Skip to main content

Advertisement

Log in

Road Less Traveled: Drug Hypersensitivity to Fluoroquinolones, Vancomycin, Tetracyclines, and Macrolides

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

While fluoroquinolones, vancomycin, macrolides, and tetracyclines are generally safe antibiotics, they can induce both immediate and delayed hypersensitivity reactions (HSRs). Historically, less has been published on allergies to these antibiotics compared to beta lactams, but the prevalence of non-beta lactam HSRs is increasing. To fluoroquinolones, immediate HSRs are more common than delayed reactions. Both IgE and non-IgE mechanisms, such as the mast cell receptor Mas-related G protein-coupled receptor X2 (MRGPRX2), have been implicated in fluoroquinolone-induced anaphylaxis. Skin testing for fluoroquinolones is controversial, and the gold standard for diagnosis is a graded dose challenge. To vancomycin, the most common reaction is vancomycin infusion reaction (previously called “red man syndrome”), which is caused by infusion rate-dependent direct mast cell degranulation. Severity can range from flushing and pruritis to angioedema, bronchospasm, and hypotension that mimic type I HSRs. MRGPRX2 has been implicated in vancomycin infusion reactions. IgE-mediated HSRs to vancomycin are rare. Vancomycin skin testing yields high false positive rates. Thus, direct provocation challenge with slower infusion rate and/or antihistamine pre-treatment is preferred if symptoms are mild to moderate, and desensitization can be considered if symptoms are severe. To tetracyclines, non-IgE-mediated and delayed HSRs predominate with cutaneous reactions being the most common. There is no standardized skin testing for tetracyclines, and avoidance is generally recommended after a severe reaction because of the paucity of data for testing. Graded dose challenges and desensitizations can be considered for alternative or index tetracyclines if there are no alternatives. With macrolides, urticaria/angioedema is the most common immediate HSR, and rash is the most common delayed HSR. The predictive value for skin testing to macrolides is similarly poorly defined. In general, HSRs to fluroquinolones, vancomycin, macrolides, and tetracyclines are challenging to diagnose given the lack of validated skin testing and in vitro testing. Direct provocation challenge remains the gold standard for diagnosis, but the benefits of confirming an allergy may not outweigh the risk of a severe reaction. Skin testing, direct provocation challenge, and/or desensitization to the index non-beta lactam antibiotic or alternatives in its class may be reasonable approaches depending on the clinical context and patient preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGEP:

Acute generalized exanthematous pustulosis

BAT:

Basophil activation test

CAP:

Community acquired pneumonia

DPT:

Direct provocation test

DRESS:

Drug reaction with eosinophilia and systemic symptoms

ED:

Emergency department

EHR:

Electronic health record

FcεRI:

High-affinity IgE receptor

FDA:

US Food and Drug Administration

FDE:

Fixed drug eruption

HSR:

Hypersensitivity reaction

IDT:

Intradermal skin test

LABD:

Linear IgA bullous dermatosis

MRSA:

Methicillin-resistant Staphylococcus aureus

MRGPRX2:

Mas-related G protein-coupled receptor X2

NIC:

Non-irritating concentration

SCAR:

Severe cutaneous adverse reaction

SDRIFE:

Symmetrical drug-related intertriginous and flexural exanthema

SJS:

Stevens-Johnson syndrome

SPT:

Skin prick test

SSLR:

Serum sickness like reaction

SSTI:

Skin and soft tissue infections

TEN:

Toxic epidermal necrolysis

THIQ:

Tetrahydroisoquinoline

US:

United States

VIR:

Vancomycin infusion reaction (red man syndrome)

References

  1. Doña I, Blanca-López N, Torres M, García-Campos J, García-Núñez I, Gómez F et al (2012) Drug hypersensitivity reactions: response patterns, drug involved, and temporal variations in a large series of patients. J Investig Allergol Clin Immunol 22:9

    Google Scholar 

  2. Doña I, Pérez-Sánchez N, Salas M, Barrionuevo E, Ruiz-San Francisco A, de Rojas DH et al (2020) Clinical characterization and diagnostic approaches for patients reporting hypersensitivity reactions to quinolones. J Allergy Clin Immunol Pract 8:2707–2714.e2

  3. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M et al (2015) Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519:237–241

    Article  CAS  PubMed  Google Scholar 

  4. McGee EU, Samuel E, Boronea B, Dillard N, Milby MN, Lewis SJ (2019) Quinolone allergy. Pharm J Pharm Educ Pract [Internet] [cited 25 Oct 2019]7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789783/

