L, Chew M (2020) Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 396:1711–1712

    Article  PubMed  Google Scholar 

  11. Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26:355–369

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II Arthritis Rheum 58:26–35. https://doi.org/10.1002/art.23176

    Article  PubMed  Google Scholar 

  13. Zhang Y, Niu J, Kelly-Hayes M et al (2002) Prevalence of symptomatic hand osteoarthritis and its impact on functional status among the elderly: the Framingham study. Am J Epidemiol 156:1021–1027. https://doi.org/10.1093/aje/kwf141

    Article  PubMed  Google Scholar 

  14. Xie F, Kovic B, Jin X et al (2016) Economic and humanistic burden of osteoarthritis: A systematic review of large sample studies. Pharmacoeconomics 34:1087–1100

    Article  PubMed  Google Scholar 

  15. Hubertsson J, Turkiewicz A, Petersson IF, Englund M (2017) Understanding occupation, sick leave, and disability pension due to knee and hip osteoarthritis from a sex perspective. Arthritis Care Res 69:226–233. https://doi.org/10.1002/acr.22909

    Article  Google Scholar 

  16. Cross M, Smith E, Hoy D et al (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73:1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763

    Article  PubMed  Google Scholar 

  17. Haan MN, Lee A, Odden MC et al (2016) Gender differences in the combined effects of cardiovascular disease and osteoarthritis on progression to functional impairment in older Mexican Americans. J Gerontol - Ser A Biol Sci Med Sci 71:1089–1095. https://doi.org/10.1093/gerona/glw014

    Article  Google Scholar 

  18. Park JI, Jung HH (2017) Estimation of years lived with disability due to noncommunicable diseases and injuries using a population-representative survey. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0172001

  19. Veronese N, Stubbs B, Solmi M et al (2017) Association between lower limb osteoarthritis and incidence of depressive symptoms: data from the osteoarthritis initiative. Age Ageing 46:470–476. https://doi.org/10.1093/ageing/afw216

    Article  PubMed  Google Scholar 

  20. Kye SY, Park K (2017) Suicidal ideation and suicidal attempts among adults with chronic diseases: a cross-sectional study. Compr Psychiatry 73:160–167. https://doi.org/10.1016/j.comppsych.2016.12.001

    Article  PubMed  Google Scholar 

  21. Innes KE, Sambamoorthi U (2018) The association of perceived memory loss with osteoarthritis and related joint pain in a large Appalachian population. Pain Med (United States) 19:1340–1356. https://doi.org/10.1093/pm/pnx107

    Article  Google Scholar 

  22. Schieir O, Tosevski C, Glazier RH et al (2017) Incident myocardial infarction associated with major types of arthritis in the general population: a systematic review and meta-analysis. Ann Rheum Dis 76:1396–1404. https://doi.org/10.1136/annrheumdis-2016-210275

    Article  PubMed  Google Scholar 

  23. Chung WS, Lin HH, Ho FM et al (2016) Risks of acute coronary syndrome in patients with osteoarthritis: a nationwide population-based cohort study. Clin Rheumatol 35:2807–2813. https://doi.org/10.1007/s10067-016-3391-x

    Article  PubMed  Google Scholar 

  24. Courties A, Sellam J, Maheu E et al (2017) Coronary heart disease is associated with a worse clinical outcome of hand osteoarthritis: a cross-sectional and longitudinal study. RMD Open 3. https://doi.org/10.1136/rmdopen-2016-000344

  25. Gao SG, Zeng C, Xiong YL et al (2016) Is painful knee an independent predictor of mortality in middle-aged women? Ann Rheum Dis 75:e22

    Article  PubMed  Google Scholar 

  26. Piva SR, Susko AM, Khoja SS et al (2015) Links between osteoarthritis and diabetes: implications for management from a physical activity perspective. Clin Geriatr Med 31:67–87

    Article  PubMed  Google Scholar 

  27. Hawker GA, Croxford R, Bierman AS et al (2017) Osteoarthritis-related difficulty walking and risk for diabetes complications. Osteoarthr Cartil 25:67–75. https://doi.org/10.1016/j.joca.2016.08.003

    Article  CAS  Google Scholar 

  28. Jeon CY, Lokken RP, Hu FB, Van Dam RM (2007) Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care 30:744–752

    Article  PubMed  Google Scholar 

  29. Messier SP, Mihalko SL, Legault C et al (2013) Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: The IDEA randomized clinical trial. JAMA - J Am Med Assoc 310:1263–1273. https://doi.org/10.1001/jama.2013.277669

    Article  CAS  Google Scholar 

  30. Duncan BB, Schmidt MI, Pankow JS et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805. https://doi.org/10.2337/diabetes.52.7.1799

    Article  CAS  PubMed  Google Scholar 

  31. Rahman MM, Cibere J, Anis AH et al (2014) Risk of type 2 diabetes among osteoarthritis patients in a prospective longitudinal study. Int J Rheumatol 2014. https://doi.org/10.1155/2014/620920

  32. Neogi T, Zhang Y (2013) Epidemiology of osteoarthritis. Rheum Dis Clin North Am 39:1–19

    Article  PubMed  Google Scholar 

  33. Agricola R, Heijboer MP, Roze RH et al (2013) Pincer deformity does not lead to osteoarthritis of the hip whereas acetabular dysplasia does: acetabular coverage and development of osteoarthritis in a nationwide prospective cohort study (CHECK). Osteoarthr Cartil 21:1514–1521. https://doi.org/10.1016/j.joca.2013.07.004

    Article  CAS  Google Scholar 

  34. Valdes AM, Spector TD (2011) Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol 7:23–32. https://doi.org/10.1038/NRRHEUM.2010.191

