Dziechciaż M, Filip R (2014) Biological psychological and social determinants of old age: bio-psycho-social aspects of human aging. Ann Agric Environ Med 21:835–838. https://doi.org/10.5604/12321966.1129943
Article
PubMed
Google Scholar
Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17:205–220. https://doi.org/10.1007/s10522-015-9584-x
CAS
Article
PubMed
Google Scholar
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T (2016) A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev 29:90–112. https://doi.org/10.1016/j.arr.2016.06.005
Article
PubMed
PubMed Central
Google Scholar
Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, Ferbeyre G, Ferrucci L, Franceschi C, Frasca D, Friguet B, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Gut P, Ivanchenko M, Legault V, Lemaître JF, Liontis T, Liu GH, Liu M, Maier AB, Nóbrega OT, Olde Rikkert MGM, Pawelec G, Rheault S, Senior AM, Simm A, Soo S, Traa A, Ukraintseva S, Vanhaelen Q, Van Raamsdonk JM, Witkowski JM, Yashin AI, Ziman R, Fülöp T (2020) Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev 191:111316. https://doi.org/10.1016/j.mad.2020.111316
CAS
Article
PubMed
PubMed Central
Google Scholar
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
CAS
Article
PubMed
PubMed Central
Google Scholar
Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x
CAS
Article
PubMed
Google Scholar
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4
CAS
Article
PubMed
Google Scholar
Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4-9. https://doi.org/10.1093/gerona/glu057
Article
PubMed
Google Scholar
Fulop T, Witkowski JM, Olivieri F, Larbi A (2018) The integration of inflammaging in age-related diseases. Semin Immunol 40:17–35. https://doi.org/10.1016/j.smim.2018.09.003
CAS
Article
PubMed
Google Scholar
Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME (2020) The interplay between immunosenescence and age-related diseases. Semin Immunopathol 42:545–557. https://doi.org/10.1007/s00281-020-00806-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP (2019) Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis 10:367–382. https://doi.org/10.14336/AD.2018.0324
Article
PubMed
PubMed Central
Google Scholar
Royce GH, Brown-Borg HM, Deepa SS (2019) The potential role of necroptosis in inflammaging and aging. Geroscience 41:795–811. https://doi.org/10.1007/s11357-019-00131-w
Article
PubMed
PubMed Central
Google Scholar
Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, Morabito N, Lasco A, Gangemi S, Basile G (2016) Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz) 64:111–126. https://doi.org/10.1007/s00005-015-0377-3
CAS
Article
Google Scholar
Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T (2019) Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci 20(18):4472. https://doi.org/10.3390/ijms20184472
CAS
Article
PubMed Central
Google Scholar
Chen G, Yung R (2019) Meta-inflammaging at the crossroad of geroscience. Aging Med (Milton) 2:157–161. https://doi.org/10.1002/agm2.12078
Article
Google Scholar
Müller L, Di Benedetto S, Pawelec G (2019) The immune system and its dysregulation with aging. Subcell Biochem 91:21–43. https://doi.org/10.1007/978-981-13-3681-2_2
CAS
Article
PubMed
Google Scholar
Pawelec G, Bronikowski A, Cunnane SC, Ferrucci L, Franceschi C, Fülöp T, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Kennedy BK, Larbi A, Lemaître JF, Liu GH, Maier AB, Morais JA, Nóbrega OT, Moskalev A, Rikkert MO, Seluanov A, Senior AM, Ukraintseva S, Vanhaelen Q, Witkowski J, Cohen AA (2020) The conundrum of human immune system “senescence.” Mech Ageing Dev 192:111357. https://doi.org/10.1016/j.mad.2020.111357
CAS
Article
PubMed
PubMed Central
Google Scholar