  5. Andersson MI (2003) Development of the quinolones. J Antimicrob Chemother 51:1–11

    Article  CAS  PubMed  Google Scholar 

  6. Dhopeshwarkar N, Sheikh A, Doan R, Topaz M, Bates DW, Blumenthal KG et al (2019) Drug-induced anaphylaxis documented in electronic health records. J Allergy Clin Immunol Pract 7:103–111

    Article  PubMed  Google Scholar 

  7. Jones SC, Budnitz DS, Sorbello A, Mehta H (2013) US-based emergency department visits for fluoroquinolone-associated hypersensitivity reactions. Pharmacoepidemiol Drug Saf 22:1099–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blanca-López N, Ariza A, Doña I, Mayorga C, Montañez MI, Garcia-Campos J et al (2013) Hypersensitivity reactions to fluoroquinolones: analysis of the factors involved. Clin Exp Allergy 43:560–567

    Article  PubMed  CAS  Google Scholar 

  9. Sachs B, Riegel S, Seebeck J, Beier R, Schichler D, Barger A et al (2006) Fluoroquinolone-associated anaphylaxis in spontaneous adverse drug reaction reports in Germany: differences in reporting rates between individual fluoroquinolones and occurrence after first-ever use. Drug Saf 29:1087–1100

    Article  CAS  PubMed  Google Scholar 

  10. Wall GC, Taylor MJ, Smith HL (2018) Prevalence and characteristics of hospital inpatients with reported fluoroquinolone allergy. Int J Clin Pharm 40:890–894

    Article  PubMed  Google Scholar 

  11. Seitz CS, Bröcker EB, Trautmann A (2009) Diagnostic testing in suspected fluoroquinolone hypersensitivity. Clin Exp Allergy 39:1738–1745

    Article  CAS  PubMed  Google Scholar 

  12. Broyles AD, Banerji A, Barmettler S, Biggs CM, Blumenthal K, Brennan PJ et al (2020) Practical guidance for the evaluation and management of drug hypersensitivity: specific drugs. J Allergy Clin Immunol Pract 8:S16-116

    Article  PubMed  Google Scholar 

  13. Wolfson AR, Zhou L, Li Y, Phadke NA, Chow OA, Blumenthal KG (2019) Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome identified in the electronic health record allergy module. J Allergy Clin Immunol Pract 7:633–640

    Article  PubMed  Google Scholar 

  14. Scherer K, Bircher AJ (2005) Hypersensitivity reactions to fluoroquinolones. Curr Allergy Asthma Rep 15–21

  15. Blyth DM, Markelz E, Okulicz JF (2012) Cutaneous leukocytoclastic vasculitis associated with levofloxacin therapy. Infect Dis Rep [Internet] [cited 22 Mar 2021]4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892663/

  16. Kuula LSM, Viljemaa KM, Backman JT, Blom M (2019) Fluoroquinolone-related adverse events resulting in health service use and costs: a systematic review. PLoS One [Internet] [cited 22 Mar 2021]14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485715/

  17. U.S. Food and Drug Administration (2020) FDA updates warnings for fluoroquinolone antibiotics on risks of mental health and low blood sugar adverse reactions [Internet]. FDA [cited 5 Mar 2021]. Available from: https://www.fda.gov/news-events/press-announcements/fda-updates-warnings-fluoroquinolone-antibiotics-risks-mental-healthand-low-blood-sugar-adverse

  18. Subramanian H, Gupta K, Ali H (2016) Roles of Mas-related G protein–coupled receptor X2 on mast cell–mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol 138:700–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Porebski G, Kwiecien K, Pawica M, Kwitniewski M (2018) Mas-related G protein-coupled receptor-X2 (MRGPRX2) in drug hypersensitivity reactions. Front Immunol 9

  20. Manfredi M, Severino M, Testi S, Macchia D, Ermini G, Pichler WJ et al (2004) Detection of specific IgE to quinolones. J Allergy Clin Immunol 113:155–160

    Article  CAS  PubMed  Google Scholar 

  21. Gaudenzio N, Sibilano R, Marichal T, Starkl P, Reber LL, Cenac N et al (2016) Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest 126:3981–3998

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu R, Hu S, Zhang Y, Che D, Cao J, Wang J et al (2019) Mast cell-mediated hypersensitivity to fluoroquinolone is MRGPRX2 dependent. Int Immunopharmacol 70:417–427

    Article  CAS  PubMed  Google Scholar 

  23. Schmid DA, Depta JPH, Pichler WJ (2006) T cell-mediated hypersensitivity to quinolones: mechanisms and cross-reactivity. Clin Exp Allergy 36:59–69

    Article  CAS  PubMed  Google Scholar 

  24. Venturini Díaz MV, Labairu TL, Mahave IG (2007) In vivo diagnostic tests in adverse reactions to quinolones. J Investig Allergol Clin Immunol 17:6