    Article  PubMed  Google Scholar 

  35. Loughlin J (2005) The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev Mol Med 7. https://doi.org/10.1017/S1462399405009257

  36. Zeggini E, Panoutsopoulou K, Southam L et al (2012) Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380:815–823. https://doi.org/10.1016/S0140-6736(12)60681-3

    Article  CAS  PubMed  Google Scholar 

  37. Warnera SC, Valdesa AM (2017) Genetic association studies in osteoarthritis: is it fairytale? Curr Opin Rheumatol 29:103–109

    Article  Google Scholar 

  38. Hochberg MC, Yerges-Armstrong L, Yau M, Mitchell BD (2013) Genetic epidemiology of osteoarthritis: recent developments and future directions. Curr Opin Rheumatol 25:192–197

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rogers EL, Reynard LN, Loughlin J (2015) The role of inflammation-related genes in osteoarthritis. Osteoarthr Cartil 23:1933–1938. https://doi.org/10.1016/J.JOCA.2015.01.003

    Article  CAS  Google Scholar 

  40. Reynard LN, Loughlin J (2013) Insights from human genetic studies into the pathways involved in osteoarthritis. Nat Rev Rheumatol 9:573–583. https://doi.org/10.1038/NRRHEUM.2013.121

    Article  CAS  PubMed  Google Scholar 

  41. Goldring MB, Marcu KB (2012) Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med 18:109–118. https://doi.org/10.1016/J.MOLMED.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  42. Barter MJ, Bui C, Young DA (2012) Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthr Cartil 20:339–349. https://doi.org/10.1016/J.JOCA.2011.12.012

    Article  CAS  Google Scholar 

  43. Loughlin J, Reynard LN (2015) Osteoarthritis: epigenetics of articular cartilage in knee and hip OA. Nat Rev Rheumatol 11:6–7. https://doi.org/10.1038/NRRHEUM.2014.189

    Article  CAS  PubMed  Google Scholar 

  44. Shen J, Abu-Amer Y, O’Keefe RJ, McAlinden A (2017) Inflammation and epigenetic regulation in osteoarthritis. Connect Tissue Res 58:49–63. https://doi.org/10.1080/03008207.2016.1208655

    Article  CAS  PubMed  Google Scholar 

  45. Unnikrishnan A, Freeman WM, Jackson J et al (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Ther 195:172–185. https://doi.org/10.1016/J.PHARMTHERA.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  46. Allen KD, Golightly YM (2015) State of the evidence. Curr Opin Rheumatol 27:276–283

    Article  PubMed  PubMed Central  Google Scholar 

  47. Glyn-Jones S, Palmer AJR, Agricola R et al (2015) Osteoarthritis. In: The Lancet. Lancet Publishing Group, pp 376–387

  48. Agricola R, Waarsing JH, Arden NK et al (2013) Cam impingement of the hip-a risk factor for hip osteoarthritis. Nat Rev Rheumatol 9:630–634

    Article  PubMed  Google Scholar 

  49. Neogi T, Bowes MA, Niu J et al (2013) Magnetic resonance imaging-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Rheum 65:2048–2058. https://doi.org/10.1002/art.37987

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sharma L, Chmiel JS, Almagor O et al (2013) The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis 72:235–240. https://doi.org/10.1136/annrheumdis-2011-201070

    Article  PubMed  Google Scholar 

  51. Felson DT, Niu J, Gross KD et al (2013) Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the multicenter osteoarthritis study and the osteoarthritis initiative. Arthritis Rheum 65:355–362. https://doi.org/10.1002/art.37726

    Article  PubMed  PubMed Central  Google Scholar 

  52. Harvey WF, Yang M, Cooke TDV et al (2010) Association of leg-length inequality with knee osteoarthritis a cohort study. Ann Intern Med 152:287–295. https://doi.org/10.7326/0003-4819-152-5-201003020-00006

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Wluka AE, Berry PA et al (2012) Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis. Arthritis Rheum 64:3917–3925. https://doi.org/10.1002/art.34681

    Article  PubMed  Google Scholar 

  54. Lievense AM, Bierma-Zeinstra SMA, Verhagen AP et al (2003) Influence of sporting activities on the development of osteoarthritis of the hip: a systematic review. Arthritis Care Res 49:228–236

    Article  CAS  Google Scholar 

  55. Siebenrock KA, Kaschka I, Frauchiger L et al (2013) Prevalence of cam-type deformity and hip pain in elite ice hockey players before and after the end of growth. Am J Sports Med 41:2308–2313. https://doi.org/10.1177/0363546513497564

    Article  PubMed  Google Scholar 

  56. Nevitt MC, Zhang Y, Javaid MK et al (2010) High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: The MOST study. Ann Rheum Dis 69:163–168. https://doi.org/10.1136/ard.2008.099531

    Article  CAS  PubMed  Google Scholar 

  57. Muthuri SG, McWilliams DF, Doherty M, Zhang W (2011) History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthr Cartil 19:1286–1293. https://doi.org/10.1016/j.joca.2011.07.015

    Article  CAS  Google Scholar 

  58. Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthr Cartil 18:24–33. https://doi.org/10.1016/j.joca.2009.08.010

    Article  CAS  Google Scholar 

  59. Conde J, Scotece M, Gómez R et al (2011) Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011:1–8. https://doi.org/10.1155/2011/203901

    Article  Google Scholar 

  60. Reyes C, Leyland KM, Peat G et al (2016) Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheumatol 68:1869–1875. https://doi.org/10.1002/art.39707

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gersing AS, Schwaiger BJ, Nevitt MC et al (2017) Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the osteoarthritis initiative. Radiology 284:508–520. https://doi.org/10.1148/radiol.2017161005