Xu W, Wong G, Hwang YY, Larbi A (2020) The untwining of immunosenescence and aging. Semin Immunopathol 42:559–572. https://doi.org/10.1007/s00281-020-00824-x
Article
PubMed
PubMed Central
Google Scholar
Allen JC, Toapanta FR, Chen W, Tennant SM (2020) Understanding immunosenescence and its impact on vaccination of older adults. Vaccine 38:8264–8272. https://doi.org/10.1016/j.vaccine.2020.11.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Salminen A, Kaarniranta K, Kauppinen A (2019) Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 76:1901–1918. https://doi.org/10.1007/s00018-019-03048-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Drew W, Wilson DV, Sapey E (2018) Inflammation and neutrophil immunosenescence in health and disease: targeted treatments to improve clinical outcomes in the elderly. Exp Gerontol 105:70–77. https://doi.org/10.1016/j.exger.2017.12.020
Article
PubMed
Google Scholar
Moskalev A, Stambler I, Caruso C (2020) Innate and adaptive immunity in aging and longevity: the foundation of resilience. Aging Dis 11:1363–1373. https://doi.org/10.14336/AD.2020.0603
Article
PubMed
PubMed Central
Google Scholar
Nikolich-Žugich J (2018) The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 19:10–19. https://doi.org/10.1038/s41590-017-0006-x
CAS
Article
PubMed
Google Scholar
Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24:331–341. https://doi.org/10.1016/j.smim.2012.04.008
CAS
Article
PubMed
Google Scholar
Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM (2009) Shaw AC. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333. https://doi.org/10.1016/j.it.2009.05.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Bandaranayake T, Shaw AC (2016) Clin Geriatr Med 32:415–432. https://doi.org/10.1016/j.cger.2016.02.007
Article
PubMed
PubMed Central
Google Scholar
Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102:977–988. https://doi.org/10.1189/jlb.3RI0716-335R
CAS
Article
PubMed
PubMed Central
Google Scholar
Goronzy JJ, Weyand CM (2019) Mechanisms underlying T cell ageing. Nat Rev Immunol 19:573–583. https://doi.org/10.1038/s41577-019-0180-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Wong GCL, Strickland MC, Larbi A (2020) Changes in T cell homeostasis and vaccine responses in old age. Interdiscip Top Gerontol Geriatr 43:36–55. https://doi.org/10.1159/000504487
Article
PubMed
Google Scholar
Saavedra D, Fuertes SA, Suárez GM, González A, Lorenzo-Luaces P, García B, Aznar E, Mazorra Z, Crombet T, Speiser DE, Lage A (2019) Biomodulina T partially restores immunosenescent CD4 and CD8 T cell compartments in the elderly. Exp Gerontol 124:110633. https://doi.org/10.1016/j.exger.2019.110633
CAS
Article
PubMed
Google Scholar
Alves AS, Bueno V (2019) Immunosenescence: participation of T lymphocytes and myeloid-derived suppressor cells in aging-related immune response changes. Einstein (Sao Paulo). 17(2):eRB4733. https://doi.org/10.31744/einstein_journal/2019RB4733
Koch S, Solana R, Dela Rosa O, Pawelec G (2006) Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech Ageing Dev 127:538–543. https://doi.org/10.1016/j.mad.2006.01.011
CAS
Article
PubMed
Google Scholar
Larbi A, Fulop T (2014) From “truly naive” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A 85:25–35. https://doi.org/10.1002/cyto.a.22351
CAS
Article
PubMed
Google Scholar
Hazeldine J, Lord JM (2015) Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology 16:187–201. https://doi.org/10.1007/s10522-014-9514-3
CAS
Article
PubMed
Google Scholar
Montgomery RR, Shaw AC (2015) Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol 98:937–943. https://doi.org/10.1189/jlb.5MR0315-104R
CAS
Article
PubMed
PubMed Central
Google Scholar
Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol 22(4):507–513. https://doi.org/10.1016/j.coi.2010.05.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, Khalil A, Dupuis G (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3:217–226. https://doi.org/10.1111/j.1474-9728.2004.00110.x