    Google Scholar 

  25. Krantz MS, Stone CA, Yu R, Adams SN, Phillips EJ (2020) Criteria for intradermal skin testing and oral challenge in patients labeled as fluoroquinolone allergic. J Allergy Clin Immunol Pract S221321982030965X

  26. Uyttebroek AP, Sabato V, Bridts CH, De Clerck LS, Ebo DG (2015) Moxifloxacin hypersensitivity: uselessness of skin testing. J Allergy Clin Immunol Pract 3:443–445

    Article  PubMed  Google Scholar 

  27. Empedrad R, Darter AL, Earl HS, Gruchalla RS (2003) Nonirritating intradermal skin test concentrations for commonly prescribed antibiotics. J Allergy Clin Immunol 112:629–630

    Article  CAS  PubMed  Google Scholar 

  28. Aranda A, Mayorga C, Ariza A, Doña I, Rosado A, Blanca-Lopez N et al (2011) In vitro evaluation of IgE-mediated hypersensitivity reactions to quinolones. Allergy 66:247–254

    Article  CAS  PubMed  Google Scholar 

  29. Loli‐Ausejo D, Vílchez‐Sánchez F, Cabañas R, Fiandor A, Lluch‐Bernal M, González‐Muñoz M et al (2021) Basophil activation test in the diagnosis of hypersensitivity reactions to quinolones in a real-life setting. Clin Exp Allergy [Internet] [cited 4 Mar 2021]n/a. Available from: http://onlinelibrary.wiley.com/doi/abs/10.1111/cea.13817

  30. Lobera T, Audícana MT, Alarcón E, Longo N, Navarro B, Muñoz D (2010) Allergy to quinolones: low cross-reactivity to levofloxacin. J Investig Allergol Clin Immunol 20:607–611

    CAS  PubMed  Google Scholar 

  31. Chang B, Knowles SR, Weber E (2010) Immediate hypersensitivity to moxifloxacin with tolerance to ciprofloxacin: report of three cases and review of the literature. Ann Pharmacother 44:740–745

    Article  PubMed  Google Scholar 

  32. Lantner RR (1995) Ciprofloxacin desensitization in a patient with cystic fibrosis. J Allergy Clin Immunol 96:1001–1002

    Article  CAS  PubMed  Google Scholar 

  33. Levine DP (2006) Vancomycin: a history. Clin Infect Dis 42:S5-12

    Article  CAS  PubMed  Google Scholar 

  34. Baggs J, Fridkin SK, Pollack LA, Srinivasan A, Jernigan JA (2016) Estimating national trends in inpatient antibiotic use among US hospitals from 2006 to 2012. JAMA Intern Med 176:1639

    Article  PubMed  Google Scholar 

  35. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18-55

    Article  PubMed  Google Scholar 

  36. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE et al (2018) Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66:e1-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alvarez-Arango S, Yerneni S, Tang O, Zhou L, Mancini CM, Blackley SV et al (2021) Vancomycin hypersensitivity reactions documented in electronic health records. J Allergy Clin Immunol Pract 9:906–912

    Article  PubMed  Google Scholar 

  38. Lin SK, Mulieri KM, Ishmael FT (2017) Characterization of vancomycin reactions and linezolid utilization in the pediatric population. J Allergy Clin Immunol Pract 5:750–756

    Article  PubMed  Google Scholar 

  39. Polk RE, Healy DP, Schwartz LB, Rock DT, Garson ML, Roller K (1988) Vancomycin and the red-man syndrome: pharmacodynamics of histamine release. J Infect Dis 157:502–507

    Article  CAS  PubMed  Google Scholar 

  40. Polk RE, Israel D, Wang J, Venitz J, Miller J, Stotka J (1993) Vancomycin skin tests and prediction of red man syndrome in healthy volunteers. Antimicrob Agents Chemother 37:2139–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Sullivan TL, Ruffing MJ, Lamp KC, Warbasse LH, Rybak MJ (1993) Prospective evaluation of red man syndrome in patients receiving vancomycin. J Infect Dis 168:773–776

    Article  PubMed  Google Scholar 

  42. Wallace MR, Mascola JR, Oldfield EC (1991) Red man syndrome: incidence, etiology, and prophylaxis. J Infect Dis 164:1180–1185

    Article  CAS  PubMed  Google Scholar 

  43. Newfield P (1979) Hazards of rapid administration of vancomycin. Ann Intern Med 91:581

    Article  CAS  PubMed  Google Scholar 

  44. Khakurel S, Rawal S (2021) Vancomycin induced cardiac arrest: a case report. J Med Case Reports 15:77

    Article  Google Scholar 

  45. De Luca JF, Holmes NE, Trubiano JA (2020) Adverse reactions to vancomycin and cross-reactivity with other antibiotics. Curr Opin Allergy Clin Immunol 20:352–361