    Article  PubMed  Google Scholar 

  62. Atukorala I, Makovey J, Lawler L et al (2016) Is there a dose-response relationship between weight loss and symptom improvement in persons with knee osteoarthritis? Arthritis Care Res 68:1106–1114. https://doi.org/10.1002/acr.22805

    Article  Google Scholar 

  63. Frey N, Hügle T, Jick SS et al (2017) Hyperlipidaemia and incident osteoarthritis of the hand: a population-based case-control study. Osteoarthr Cartil 25:1040–1045. https://doi.org/10.1016/j.joca.2017.01.014

    Article  CAS  Google Scholar 

  64. Garcia-Gil M, Reyes C, Ramos R et al (2017) Serum lipid levels and risk of hand osteoarthritis: the Chingford prospective cohort study. Sci Rep 7. https://doi.org/10.1038/s41598-017-03317-4

  65. Driban JB, Lo GH, Eaton CB et al (2016) Exploratory analysis of osteoarthritis progression among medication users: data from the Osteoarthritis Initiative. Ther Adv Musculoskelet Dis 8:207–219. https://doi.org/10.1177/1759720X16664323

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lo GH, McAlindon TE, Katz JN et al (2017) Systolic and pulse pressure associate with incident knee osteoarthritis: data from the Osteoarthritis Initiative. Clin Rheumatol 36:2121–2128. https://doi.org/10.1007/s10067-017-3656-z

    Article  PubMed  PubMed Central  Google Scholar 

  67. Magnusson K, Bech Holte K, Juel NG et al (2017) Long term type 1 diabetes is associated with hand pain, disability and stiffness but not with structural hand osteoarthritis features - The Dialong hand study. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0177118

  68. Frey N, Hügle T, Jick SS et al (2016) Type II diabetes mellitus and incident osteoarthritis of the hand: a population-based case–control analysis. Osteoarthr Cartil 24:1535–1540. https://doi.org/10.1016/j.joca.2016.04.005

    Article  CAS  Google Scholar 

  69. Garessus EDG, de Mutsert R, Visser AW et al (2016) No association between impaired glucose metabolism and osteoarthritis. Osteoarthr Cartil 24:1541–1547. https://doi.org/10.1016/j.joca.2016.04.007

    Article  CAS  Google Scholar 

  70. Wang X, Cicuttini F, Jin X et al (2017) Knee effusion-synovitis volume measurement and effects of vitamin D supplementation in patients with knee osteoarthritis. Osteoarthr Cartil 25:1304–1312. https://doi.org/10.1016/j.joca.2017.02.804

    Article  CAS  Google Scholar 

  71. Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 21:16–21

    Article  CAS  Google Scholar 

  72. Hwang HS, Kim HA (2015) Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci 16:26035–26054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guilak F, Nims RJ, Dicks A et al (2018) Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 71–72:40–50

    Article  PubMed  PubMed Central  Google Scholar 

  74. Funck-Brentano T, Cohen-Solal M (2015) Subchondral bone and osteoarthritis. Curr Opin Rheumatol 27:420–426

    Article  PubMed  Google Scholar 

  75. Kovács B, Vajda E, Nagy EE (2019) Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci 20

  76. Zhou X, Cao H, Yuan Y, Wu W (2020) Biochemical signals mediate the crosstalk between cartilage and bone in osteoarthritis. Biomed Res Int 2020

  77. Mathiessen A, Conaghan PG (2017) Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther 19

  78. Sarmanova A, Hall M, Moses J et al (2016) Synovial changes detected by ultrasound in people with knee osteoarthritis – a meta-analysis of observational studies. Osteoarthr Cartil 24:1376–1383. https://doi.org/10.1016/j.joca.2016.03.004

    Article  CAS  Google Scholar 

  79. Guermazi A, Hayashi D, Roemer FW et al (2014) Synovitis in knee osteoarthritis assessed by contrast-enhanced magnetic resonance imaging (MRI) is associated with radiographic tibiofemoral osteoarthritis and MRI-detected widespread cartilage damage: The MOST study. J Rheumatol 41:501–508. https://doi.org/10.3899/jrheum.130541

    Article  PubMed  PubMed Central  Google Scholar 

  80. Felson DT, Niu J, Neogi T et al (2016) Synovitis and the risk of knee osteoarthritis: the MOST study. Osteoarthr Cartil 24:458–464. https://doi.org/10.1016/j.joca.2015.09.013

    Article  CAS  Google Scholar 

  81. Prieto-Potin I, Largo R, Roman-Blas JA et al (2015) Characterization of multinucleated giant cells in synovium and subchondral bone in knee osteoarthritis and rheumatoid arthritis. BMC Musculoskelet Disord 16. https://doi.org/10.1186/s12891-015-0664-5

  82. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014

  83. Klein-Wieringa IR, De Lange-Brokaar BJE, Yusuf E et al (2016) Inflammatory cells in patients with endstage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad. J Rheumatol 43:771–778. https://doi.org/10.3899/jrheum.151068

    Article  PubMed  Google Scholar 

  84. Kapoor M, Martel-Pelletier J, Lajeunesse D et al (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42

    Article  CAS  PubMed  Google Scholar 

  85. Cai S, Ming B, Ye C et al (2021) Similar transition processes in synovial fibroblasts from rheumatoid arthritis and osteoarthritis: a single-cell study. Clin Dev Immunol 2019. https://doi.org/10.1155/2019/4080735

  86. Jin X, Beguerie JR, Zhang W et al (2015) Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis 74:703–710. https://doi.org/10.1136/annrheumdis-2013-204494

    Article  CAS  PubMed  Google Scholar 

  87. Stannus O, Jones G, Cicuttini F et al (2010) Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr Cartil 18:1441–1447. https://doi.org/10.1016/j.joca.2010.08.016