CAS
Article
PubMed
Google Scholar
Fülöp T Jr, Fóris G, Wórum I, Leövey A (1985) Age-dependent alterations of Fc gamma receptor-mediated effector functions of human polymorphonuclear leucocytes. Clin Exp Immunol 61:425–432
PubMed
PubMed Central
Google Scholar
Fülöp T, Fóris G, Wórum I, Leövey A (1984) Age-dependent changes of the Fc gamma-receptor-mediated functions of human monocytes. Int Arch Allergy Appl Immunol 74:76–79. https://doi.org/10.1159/000233520
Article
PubMed
Google Scholar
Tomar N, De RK (2014) A brief outline of the immune system. Methods Mol Biol 1184:3–12. https://doi.org/10.1007/978-1-4939-1115-8_1
CAS
Article
PubMed
Google Scholar
Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33-40. https://doi.org/10.1016/j.jaci.2009.09.017
Article
PubMed
Google Scholar
Hirokawa K, Utsuyama M, Kasai M, Kurashima C, Ishijima S, Zeng YX (1994) Immunol Lett 40:269–277. https://doi.org/10.1016/0165-2478(94)00065-4
CAS
Article
PubMed
Google Scholar
Thapa P, Farber DL (2019) The role of the thymus in the immune response. Thorac Surg Clin 29:123–131. https://doi.org/10.1016/j.thorsurg.2018.12.001
Article
PubMed
PubMed Central
Google Scholar
Thomas R, Wang W, Su DM (2020) Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing 17:2. https://doi.org/10.1186/s12979-020-0173-8.6
Article
PubMed
PubMed Central
Google Scholar
Pawelec G, Barnett Y, Forsey R, Frasca D, Globerson A, McLeod J, Caruso C, Franceschi C, Fülöp T, Gupta S, Mariani E, Mocchegiani E, Solana R (2002) T cells and aging, January 2002 update. Front Biosci 1(7):d1056–d1183. https://doi.org/10.2741/a831
Article
Google Scholar
Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A 111:13139–13144. https://doi.org/10.1073/pnas.1409155111
CAS
Article
PubMed
PubMed Central
Google Scholar
Di Benedetto S, Derhovanessian E, Steinhagen-Thiessen E, Goldeck D, Müller L, Pawelec G (2015) Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study. Biogerontology 16:631–643. https://doi.org/10.1007/s10522-015-9563-2
CAS
Article
PubMed
Google Scholar
Frasca D, Blomberg BB (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17(1):7–19. https://doi.org/10.1007/s10522-015-9578-8
CAS
Article
PubMed
Google Scholar
Castelo-Branco C, Soveral I (2014) The immune system and aging: a review. Gynecol Endocrinol 30(1):16–22. https://doi.org/10.3109/09513590.2013.852531
CAS
Article
PubMed
Google Scholar
Pawelec G (2018) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9. https://doi.org/10.1016/j.exger.2017.10.024
CAS
Article
PubMed
Google Scholar
Pera A, Campos C, López N, Hassouneh F, Alonso C, Tarazona R, Solana R (2015) Immunosenescence: implications for response to infection and vaccination in older people. Maturitas 82:50–55. https://doi.org/10.1016/j.maturitas.2015.05.004
CAS
Article
PubMed
Google Scholar
Gustafson CE, Kim C, Weyand CM, Goronzy JJ (2020) J Allergy Clin Immunol 145:1309–1321. https://doi.org/10.1016/j.jaci.2020.03.017
CAS
Article
PubMed
PubMed Central
Google Scholar
Andrew MK, Bowles SK, Pawelec G, Haynes L, Kuchel GA, McNeil SA, McElhaney JE (2019) Influenza vaccination in older adults: recent innovations and practical applications. Drugs Aging 36:29–37. https://doi.org/10.1007/s40266-018-0597-4
Article
PubMed
Google Scholar
Wagner A, Weinberger B (2020) Vaccines to prevent infectious diseases in the older population: immunological challenges and future perspectives. Front Immunol 11:717. https://doi.org/10.3389/fimmu.2020.00717
CAS
Article
PubMed
PubMed Central
Google Scholar
Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, Levin MJ, McElhaney JE, Poder A, Puig-Barberà J, Vesikari T, Watanabe D, Weckx L, Zahaf T, Heineman TC, ZOE-50 Study Group (2015) Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 372:2087–2096. https://doi.org/10.1056/NEJMoa1501184
Article
Google Scholar
de Waure C, Boccalini S, Bonanni P, Amicizia D, Poscia A, Bechini A, Barbieri M, Capri S, Specchia ML, Di Pietro ML, Arata L, Cacciatore P, Panatto D, Gasparini R (2019) Adjuvanted influenza vaccine for the Italian elderly in the 2018/19 season: an updated health technology assessment. Eur J Public Health 29:900–905. https://doi.org/10.1093/eurpub/ckz041
Article
PubMed
PubMed Central
Google Scholar
Vallejo AN (2006) Age-dependent alterations of the T cell repertoire and functional diversity of T cells of the aged. Immunol Res 36:221–228. https://doi.org/10.1385/IR:36:1:221
CAS
Article
PubMed
Google Scholar
Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM (2015) Naive T cell maintenance and function in human aging. J Immunol 194:4073–4080. https://doi.org/10.4049/jimmunol.1500046
CAS
Article
PubMed
Google Scholar
Weyand CM, Goronzy JJ (2016) Aging of the immune system. Mechanisms and therapeutic targets. Ann Am Thorac Soc S422-S428. 13 Suppl 5(Suppl 5). https://doi.org/10.1513/AnnalsATS.201602-095AW
Qi Q, Zhang DW, Weyand CM, Goronzy JJ (2014) Mechanisms shaping the naive T cell repertoire in the elderly - thymic involution or peripheral homeostatic proliferation? Exp Gerontol 54:71–74. https://doi.org/10.1016/j.exger.2014.01.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M (2017) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol 8:982. https://doi.org/10.3389/fimmu.2017.00982
CAS
Article
PubMed
PubMed Central
Google Scholar
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM (2020) Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 42:521–536. https://doi.org/10.1007/s00281-020-00818-9
CAS
Article
PubMed
Google Scholar
Vitlic A, Lord JM, Phillips AC (2014) Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system. Age (Dordr) 36:9631. https://doi.org/10.1007/s11357-014-9631
Article
Google Scholar
Goldberg EL, Shaw AC, Montgomery RR (2020) How inflammation blunts innate immunity in aging. Interdiscip Top Gerontol Geriatr 43:1–17. https://doi.org/10.1159/000504480
Article
PubMed
PubMed Central
Google Scholar
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging.’ Trends Endocrinol Metab 28:199–212. https://doi.org/10.1016/j.tem.2016.09.005
CAS
Article
PubMed
Google Scholar
Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN, Henson SM (2018) Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17:e12675. https://doi.org/10.1111/acel.12675
CAS
Article
Google Scholar
Xu W, Larbi A (2017) Markers of T cell senescence in humans. Int J Mol Sci 18:1742. https://doi.org/10.3390/ijms18081742
CAS
Article
PubMed Central
Google Scholar
Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19:1680–1698. https://doi.org/10.2174/138161213805219711
CAS
Article
PubMed
PubMed Central
Google Scholar
Fülöp T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271. https://doi.org/10.3389/fimmu.2013.00271
CAS
Article
PubMed
PubMed Central
Google Scholar
Witkowski JM, Mikosik A, Bryl E, Fulop T (2018) Proteodynamics in aging human T cells - the need for its comprehensive study to understand the fine regulation of T lymphocyte functions. Exp Gerontol 107:161–168. https://doi.org/10.1016/j.exger.2017.10.009
CAS
Article
PubMed
Google Scholar
Mayya V, Judokusumo E, Abu-Shah E, Neiswanger W, Sachar C, Depoil D, Kam LC, Dustin ML (2019) Cutting edge: synapse propensity of human memory CD8 T cells confers competitive advantage over naive counterparts. J Immunol 203:601–606. https://doi.org/10.4049/jimmunol.1801687
CAS
Article
PubMed
PubMed Central
Google Scholar
Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T Jr (2006) Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal 18:1017–1030. https://doi.org/10.1016/j.cellsig.2005.08.016
CAS
Article
PubMed
Google Scholar
Fulop T, Le Page A, Garneau H, Azimi N, Baehl S, Dupuis G, Pawelec G, Larbi A (2012) Aging, immunosenescence and membrane rafts: the lipid connection. Longev Healthspan 1:6. https://doi.org/10.1186/2046-2395-1-6
Article
PubMed
PubMed Central
Google Scholar
Ohno-Iwashita Y, Shimada Y, Hayashi M, Inomata M (2010) Plasma membrane microdomains in aging and disease. Geriatr Gerontol Int 10(Suppl 1):S41-52. https://doi.org/10.1111/j.1447-0594.2010.00600.x
Article
PubMed
Google Scholar
Gupta SS (1989) Membrane signal transduction in T cells in aging humans. Ann N Y Acad Sci 568:277–282. https://doi.org/10.1111/j.1749-6632.1989.tb12517.x
CAS
Article
PubMed
Google Scholar
Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A (2014) Cellular signaling in the aging immune system. Curr Opin Immunol 29:105–111. https://doi.org/10.1016/j.coi.2014.05.007
CAS
Article
PubMed
Google Scholar
Le Page A, Dupuis G, Larbi A, Witkowski JM, Fülöp T (2018) Signal transduction changes in CD4(+) and CD8(+) T cell subpopulations with aging. Exp Gerontol 105:128–139. https://doi.org/10.1016/j.exger.2018.01.005
CAS
Article
PubMed
Google Scholar
Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169. https://doi.org/10.1111/j.0105-2896.2005.00256.x
CAS
Article
PubMed
Google Scholar
McGuire PJ (2019) Mitochondrial dysfunction and the aging immune system. Biology (Basel) 8:26. https://doi.org/10.3390/biology8020026
CAS
Article
Google Scholar
Lee KA, Robbins PD, Camell CD (2021) Intersection of immunometabolism and immunosenescence during aging. Curr Opin Pharmacol 57:107–116. https://doi.org/10.1016/j.coph.2021.01.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38:633–643. https://doi.org/10.1016/j.immuni.2013.04.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Nicoli F, Papagno L, Frere JJ, Cabral-Piccin MP, Clave E, Gostick E, Toubert A, Price DA, Caputo A, Appay V (2018) Front Immunol 9:2736. https://doi.org/10.3389/fimmu.2018.02736
CAS
Article
PubMed
PubMed Central
Google Scholar
Yanes RE, Zhang H, Shen Y, Weyand CM, Goronzy JJ (2019) Metabolic reprogramming in memory CD4 T cell responses of old adults. Clin Immunol 207:58–67. https://doi.org/10.1016/j.clim.2019.07.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21:183–203. https://doi.org/10.1038/s41580-019-0199-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Bjedov I, Rallis C (2020) The target of rapamycin signalling pathway in ageing and lifespan regulation. Genes (Basel) 11:1043. https://doi.org/10.3390/genes11091043
CAS
Article
Google Scholar
Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of the immune and the endocrine systems. Immunol Today 18:169–174
CAS
Article
PubMed
Google Scholar
Teti G, Biondo C, Beninati C (2016) The phagocyte, Metchnikoff, and the foundation of immunology. Microbiol Spectr 4(2). https://doi.org/10.1128/microbiolspec.MCHD-0009-2015
Underhill DM, Gordon S, Imhof BA, Núñez G, Bousso P (2016) Elie Metchnikoff (1845–1916): celebrating 100 years of cellular immunology and beyond. Nat Rev Immunol 16:651–656. https://doi.org/10.1038/nri.2016.89
CAS
Article
PubMed
Google Scholar
Beutler B (2004) Innate immunity: an overview. Mol Immunol 40(12):845–859. https://doi.org/10.1016/j.molimm.2003.10.005
CAS
Article
PubMed
Google Scholar
Ebihara T (2020) Dichotomous regulation of acquired immunity by innate lymphoid cells. Cells 9:1193. https://doi.org/10.3390/cells9051193
CAS
Article
PubMed Central
Google Scholar
Rosales C (2020) Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 108:377–396. https://doi.org/10.1002/JLB.4MIR0220-574RR
CAS
Article
PubMed
Google Scholar
Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 15:123–147. https://doi.org/10.1146/annurev-pathmechdis-012418-012718
CAS
Article
PubMed
Google Scholar
Bi J, Wang X (2020) Molecular regulation of NK cell maturation. Front Immunol 11:1945. https://doi.org/10.3389/fimmu.2020.01945
CAS
Article
PubMed
PubMed Central
Google Scholar
Riera Romo M, Pérez-Martínez D, Castillo FC (2016) Innate immunity in vertebrates: an overview. Immunology 148:125–139. https://doi.org/10.1111/imm.12597
CAS
Article
PubMed
PubMed Central
Google Scholar
Ottaviani E, Malagoli D, Capri M, Franceschi C (2008) Ecoimmunology: is there any room for the neuroendocrine system? BioEssays 30(9):868–874. https://doi.org/10.1002/bies.20801
Article
PubMed
Google Scholar
Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17:147–157. https://doi.org/10.1007/s10522-015-9615-7
CAS
Article
PubMed
Google Scholar
Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11(5):867–875. https://doi.org/10.1111/j.1474-9726.2012.00851.x
CAS
Article
PubMed
Google Scholar
Nyugen J, Agrawal S, Gollapudi S, Gupta S (2010) Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 30(6):806–813. https://doi.org/10.1007/s10875-010-9448-8
CAS
Article
PubMed
PubMed Central
Google Scholar
De Maeyer RPH, Chambers ES (2021) The impact of ageing on monocytes and macrophages. Immunol Lett 230:1–10. https://doi.org/10.1016/j.imlet.2020.12.003
CAS
Article
PubMed
Google Scholar
Merino A, Buendia P, Martin-Malo A, Aljama P, Ramirez R, Carracedo J (2011) Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity. J Immunol 186(3):1809–1815. https://doi.org/10.4049/jimmunol.1001866
CAS
Article
PubMed
Google Scholar
Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CT, Ng TP, Larbi A, Wong SC (2018) The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 9(3):266. https://doi.org/10.1038/s41419-018-0327-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Tarazona R, Campos C, Pera A, Sanchez-Correa B, Solana R (2015) Flow cytometry analysis of NK cell phenotype and function in aging. Methods Mol Biol 1343:9–18. https://doi.org/10.1007/978-1-4939-2963-4_2
CAS
Article
PubMed
Google Scholar
Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61. https://doi.org/10.1016/j.coi.2014.04.002
CAS
Article
PubMed
Google Scholar
Gupta S (2014) Role of dendritic cells in innate and adaptive immune response in human aging. Exp Gerontol 54:47–52. https://doi.org/10.1016/j.exger.2013.12.009
CAS
Article
PubMed
Google Scholar
Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20:95–112. https://doi.org/10.1038/s41577-019-0215-7
CAS
Article
PubMed
Google Scholar
Ablasser A, Hur S (2020) Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 21:17–29. https://doi.org/10.1038/s41590-019-0556-1
CAS
Article
PubMed
Google Scholar
Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180:1044–1066. https://doi.org/10.1016/j.cell.2020.02.041
CAS
Article
PubMed
Google Scholar
Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34. https://doi.org/10.3109/08830185.2010.529976
CAS
Article
PubMed
Google Scholar
Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427. https://doi.org/10.1177/0022034510381264
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, He C, Wang L, Ge B (2017) Post-translational regulation of antiviral innate signaling. Eur J Immunol 47:1414–1426. https://doi.org/10.1002/eji.201746959
CAS
Article
PubMed
PubMed Central
Google Scholar
Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887. https://doi.org/10.1038/nri3547
CAS
Article
PubMed
PubMed Central
Google Scholar
Bailey KL, Smith LM, Heires AJ, Katafiasz DM, Romberger DJ, LeVan TD (2019) Aging leads to dysfunctional innate immune responses to TLR2 and TLR4 agonists. Aging Clin Exp Res 31:1185–1193. https://doi.org/10.1007/s40520-018-1064-0
Article