    Article  PubMed  CAS  Google Scholar 

  46. Minhas JS, Wickner PG, Long AA, Banerji A, Blumenthal KG (2016) Immune-mediated reactions to vancomycin: A systematic case review and analysis. Ann Allergy Asthma Immunol 116:544–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Otani IM, Kuhlen JL, Blumenthal KG, Guyer A, Banerji A (2015) A role for vancomycin epicutaneous skin testing in the evaluation of perioperative anaphylaxis. J Allergy Clin Immunol Pract 3:984–985

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bossé D, Lemire C, Ruel J, Cantin AM, Ménard F, Valiquette L (2013) Severe anaphylaxis caused by orally administered vancomycin to a patient with Clostridium difficile infection. Infection 41:579–582

    Article  PubMed  Google Scholar 

  49. Kupstaite R, Baranauskaite A, Pileckyte M, Sveikata A, Kadusevicius E, Muckiene G (2010) Severe vancomycin-induced anaphylactic reaction. Med Kaunas Lith 46:30–33

    Google Scholar 

  50. Kitazawa T, Ota Y, Kada N, Morisawa Y, Yoshida A, Koike K et al (2006) Successful vancomycin desensitization with a combination of rapid and slow infusion methods. Intern Med 45:317–321

    Article  PubMed  Google Scholar 

  51. Hassaballa H, Mallick N, Orlowski J (2000) Vancomycin anaphylaxis in a patient with vancomycin-induced red man syndrome. J Ther 7:319–320

    CAS  Google Scholar 

  52. Chopra N, Oppenheimer J, Derimanov GS, Fine PL (2000) Vancomycin anaphylaxis and successful desensitization in a patient with end stage renal disease on hemodialysis by maintaining steady antibiotic levels. Ann Allergy Asthma Immunol 84:633–635

    Article  CAS  PubMed  Google Scholar 

  53. Villavicencio AT, Hey LA, Patel D, Bressler P (1997) Acute cardiac and pulmonary arrest after infusion of vancomycin with subsequent desensitization. J Allergy Clin Immunol 100:853–854

    Article  CAS  PubMed  Google Scholar 

  54. Hwang M-J, Do J-Y, Choi E-W, Seo J-H, Nam Y-J, Yoon K-W et al (2015) Immunoglobulin E-mediated hypersensitivity reaction after intraperitoneal administration of vancomycin. Kidney Res Clin Pract 34:57–59

    Article  PubMed  Google Scholar 

  55. Blumenthal KG, Peter JG, Trubiano JA, Phillips EJ (2019) Antibiotic allergy. The Lancet 393:183–198

    Article  Google Scholar 

  56. Lam BD, Miller MM, Sutton AV, Peng D, Crew AB (2017) Vancomycin and DRESS: a retrospective chart review of 32 cases in Los Angeles. California J Am Acad Dermatol 77:973–975

    Article  PubMed  Google Scholar 

  57. Blumenthal KG, Youngster I, Rabideau DJ, Parker RA, Manning KS, Walensky RP et al (2015) Peripheral blood eosinophilia and hypersensitivity reactions among patients receiving outpatient parenteral antibiotics. J Allergy Clin Immunol 136:1288-1294.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakkam N, Gibson A, Mouhtouris E, Konvinse KC, Holmes NE, Chua KY et al (2021) Cross-reactivity between vancomycin, teicoplanin, and telavancin in patients with HLA-A∗32:01–positive vancomycin-induced DRESS sharing an HLA class II haplotype. J Allergy Clin Immunol 147:403–405

    Article  CAS  PubMed  Google Scholar 

  59. Blumenthal K, Patil S, Long A (2012) The importance of vancomycin in drug rash with eosinophilia and systemic symptoms (DRESS) syndrome. Allergy Asthma Proc Off J Reg State Allergy Soc 33:165–171

    Article  CAS  Google Scholar 

  60. Madigan LM, Fox LP (2019) Vancomycin-associated drug-induced hypersensitivity syndrome. J Am Acad Dermatol 81:123–128

    Article  CAS  PubMed  Google Scholar 

  61. Waldman MA, Black DR, Callen JP (2004) Vancomycin-induced linear IgA bullous disease presenting as toxic epidermal necrolysis. Clin Exp Dermatol 29:633–636