    Article  CAS  Google Scholar 

  88. Livshits G, Zhai G, Hart DJ et al (2009) Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford study. Arthritis Rheum 60:2037–2045. https://doi.org/10.1002/art.24598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spector TD, Hart DJ, Nandra D et al (1997) Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum 40:723–727. https://doi.org/10.1002/art.1780400419

    Article  CAS  PubMed  Google Scholar 

  90. Bulló M, Casas-Agustench P, Amigó-Correig P et al (2007) Inflammation, obesity and comorbidities: the role of diet. Public Health Nutr 10:1164–1172

    Article  PubMed  Google Scholar 

  91. Presle N, Pottie P, Dumond H et al (2006) Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthr Cartil 14:690–695. https://doi.org/10.1016/j.joca.2006.01.009

    Article  CAS  Google Scholar 

  92. de Boer TN, van Spil WE, Huisman AM et al (2012) Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthr Cartil 20:846–853. https://doi.org/10.1016/j.joca.2012.05.002

    Article  Google Scholar 

  93. Liu B, Gao YH, Dong N et al (2019) Differential expression of adipokines in the synovium and infrapatellar fat pad of osteoarthritis patients with and without metabolic syndrome. Connect Tissue Res 60:611–618. https://doi.org/10.1080/03008207.2019.1620221

    Article  CAS  PubMed  Google Scholar 

  94. Tu C, He J, Wu B et al (2019) An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine 113:1–12

    Article  CAS  PubMed  Google Scholar 

  95. Neumann E, Junker S, Schett G et al (2016) Adipokines in bone disease. Nat Rev Rheumatol 12:296–302

    Article  CAS  PubMed  Google Scholar 

  96. Zhao CW, Gao YH, Song WX et al (2019) An update on the emerging role of resistin on the pathogenesis of osteoarthritis. Mediators Inflamm 2019

  97. Garten A, Schuster S, Penke M et al (2015) Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol 11:535–546. https://doi.org/10.1038/NRENDO.2015.117

    Article  CAS  PubMed  Google Scholar 

  98. Travelli C, Consonni FM, Sangaletti S et al (2019) Nicotinamide phosphoribosyltransferase acts as a metabolic gate for mobilization of myeloid-derived suppressor cells. Cancer Res 79:1938–1951. https://doi.org/10.1158/0008-5472.CAN-18-1544

    Article  CAS  PubMed  Google Scholar 

  99. Yu Q, Dong L, Li Y, Liu G (2018) SIRT1 and HIF1α signaling in metabolism and immune responses. Cancer Lett 418:20–26. https://doi.org/10.1016/J.CANLET.2017.12.035

    Article  CAS  PubMed  Google Scholar 

  100. Dvir-Ginzberg M, Steinmeyer J (2013) Towards elucidating the role of SirT1 in osteoarthritis. Front Biosci (Landmark Ed) 18:343–355. https://doi.org/10.2741/4105

  101. Chen C, Zhou M, Ge Y, Wang X (2020) SIRT1 and aging related signaling pathways. Mech Ageing Dev 187. https://doi.org/10.1016/J.MAD.2020.111215

  102. Tsai CH, Liu SC, Chung WH et al (2020) Visfatin increases VEGF-dependent angiogenesis of endothelial progenitor cells during osteoarthritis progression. Cells 9. https://doi.org/10.3390/CELLS9051315

  103. Suzuki A, Yabu A, Nakamura H (2020) Advanced glycation end products in musculoskeletal system and disorders. Methods 203:179–186. https://doi.org/10.1016/j.ymeth.2020.09.012

  104. Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25:2185–2197

    Article  CAS  PubMed  Google Scholar 

  105. Lambert C, Zappia J, Sanchez C et al (2021) The damage-associated molecular patterns (DAMPs) as potential targets to treat osteoarthritis: perspectives from a review of the literature. Front Med 7

  106. Motta F, Sica A, Selmi C (2020) Frailty in rheumatic diseases. Front Immunol 11

  107. Fulop T, Larbi A, Pawelec G et al (2021) Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. https://doi.org/10.1007/S12016-021-08899-6

    Article  PubMed  PubMed Central  Google Scholar 

  108. Franceschi C, Campisi J (2014) Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases. J Gerontol - Ser A Biol Sci Med Sci 69:S4–S9

    Article  Google Scholar 

  109. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  110. Kennedy BK, Berger SL, Brunet A et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194

    Article  PubMed  PubMed Central  Google Scholar 

  112. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  113. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol Med 49:1603–1616

    CAS  Google Scholar 

  114. Sosa V, Moliné T, Somoza R et al (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390

    Article  CAS  PubMed  Google Scholar 

  115. Karunakaran U, Park KG (2013) A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes Metab J 37:106–112

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pirillo A, Norata GD, Catapano AL (2013) LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013

  117. Yu W, Zhang H, Shin MR, Sesti F (2019) Oxidation of KCNB1 potassium channels in the murine brain during aging is associated with cognitive impairment. Biochem Biophys Res Commun 512:665–669. https://doi.org/10.1016/j.bbrc.2019.03.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu Z, Zhou T, Ziegler AC et al (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017

  119. John-Schuster G, Günter S, Hager K et al (2016) Inflammaging increases susceptibility to cigarette smoke-induced COPD. Oncotarget 7:30068–30083. https://doi.org/10.18632/oncotarget.4027

  120. Mateen S, Moin S, Khan AQ et al (2016) Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 11. https://doi.org/10.1371/journal.pone.0152925

  121. Li Y, Goronzy JJ, Weyand CM (2018) DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp Gerontol 105:118–127

    Article  CAS  PubMed  Google Scholar 

  122. Franceschi C, Bonafè M, Valensin S et al (2000) Inflammaging. An evolutionary perspective on immunosenescence. In: Annals of the New York Academy of Sciences. New York Academy of Sciences, pp 244–254

  123. Vitale G, Salvioli S, Franceschi C (2013) Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol 9:228–240

    Article  CAS  PubMed  Google Scholar 

  124. Fulop T, Witkowski JM, Olivieri F, Larbi A (2018) The integration of inflammaging in age-related diseases. Semin Immunol 40:17–35

    Article  CAS  PubMed  Google Scholar 

  125. Callender LA, Carroll EC, Beal RWJ et al (2018) Human CD8 + EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17. https://doi.org/10.1111/acel.12675

  126. Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6. https://doi.org/10.1371/journal.pbio.0060301

  127. Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5:99–118

    Article  Google Scholar 

  128. Bleve A, Motta F, Durante B et al (2022) Immunosenescence, inflammaging, and frailty: role of myeloid cells in age-related diseases. Clin Rev Allergy Immunol. https://doi.org/10.1007/S12016-021-08909-7

    Article  PubMed  PubMed Central  Google Scholar 

  129. Coder BD, Wang H, Ruan L, Su D-M (2015) Thymic involution perturbs negative selection leading to autoreactive t cells that induce chronic inflammation. J Immunol 194:5825–5837. https://doi.org/10.4049/jimmunol.1500082

    Article  CAS  PubMed  Google Scholar 

  130. Coder B, Su DM (2015) Thymic involution beyond T-cell insufficiency. Oncotarget 6:21777–21778

    Article  PubMed  PubMed Central  Google Scholar 

  131. Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B (2011) Persistent viral infections and immune aging. Ageing Res Rev 10:362–369

    Article  CAS  PubMed  Google Scholar 

  132. Ebersole JL, Graves CL, Gonzalez OA et al (2000) (2016) Aging, inflammation, immunity and periodontal disease. Periodontol 72:54–75

    Article  Google Scholar 

  133. Franceschi C, Garagnani P, Vitale G et al (2017) Inflammaging and ‘Garb-aging.’ Trends Endocrinol Metab 28:199–212

    Article  CAS  PubMed  Google Scholar 

  134. Lee B-J, Min C-K, Hancock M et al (2021) Human cytomegalovirus host interactions: EGFR and host cell signaling is a point of convergence between viral infection and functional changes in infected cells. Front Microbiol 12:660901. https://doi.org/10.3389/fmicb.2021.660901

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lohr JM, Oldstone MBA (1990) Detection of cytomegalovirus nucleic acid sequences in pancreas in type 2 diabetes. Lancet 336:644–648. https://doi.org/10.1016/0140-6736(90)92145-8

    Article  CAS  PubMed  Google Scholar 

  136. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    Article  CAS  PubMed  Google Scholar 

  137. Low H, Mukhamedova N, Cui HL et al (2016) Cytomegalovirus restructures lipid rafts via a US28/CDC42-mediated pathway, enhancing cholesterol efflux from host cells. Cell Rep 16:186–200. https://doi.org/10.1016/j.celrep.2016.05.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yu Y, Clippinger AJ, Alwine JC (2011) Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends Microbiol 19:360–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  PubMed  Google Scholar 

  140. Ye J, Keller JN (2010) Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction. Aging (Albany NY) 2:361–368. https://doi.org/10.18632/aging.100155

  141. Collino S, Montoliu I, Martin F-PJ et al (2013) Correction: metabolic signatures of extreme longevity in Northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS ONE 8. https://doi.org/10.1371/annotation/5fb9fa6f-4889-4407-8430-6dfc7ecdfbdd

  142. Biagi E, Nylund L, Candela M et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5. https://doi.org/10.1371/journal.pone.0010667

  143. Biagi E, Candela M, Franceschi C, Brigidi P (2011) The aging gut microbiota: new perspectives. Ageing Res Rev 10:428–429

    Article  PubMed  Google Scholar 

  144. Cevenini E, Monti D, Franceschi C (2013) Inflamm-ageing. Curr Opin Clin Nutr Metab Care 16:14–20

    Article  CAS  PubMed  Google Scholar 

  145. Biagi E, Franceschi C, Rampelli S et al (2016) Gut microbiota and extreme longevity. Curr Biol 26:1480–1485. https://doi.org/10.1016/j.cub.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  146. Franceschi C, Salvioli S, Garagnani P et al (2017) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol 8

  147. Santoro A, Ostan R, Candela M et al (2018) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 75:129–148

    Article  CAS  PubMed  Google Scholar 

  148. Kundu P, Blacher E, Elinav E, Pettersson S (2017) Our gut microbiome: the evolving inner self. Cell 171:1481–1493

    Article  CAS  PubMed  Google Scholar 

  149. Lee C, Longo V (2016) Dietary restriction with and without caloric restriction for healthy aging. F1000Research 5

  150. Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ristow M, Schmeisser K (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-Response 12:288–341. https://doi.org/10.2203/dose-response.13-035.Ristow

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Das SK, Balasubramanian P, Weerasekara YK (2017) Nutrition modulation of human aging: the calorie restriction paradigm. Mol Cell Endocrinol 455:148–157. https://doi.org/10.1016/j.mce.2017.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mirzaei H, Suarez JA, Longo VD (2014) Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab 25:558–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Loeser RF, Olex AL, McNulty MA et al (2012) Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 64:705–717. https://doi.org/10.1002/ART.33388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Long D, Blake S, Song XY et al (2008) Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthritis Res Ther 10. https://doi.org/10.1186/AR2376

  156. Rezuș E, Cardoneanu A, Burlui A et al (2019) The link between inflammaging and degenerative joint diseases. Int J Mol Sci 20. https://doi.org/10.3390/IJMS20030614

  157. Millerand M, Berenbaum F, Jacques C (2019) Danger signals and inflammaging in osteoarthritis. Clin Exp Rheumatol 37:48–56