    Article  CAS  PubMed  Google Scholar 

  62. Garel B, Ingen-Housz-Oro S, Afriat D, Prost-Squarcioni C, Tétart F, Bensaid B et al (2019) Drug-induced linear immunoglobulin A bullous dermatosis: a French retrospective pharmacovigilance study of 69 cases. Br J Clin Pharmacol 85:570–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lammer J, Hein R, Roenneberg S, Biedermann T, Volz T (2019) Drug-induced Linear IgA bullous dermatosis: a case report and review of the literature. Acta Derm Venereol 99:508–515

    Article  CAS  PubMed  Google Scholar 

  64. Barron J, Lattes A, Marcus E-L (2018) Rash induced by enteral vancomycin therapy in an older patient in a long-term care ventilator unit: case report and review of the literature. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol 14:73

    Article  Google Scholar 

  65. Navinés-Ferrer A, Serrano-Candelas E, Lafuente A, Muñoz-Cano R, Martín M, Gastaminza G (2018) MRGPRX2-mediated mast cell response to drugs used in perioperative procedures and anaesthesia. Sci Rep 8:11628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Azimi E, Reddy VB, Shade K-TC, Anthony RM, Talbot S, Pereira PJS et al (2016) Dual action of neurokinin-1 antagonists on Mas-related GPCRs [Internet]. American Society for Clinical Investigation [cited 7 Mar 2021]. Available from: http://insight.jci.org/articles/view/89362/pdf

  67. Konvinse KC, Trubiano JA, Pavlos R, James I, Shaffer CM, Bejan CA et al (2019) HLA-A*32:01 is strongly associated with vancomycin-induced drug reaction with eosinophilia and systemic symptoms. J Allergy Clin Immunol 144:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Renz CL, Laroche D, Thurn JD, Finn HA, Lynch JP, Thisted R et al (1998) Tryptase levels are not increased during vancomycin-induced anaphylactoid reactions. Anesthesiology 89:620–625

    Article  CAS  PubMed  Google Scholar 

  69. Wazny LD, Daghigh B (2001) Desensitization protocols for vancomycin hypersensitivity. Ann Pharmacother 35:1458–1464

    Article  CAS  PubMed  Google Scholar 

  70. Noguchi S, Takekawa D, Saito J, Hashiba E, Hirota K (2019) Serum tryptase cannot differentiate vancomycin-induced anaphylaxis from red man syndrome. J Clin Immunol 39:855–856

    Article  PubMed  Google Scholar 

  71. Alvarez‐Arango S, Oliver E, Tang O, Saha T, Keet CA, Adkinson NF et al (2021) Vancomycin immediate skin responses in vancomycin-naïve subjects. Clin Exp Allergy [Internet] [cited 7 Mar 2021]n/a. Available from: http://onlinelibrary.wiley.com/doi/abs/10.1111/cea.13850

  72. Rwandamuriye FX, Chopra A, Konvinse KC, Choo L, Trubiano JA, Shaffer CM et al (2019) A rapid allele-specific assay for HLA-A*32:01 to identify patients at risk for vancomycin-induced drug reaction with eosinophilia and systemic symptoms. J Mol Diagn 21:782–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kayode OS, Rutkowski K (2021) Vancomycin hypersensitivity: it is not always what it seems. J Allergy Clin Immunol Pract 9:913–915

    Article  PubMed  Google Scholar 

  74. Healy DP, Sahai JV, Fuller SH, Polk RE (1990) Vancomycin-induced histamine release and red man syndrome: comparison of 1- and 2-hour infusions. Antimicrob Agents Chemother 34:550–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sahai J, Healy DP, Garris R, Berry A, Polk RE (1989) Influence of antihistamine pretreatment on vancomycin-induced red-man syndrome. J Infect Dis 160:876–881

    Article  CAS  PubMed  Google Scholar 

  76. Renz CL, Thurn JD, Finn HA, Lynch JP, Moss J (1999) Antihistamine prophylaxis permits rapid vancomycin infusion. Crit Care Med 27:1732–1737

    Article  CAS  PubMed  Google Scholar 

  77. Wong JT, Ripple RE, MacLean JA, Marks DR, Bloch KJ (1994) Vancomycin hypersensitivity: synergism with narcotics and desensitization by a rapid continuous intravenous protocol. J Allergy Clin Immunol 94:189–94

  78. Kim B-K, Kim J-H, Sohn K-H, Kim J-Y, Chang Y-S, Kim S-H (2020) Incidence of teicoplanin adverse drug reactions among patients with vancomycin-associated adverse drug reactions and its risk factors. Korean J Intern Med 35:714–722

    Article  PubMed  Google Scholar 

  79. Azimi E, Reddy VB, Lerner EA (2017) MRGPRX2, atopic dermatitis, and red man syndrome. Itch Phila Pa 2:e5

  80. Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32

    Article  CAS  PubMed  Google Scholar 

  81. Hamilton LA, Guarascio AJ (2019) Tetracycline allergy. Pharm J Pharm Educ Pract [Internet] [cited 19 Oct 2020]7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789857/

  82. Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH et al (2013) Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 126:S1-42

    Article  PubMed  Google Scholar 

  83. O’Riordan W, Green S, Overcash JS, Puljiz I, Metallidis S, Gardovskis J et al (2019) Omadacycline for acute bacterial skin and skin-structure infections. N Engl J Med 380:528–538

    Article  PubMed  Google Scholar 

  84. Stets R, Popescu M, Gonong JR, Mitha I, Nseir W, Madej A et al (2019) Omadacycline for community-acquired bacterial pneumonia. N Engl J Med 380:517–527

    Article  CAS  PubMed  Google Scholar 

  85. Scott LJ (2019) Eravacycline: a review in complicated intra-abdominal infections. Drugs 79:315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jourdan A, Sangha B, Kim E, Nawaz S, Malik V, Vij R et al (2020) Antibiotic hypersensitivity and adverse reactions: management and implications in clinical practice. Allergy Asthma Clin Immunol 16:6

    Article  PubMed  PubMed Central  Google Scholar 

  87. Smith K, Leyden JJ (2005) Safety of doxycycline and minocycline: a systematic review. Clin Ther 27:1329–1342

    Article  CAS  PubMed  Google Scholar 

  88. Lebrun-Vignes B, Kreft-Jais C, Castot A, Chosidow O (2012) French Network of Regional Centers of Pharmacovigilance. Comparative analysis of adverse drug reactions to tetracyclines: results of a French national survey and review of the literature. Br J Dermatol 166:1333–41

  89. Shapiro LE (1997) Comparative safety of tetracycline, minocycline, and doxycycline. Arch Dermatol 133:1224

    Article  CAS  PubMed  Google Scholar 

  90. Jang JW, Bae Y-J, Kim YG, Jin Y-J, Park KS, Cho YS et al (2010) A case of anaphylaxis to oral minocycline. J Korean Med Sci 25:1231–1233

    Article  PubMed  PubMed Central  Google Scholar 

  91. Okano M, Imai S (1996) Anaphylactoid symptoms due to oral minocycline. Acta Derm Venereol 76:164

    CAS  PubMed  Google Scholar 

  92. Ogita A, Takada K, Kawana S (2011) Case of anaphylaxis due to tetracycline hydrochloride. J Dermatol 38:597–599

    Article  PubMed  Google Scholar 

  93. Fellner MJ (1965) Anaphylactic reaction to tetracycline in a penicillin-allergic patient: immunologic studies. JAMA 192:997

    Article  CAS  PubMed  Google Scholar 

  94. Raeder JC (1984) Anaphylactoid reaction caused by intravenous doxycycline during general anesthesia and β-blockade treatment. Drug Intell Clin Pharm 18:481–482

    CAS  PubMed  Google Scholar 

  95. Fernando SL, Hudson BJ (2013) Rapid desensitization to doxycycline. Ann Allergy Asthma Immunol 111:73–74

    Article  CAS  PubMed  Google Scholar 

  96. Mahboob A, Haroon TS (1998) Drugs causing fixed eruptions: a study of 450 cases. Int J Dermatol 37:833–838

    Article  CAS  PubMed  Google Scholar 

  97. Chalasani N, Bonkovsky HL, Fontana R, Lee W, Stolz A, Talwalkar J et al (2015) Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology 148:1340-1352.e7

    Article  PubMed  Google Scholar 

  98. Kulkarni M, Saxena R, Diaczok B, Nassif H (2019) Tetracycline re-exposure-induced toxic epidermal necrolysis. Am J Ther 26:e745–e747

    Article  PubMed  Google Scholar 

  99. Correia O, Delgado L, Polonia J (1999) Genital fixed drug eruption: cross-reactivity between doxycycline and minocycline. Clin Exp Dermatol 24:137–137

  100. Tham SN (1996) Cross-reactivity in fixed drug eruptions to tetracyclines. Arch Dermatol 132:1134

    Article  CAS  PubMed  Google Scholar 

  101. Bargman H (1984) Lack of cross-sensitivity between tetracycline, doxycycline, and minocycline with regard to fixed drug sensitivity to tetracycline. J Am Acad Dermatol 11:900–901

    Article  CAS  PubMed  Google Scholar 

  102. Eshki M, Allanore L, Musette P, Milpied B, Grange A, Guillaume J-C et al (2009) Twelve-year analysis of severe cases of drug reaction with eosinophilia and systemic symptoms: a cause of unpredictable multiorgan failure. Arch Dermatol [Internet] [cited 20 Mar 2021]145. Available from: http://archderm.jamanetwork.com/article.aspx?doi=10.1001/archderm.145.1.67