    PubMed  Google Scholar 

  158. Goekoop RJ, Kloppenburg M, Kroon HM et al (2010) Low innate production of interleukin-1β and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthr Cartil 18:942–947. https://doi.org/10.1016/j.joca.2010.03.016

    Article  CAS  Google Scholar 

  159. Ni Z, Kuang L, Chen H et al (2019) The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis 10. https://doi.org/10.1038/s41419-019-1739-2

  160. Kato T, Miyaki S, Ishitobi H et al (2014) Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther 16. https://doi.org/10.1186/ar4679

  161. Chien SY, Tsai CH, Liu SC et al (2020) Noggin inhibits IL-1β and BMP-2 expression, and attenuates cartilage degeneration and subchondral bone destruction in experimental osteoarthritis. Cells 9. https://doi.org/10.3390/cells9040927

  162. Nasi S, So A, Combes C et al (2016) Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann Rheum Dis 75:1372–1379. https://doi.org/10.1136/annrheumdis-2015-207487

    Article  CAS  PubMed  Google Scholar 

  163. Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jeon H, Il IG (2017) Autophagy in osteoarthritis. Connect Tissue Res 58:497–508. https://doi.org/10.1080/03008207.2016.1240790

    Article  CAS  PubMed  Google Scholar 

  165. Gao T, Guo W, Chen M et al (2016) Extracellular vesicles and autophagy in osteoarthritis. Biomed Res Int 2016. https://doi.org/10.1155/2016/2428915

  166. Ponchel F, Burska AN, Hensor EMA et al (2015) Changes in peripheral blood immune cell composition in osteoarthritis. Osteoarthr Cartil 23:1870–1878. https://doi.org/10.1016/j.joca.2015.06.018

    Article  CAS  Google Scholar 

  167. Zhu W, Zhang X, Jiang Y et al (2020) Alterations in peripheral T cell and B cell subsets in patients with osteoarthritis. Clin Rheumatol 39:523–532. https://doi.org/10.1007/s10067-019-04768-y

    Article  PubMed  Google Scholar 

  168. Shan Y, Qi C, Liu Y et al (2017) Increased frequency of peripheral blood follicular helper T cells and elevated serum IL-21 levels in patients with knee osteoarthritis. Mol Med Rep 15:1095–1102. https://doi.org/10.3892/mmr.2017.6132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. de Lange-Brokaar BJE, Ioan-Facsinay A, van Osch GJVM et al (2012) Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthr Cartil 20:1484–1499. https://doi.org/10.1016/J.JOCA.2012.08.027

    Article  Google Scholar 

  170. Pessler F, Chen LX, Dai L et al (2008) A histomorphometric analysis of synovial biopsies from individuals with Gulf War Veterans’ illness and joint pain compared to normal and osteoarthritis synovium. Clin Rheumatol 27:1127–1134. https://doi.org/10.1007/S10067-008-0878-0

    Article  CAS  PubMed  Google Scholar 

  171. Mikolajczyk TP, Nosalski R, Szczepaniak P et al (2016) Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J 30:1987–1999. https://doi.org/10.1096/fj.201500088R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lopes EBP, Filiberti A, Husain SA, Humphrey MB (2017) Immune contributions to osteoarthritis. Curr Osteoporos Rep 15:593–600. https://doi.org/10.1007/S11914-017-0411-Y

    Article  PubMed  Google Scholar 

  173. Siebuhr AS, Bay-Jensen AC, Jordan JM et al (2016) Inflammation (or synovitis)-driven osteoarthritis: an opportunity for personalizing prognosis and treatment? Scand J Rheumatol 45:87–98

    Article  CAS  PubMed  Google Scholar 

  174. Fried LP, Tangen CM, Walston J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol - Ser A Biol Sci Med Sci 56. https://doi.org/10.1093/gerona/56.3.m146

  175. Kojima G, Liljas AEM, Iliffe S (2019) Frailty syndrome: implications and challenges for health care policy. Risk Manag Healthc Policy 12:23–30

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Motta F, Sica A, Selmi C (2020) Frailty in rheumatic diseases. Front Immunol 11. https://doi.org/10.3389/FIMMU.2020.576134

  178. Cacciatore F, Della-morte D, Basile C et al (2014) Long-term mortality in frail elderly subjects with osteoarthritis. Rheumatology (Oxford) 53:293–299. https://doi.org/10.1093/RHEUMATOLOGY/KET348

    Article  PubMed  Google Scholar 

  179. Chen P, Huang L, Ma Y et al (2019) Intra-articular platelet-rich plasma injection for knee osteoarthritis: a summary of meta-analyses. J Orthop Surg Res 14. https://doi.org/10.1186/s13018-019-1363-y

  180. Le ADK, Enweze L, DeBaun MR, Dragoo JL (2019) Platelet-rich plasma. Clin Sports Med 38:17–44. https://doi.org/10.1016/J.CSM.2018.08.001

    Article  PubMed  Google Scholar 

  181. Spreafico A, Chellini F, Frediani B et al (2009) Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem 108:1153–1165. https://doi.org/10.1002/JCB.22344

    Article  CAS  PubMed  Google Scholar 

  182. Smyth NA, Murawski CD, Fortier LA et al (2013) Platelet-rich plasma in the pathologic processes of cartilage: review of basic science evidence. Arthroscopy 29:1399–1409. https://doi.org/10.1016/J.ARTHRO.2013.03.004

    Article  PubMed  Google Scholar 

  183. Battaglia M, Guaraldi F, Vannini F et al (2013) Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics 36. https://doi.org/10.3928/01477447-20131120-13

  184. Dallari D, Stagni C, Rani N et al (2016) Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med 44:664–671. https://doi.org/10.1177/0363546515620383