  103. Adwan MH (2017) Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome and the rheumatologist. Curr Rheumatol Rep 19:3

    Article  PubMed  CAS  Google Scholar 

  104. Maubec E, Wolkenstein P, Loriot M-A, Wechsler J, Mulot C, Beaune P et al (2008) Minocycline-Induced DRESS: evidence for accumulation of the culprit drug. Dermatology 216:200–204

    Article  CAS  PubMed  Google Scholar 

  105. Nisar MS, Iyer K, Brodell RT, Lloyd JR, Shin TM, Ahmad A (2013) Minocycline-induced hyperpigmentation: comparison of 3 Q-switched lasers to reverse its effects. Clin Cosmet Investig Dermatol 6:159–162

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kalai C, Brand R, Yu L (2012) Minocycline-induced Sweet syndrome (acute febrile neutrophilic dermatosis). J Am Acad Dermatol 67:e289–e291

    Article  PubMed  Google Scholar 

  107. Gu W, Shi D, Mi N, Pang X, Liu W (2017) Physician, beware! Drug fever without skin rashes can be caused by minocycline. J Investig Allergol Clin Immunol 27:268–269

    Article  CAS  PubMed  Google Scholar 

  108. Lebrun-Vignes B, Kreft-Jais C, Castot A, Chosidow O (2012) the French Network of Regional Centers of Pharmacovigilance. Comparative analysis of adverse drug reactions to tetracyclines: results of a French national survey and review of the literature: comparative analysis of adverse drug reactions to tetracyclines. Br J Dermatol 166:1333–41

  109. Sitbon O (1994) Minocycline pneumonitis and eosinophilia: a report on eight patients. Arch Intern Med 154:1633

    Article  CAS  PubMed  Google Scholar 

  110. Oddo M, Liaudet L, Lepori M, Broccard AF, Schaller M-D (2003) Relapsing acute respiratory failure induced by minocyclinea. Chest 123:2146–2148

    Article  PubMed  Google Scholar 

  111. Shao Q-Q, Qin L, Ruan G-R, Chen R-X, Luan Z-J, Ma X-J (2015) Tigecycline-induced drug fever and leukemoid reaction: a case report. Medicine (Baltimore) 94:e1869

  112. Yang J, Wu F, Luo D, Li M, Gou X, Xi J et al (2020) Toxic epidermal necrolysis syndrome induced by tigecycline: a case report. J Int Med Res 48:0300060520922416

    PubMed Central  Google Scholar 

  113. Maciag MC, Ward SL, O’Connell AE, Broyles AD (2020) Hypersensitivity to tetracyclines: skin testing, graded challenge, and desensitization regimens. Ann Allergy Asthma Immunol 124:589–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stollings JL, Chadha SN, Paul AM, Shaver CM, Hagaman D (2014) Doxycycline desensitization for a suspected case of ehrlichiosis. J Allergy Clin Immunol Pract 2:103–104

    Article  PubMed  Google Scholar 

  115. Caplunik-Pratsch AL, Potasman I, Kessel A, Paz A (2018) Doxycycline desensitization in chronic Q fever—a critical tool for the clinician. IDCases 11:70–72

    Article  PubMed  PubMed Central  Google Scholar 

  116. Aminov R (2017) History of antimicrobial drug discovery: major classes and health impact. Biochem Pharmacol 133:4–19

    Article  CAS  PubMed  Google Scholar 

  117. Zuckerman JM, Qamar F, Bono BR (2009) Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am 23:997–1026

    Article  PubMed  Google Scholar 

  118. Araújo L, Demoly P (2008) Macrolides allergy. Curr Pharm Des 14:2840–2862

    Article  PubMed  Google Scholar 

  119. Benahmed S, Scaramuzza C, Messaad D, Sahla H, Demoly P (2004) The accuracy of the diagnosis of suspected macrolide antibiotic hypersensitivity: results of a single-blinded trial. Allergy 59:1130–1133

    Article  CAS  PubMed  Google Scholar 

  120. Lammintausta K, Kortekangas-Savolainen O (2005) Oral challenge in patients with suspected cutaneous adverse drug reactions: findings in 784 patients during a 25-year-period. Acta Derm Venereol 6

  121. Mori F, Pecorari L, Pantano S, Rossi ME, Pucci N, De Martino M et al (2014) Azithromycin anaphylaxis in children. Int J Immunopathol Pharmacol 27:121–126

    Article  CAS  PubMed  Google Scholar 

  122. Seitz CS, Bröcker E-B, Trautmann A (2011) Suspicion of macrolide allergy after treatment of infectious diseases including Helicobacter pylori: Results of allergological testing. Allergol Immunopathol (Madr) 39:193–199

    Article  Google Scholar 

  123. Ben-Shoshan M, Moore A, Primeau MN (2009) Anaphylactic reaction to clarithromycin in a child. Allergy 64:962–963

    Article  CAS  PubMed  Google Scholar 

  124. Jorro G, Morales C, Brasó JV, Peláez A (1996) Anaphylaxis to erythromycin. Ann Allergy Asthma Immunol 77:456–458

    Article  CAS  PubMed  Google Scholar 

  125. Ünal D, Demir S, Gelincik A, Olgaç M, Coşkun R, Çolakoğlu B et al (2018) Diagnostic value of oral challenge testing in the diagnosis of macrolide hypersensitivity. J Allergy Clin Immunol Pract 6:521–527

    Article  PubMed  Google Scholar 

  126. Greenhawt M, McMorris M, Baldwin J (2009) Carmine hypersensitivity masquerading as azithromycin hypersensitivity. Allergy Asthma Proc 30:95–101

    Article  CAS  PubMed  Google Scholar 

  127. Pejčić AV (2021) Stevens-Johnson syndrome and toxic epidermal necrolysis associated with the use of macrolide antibiotics: a review of published cases. Int J Dermatol 60:12–24

    Article  PubMed  Google Scholar 

  128. Chen S-A, Zhang L-R, Yang F-P, Yang L-L, Yang Y, Chen Z-H et al (2018) HLA-A*02:07 allele associates with clarithromycin-induced cutaneous adverse drug reactions in Chinese patients. Basic Clin Pharmacol Toxicol 123:308–313

    Article  CAS  PubMed  Google Scholar 

  129. Milković-Kraus S, Macan J, Kanceljak-Macan B (2007) Occupational allergic contact dermatitis from azithromycin in pharmaceutical workers: a case series. Contact Dermatitis 56:99–102

    Article  PubMed  Google Scholar 

  130. Rubinstein E (2001) Comparative safety of the different macrolides. Int J Antimicrob Agents 18:71–76

    Article  Google Scholar 

  131. Broyles AD, Banerji A, Castells M (2020) Practical guidance for the evaluation and management of drug hypersensitivity: general concepts. J Allergy Clin Immunol Pract 8:S3-15

    Article  PubMed  Google Scholar 

  132. Mori F, Barni S, Pucci N, Rossi E, Azzari C, de Martino M et al (2010) Sensitivity and specificity of skin tests in the diagnosis of clarithromycin allergy 104:3

    Google Scholar 

  133. Cavkaytar O (2015) Testing for clarithromycin hypersensitivity: a diagnostic challenge in childhood 4:4

    Google Scholar 

  134. Pascual C, Crespo JF, Quiralte J, Lopez C, Wheeler G, Martin-Esteban M (1995) In vitro detection of specific IgE antibodies to erythromycin. J Allergy Clin Immunol 95:668–671

    Article  CAS  PubMed  Google Scholar 

  135. Nucera E, Roncallo C, Masini L, Buonomo A, Pollastrini E, Schiavino D et al (2002) Successful tolerance induction to spiramycin in pregnancy. Scand J Infect Dis 34:550–551

    Article  PubMed  Google Scholar 

  136. Swamy N, Laurie SA, Ruiz-Huidobro E, Khan DA (2010) Successful clarithromycin desensitization in a multiple macrolide–allergic patient. Ann Allergy Asthma Immunol 105:489–490

    Article  PubMed  Google Scholar 

  137. Holmes NE, Hodgkinson M, Dendle C, Korman TM (2008) Report of oral clarithromycin desensitization. Br J Clin Pharmacol 66:323–324

    Article  PubMed  PubMed Central  Google Scholar 

  138. Riley L, Mudd L, Baize T, Herzig R (2000) Cross-sensitivity reaction between tacrolimus and macrolide antibiotics. Bone Marrow Transplant 25:907–908

    Article  CAS  PubMed  Google Scholar 

  139. Lin RY (1990) Desensitization in the management of vancomycin hypersensitivity. Arch Intern Med 150:2197–2198

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Dr. Arroyo was supported by the National Institutes of Health R25 AI147369. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. The first draft of the manuscript was written by Linda Zhu, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Linda J. Zhu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

Dr. Arroyo report grants from the National Institutes of Health, outside the submitted work. The remaining authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L.J., Liu, A.Y., Wong, P.H. et al. Road Less Traveled: Drug Hypersensitivity to Fluoroquinolones, Vancomycin, Tetracyclines, and Macrolides. Clinic Rev Allerg Immunol 62, 505–518 (2022). https://doi.org/10.1007/s12016-021-08919-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08919-5

Keywords

Navigation