    Article  PubMed  Google Scholar 

  185. Doria C, Mosele GR, Caggiari G et al (2017) Treatment of early hip osteoarthritis: ultrasound-guided platelet rich plasma versus hyaluronic acid injections in a randomized clinical trial. Joints 5:152–155. https://doi.org/10.1055/S-0037-1605584

    Article  PubMed  PubMed Central  Google Scholar 

  186. Di Sante L, Villani C, Santilli V et al (2016) Intra-articular hyaluronic acid vs platelet-rich plasma in the treatment of hip osteoarthritis. Med Ultrason 18:463–468. https://doi.org/10.11152/MU-874

    Article  PubMed  Google Scholar 

  187. Hamilton JA, Cook AD, Tak PP (2016) Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 16:53–70. https://doi.org/10.1038/NRD.2016.231

    Article  PubMed  Google Scholar 

  188. Lee KMC, Prasad V, Achuthan A et al (2020) Targeting GM-CSF for collagenase-induced osteoarthritis pain and disease in mice. Osteoarthr Cartil 28:486–491. https://doi.org/10.1016/j.joca.2020.01.012

    Article  Google Scholar 

  189. Cook AD, Pobjoy J, Steidl S et al (2012) Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res Ther 14. https://doi.org/10.1186/AR4037

  190. Steen-Louws C, Popov-Celeketic J, Mastbergen SC et al (2018) IL4-10 fusion protein has chondroprotective, anti-inflammatory and potentially analgesic effects in the treatment of osteoarthritis. Osteoarthr Cartil 26:1127–1135. https://doi.org/10.1016/j.joca.2018.05.005

    Article  CAS  Google Scholar 

  191. van Helvoort EM, de Visser HM, Lafeber FPJG et al (2021) IL4-10 fusion protein shows DMOAD activity in a rat osteoarthritis model. Cartilage 13:1155S-1164S. https://doi.org/10.1177/19476035211026736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hwang HS, Park IY, Choi SY, Kim HA (2017) PEP-1-GRX-1 modulates matrix metalloproteinase-13 and nitric oxide expression of human articular chondrocytes. Cell Physiol Biochem 41:252–264. https://doi.org/10.1159/000456090

    Article  CAS  PubMed  Google Scholar 

  193. Bin ZH, Zhang Y, Chen C et al (2016) Pioglitazone inhibits advanced glycation end product-induced matrix metalloproteinases and apoptosis by suppressing the activation of MAPK and NF-κB. Apoptosis 21:1082–1093. https://doi.org/10.1007/s10495-016-1280-z

    Article  CAS  Google Scholar 

  194. Campo GM, Avenoso A, D’Ascola A et al (2012) Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. BioFactors 38:69–76. https://doi.org/10.1002/biof.202

    Article  CAS  PubMed  Google Scholar 

  195. Li Y, Zhang Y, Chen C et al (2016) Establishment of a rabbit model to study the influence of advanced glycation end products accumulation on osteoarthritis and the protective effect of pioglitazone. Osteoarthr Cartil 24:307–314. https://doi.org/10.1016/J.JOCA.2015.08.001

    Article  CAS  Google Scholar 

  196. Boileau C, Martel-Pelletier J, Fahmi H et al (2007) The peroxisome proliferator-activated receptor gamma agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis: in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways. Arthritis Rheum 56:2288–2298. https://doi.org/10.1002/ART.22726

    Article  CAS  PubMed  Google Scholar 

  197. Kobayashi T, Notoya K, Naito T et al (2005) Pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, reduces the progression of experimental osteoarthritis in guinea pigs. Arthritis Rheum 52:479–487. https://doi.org/10.1002/ART.20792

    Article  CAS  PubMed  Google Scholar 

  198. Chayanupatkul M, Honsawek S (2010) Soluble receptor for advanced glycation end products (sRAGE) in plasma and synovial fluid is inversely associated with disease severity of knee osteoarthritis. Clin Biochem 43:1133–1137. https://doi.org/10.1016/j.clinbiochem.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  199. Peng Y, Park HS, Tang LA et al (2019) Generation of sRAGE high transgenic mice to study inflammaging. Front Biosci - Landmark 24:555–563. https://doi.org/10.2741/4735

    Article  CAS  Google Scholar 

  200. Luo Y, Li J, Wang B et al (2021) Protective effect of glycyrrhizin on osteoarthritis cartilage degeneration and inflammation response in a rat model. J Bioenerg Biomembr 53:285–293. https://doi.org/10.1007/S10863-021-09889-1

  201. Olcum M, Tufekci KU, Durur DY et al (2021) Ethyl Ethyl pyruvate attenuates microglial NLRP3 inflammasome activation via inhibition of HMGB1/NF-κB/miR-223 signaling. Antioxidants (Basel, Switzerland) 10. https://doi.org/10.3390/ANTIOX10050745

  202. Luo Y, Li J, Wang B et al (2021) Protective effect of glycyrrhizin on osteoarthritis cartilage degeneration and inflammation response in a rat model. J Bioenerg Biomembr 53. https://doi.org/10.1007/s10863-021-09889-1

  203. Li S, Liang F, Kwan K et al (2018) Identification of ethyl pyruvate as a NLRP3 inflammasome inhibitor that preserves mitochondrial integrity. Mol Med 24. https://doi.org/10.1186/s10020-018-0006-9

  204. Xue J, Suarez JS, Minaai M et al (2021) HMGB1 as a therapeutic target in disease. J Cell Physiol 236:3406–3419

    Article  CAS  PubMed  Google Scholar 

  205. Aulin C, Lassacher T, Palmblad K, Erlandsson Harris H (2020) Early stage blockade of the alarmin HMGB1 reduces cartilage destruction in experimental OA. Osteoarthr Cartil 28:698–707. https://doi.org/10.1016/j.joca.2020.01.003

    Article  CAS  Google Scholar 

  206. Schelbergen RF, Geven EJ, Van Den Bosch MHJ et al (2015) Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis. Ann Rheum Dis 74:2254–2258. https://doi.org/10.1136/annrheumdis-2014-206517

    Article  CAS  PubMed  Google Scholar 

  207. Van Den Bosch MH, Blom AB, Schelbergen RF et al (2016) Alarmin S100A9 induces proinflammatory and catabolic effects predominantly in the M1 macrophages of human osteoarthritic synovium. J Rheumatol 43:1874–1884. https://doi.org/10.3899/jrheum.160270

    Article  CAS  PubMed  Google Scholar 

  208. van den Bosch MHJ (2019) Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin Exp Immunol 195:153–166

    Article  PubMed  Google Scholar 

  209. Cremers NAJ, van den Bosch MHJ, van Dalen S et al (2017) S100A8/A9 increases the mobilization of pro-inflammatory Ly6Chigh monocytes to the synovium during experimental osteoarthritis. Arthritis Res Ther 19. https://doi.org/10.1186/s13075-017-1426-6

  210. Jeon OH, Kim C, Laberge RM et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23:775–781. https://doi.org/10.1038/nm.4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bay-Jensen AC, Mobasheri A, Thudium CS et al (2022) Blood and urine biomarkers in osteoarthritis - an update on cartilage associated type II collagen and aggrecan markers. Curr Opin Rheumatol 34:54–60. https://doi.org/10.1097/BOR.0000000000000845

    Article  CAS  PubMed  Google Scholar 

  212. Kraus VB, Collins JE, Hargrove D et al (2017) Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis 76:186–195. https://doi.org/10.1136/ANNRHEUMDIS-2016-209252

    Article  CAS  PubMed  Google Scholar 

  213. Luo Y, He Y, Reker D et al (2018) A novel high sensitivity type II collagen blood-based biomarker, PRO-C2, for assessment of cartilage formation. Int J Mol Sci 19. https://doi.org/10.3390/IJMS19113485

  214. Siebuhr AS, Bay-Jensen AC, Leeming DJ et al (2013) Serological identification of fast progressors of structural damage with rheumatoid arthritis. Arthritis Res Ther 15. https://doi.org/10.1186/AR4266

  215. Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230–237. https://doi.org/10.1111/J.1749-6632.2009.05240.X

    Article  CAS  PubMed  Google Scholar 

  216. Huebner JL, Bay-Jensen AC, Huffman KM et al (2014) Alpha C-telopeptide of type I collagen is associated with subchondral bone turnover and predicts progression of joint space narrowing and osteophytes in osteoarthritis. Arthritis Rheumatol (Hoboken, NJ) 66:2440–2449. https://doi.org/10.1002/ART.38739

    Article  CAS  Google Scholar 

  217. Engbersen M, Huang ZKV (2016) Bone biomarkers related to osteoarthritis. In: Preedy V (ed) Biomarkers in disease: methods, discoveries and applications. Dordrecht

  218. Haraden CA, Huebner JL, Hsueh MF et al (2019) Synovial fluid biomarkers associated with osteoarthritis severity reflect macrophage and neutrophil related inflammation. Arthritis Res Ther 21. https://doi.org/10.1186/S13075-019-1923-X

  219. Hsueh MF, Zhang X, Wellman SS et al (2021) Synergistic roles of macrophages and neutrophils in osteoarthritis progression. Arthritis Rheumatol (Hoboken, NJ) 73:89–99. https://doi.org/10.1002/ART.41486

    Article  CAS  Google Scholar 

  220. Sunahori K, Yamamura M, Yamana J et al (2006) The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther 8. https://doi.org/10.1186/AR1939

  221. Van Lent PLEM, Blom AB, Schelbergen RFP et al (2012) Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum 64:1466–1476. https://doi.org/10.1002/ART.34315

    Article  PubMed  Google Scholar 

  222. Swindell WR, Johnston A, Xing X et al (2013) Robust shifts in S100a9 expression with aging: a novel mechanism for chronic inflammation. Sci Rep 3. https://doi.org/10.1038/SREP01215

  223. Gerss J, Roth J, Holzinger D et al (2012) Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann Rheum Dis 71:1991–1997. https://doi.org/10.1136/ANNRHEUMDIS-2012-201329

    Article  CAS  PubMed  Google Scholar 

  224. Choi IY, Gerlag DM, Herenius MJ et al (2015) MRP8/14 serum levels as a strong predictor of response to biological treatments in patients with rheumatoid arthritis. Ann Rheum Dis 74:499–505. https://doi.org/10.1136/ANNRHEUMDIS-2013-203923

    Article  CAS  PubMed  Google Scholar 

  225. Holzinger D, Nippe N, Vogl T et al (2014) Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol (Hoboken, NJ) 66:1327–1339. https://doi.org/10.1002/ART.38369

    Article  CAS  Google Scholar 

Download references

Funding

FM, AS, and CS were funded by the Italian Ministry of Health (Ricerca Corrente and grant RF-2016–02364842).

Author information

Authors and Affiliations

Authors

Contributions

Both FM and CS conceived the idea for the paper. FM and EB performed the literature search and drafted the manuscript. CS and AS provided helpful suggestions in the preparation of this manuscript, and all the authors reviewed and approved the final version of the paper.

Corresponding author

Correspondence to Carlo Selmi.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motta, F., Barone, E., Sica, A. et al. Inflammaging and Osteoarthritis. Clinic Rev Allerg Immunol 64, 222–238 (2023). https://doi.org/10.1007/s12016-022-08941-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-022-08941-1

Keywords

Navigation