PubMed
Google Scholar
Fülöp T, Larbi A, Witkowski JM (2019) Human inflammaging. Gerontology 65:495–504. https://doi.org/10.1159/000497375
Article
PubMed
Google Scholar
Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T Jr (2006) Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 79:1061–1072. https://doi.org/10.1189/jlb.0805481
CAS
Article
PubMed
Google Scholar
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 20:375–388. https://doi.org/10.1038/s41577-020-0285-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ, van der Meer JW, van Crevel R, Netea MG (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109:17537–17542
CAS
Article
PubMed
PubMed Central
Google Scholar
Domínguez-Andrés J, Fanucchi S, Joosten LAB, Mhlanga MM, Netea MG (2020) Advances in understanding molecular regulation of innate immune memory. Curr Opin Cell Biol 63:68–75
Article
PubMed
Google Scholar
Ciarlo E, Heinonen T, Théroude C, Asgari F, Le Roy D, Netea MG, Roger T (2019) Trained immunity confers broad-spectrum protection against bacterial infections. J Infect Dis pii: jiz692
van der Heijden CDCC, Noz MP, Joosten LAB, Netea MG, Riksen NP, Keating ST (2017) Epigenetics and trained immunity. Antioxid Redox Signal 29(11):1023–1040
Article
PubMed
Google Scholar
Arts RJ, Joosten LA, Netea MG (2016) Immunometabolic circuits in trained immunity. Semin Immunol 28:425–430
CAS
Article
PubMed
Google Scholar
Franceschi C (1989) Cell proliferation, cell death and aging. Aging 1:3–15. https://doi.org/10.1007/BF03323871
CAS
Article
PubMed
Google Scholar
Kirkwood TB, Franceschi C (1992) Is aging as complex as it would appear? New perspectives in aging research. Ann N Y Acad Sci 21(663):412–417. https://doi.org/10.1111/j.1749-6632.1992.tb38685.x
Article
Google Scholar
Son DH, Park WJ, Lee YJ (2019) Recent advances in anti-aging medicine. Korean J Fam Med 40:289–296. https://doi.org/10.4082/kjfm.19.0087
Article
PubMed
PubMed Central
Google Scholar
Chatterjee A, Georgiev G, Iannacchione G (2017) Aging and efficiency in living systems: complexity, adaptation and self-organization. Mech Ageing Dev 163:2–7. https://doi.org/10.1016/j.mad.2017.02.009
Article
PubMed
Google Scholar
Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105. https://doi.org/10.1016/j.mad.2006.11.016
CAS
Article
PubMed
Google Scholar
Giunta S (2008) Exploring the complex relations between inflammation and aging (inflamm-aging): anti-inflamm-aging remodelling of inflamm-aging, from robustness to frailty. Inflamm Res 57(12):558–563. https://doi.org/10.1007/s00011-008-7243-2
CAS
Article
PubMed
Google Scholar
Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco É, Legault V, Li Q, Milot E, Dusseault-Bélanger F, Ferrucci L (2014) Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev 139:49–57. https://doi.org/10.1016/j.mad.2014.06.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol Today 18(4):169–174. https://doi.org/10.1016/s0167-5699(97)84663-4
CAS
Article
PubMed
Google Scholar
Ottaviani E, Franceschi C (1998) A new theory on the common evolutionary origin of natural immunity, inflammation and stress response: the invertebrate phagocytic immunocyte as an eye-witness. Domest Anim Endocrinol 15(5):291–296. https://doi.org/10.1016/s0739-7240(98)00021-6
CAS
Article
PubMed
Google Scholar
Martucci M, Ostan R, Biondi F, Bellavista E, Fabbri C, Bertarelli C, Salvioli S, Capri M, Franceschi C, Santoro A (2017) Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev 75(6):442–455. https://doi.org/10.1093/nutrit/nux013
Article
PubMed
PubMed Central
Google Scholar
Santoro A, Martucci M, Conte M, Capri M, Franceschi C, Salvioli S (2020) Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev 64:101142. https://doi.org/10.1016/j.arr.2020.101142
CAS
Article
PubMed
Google Scholar
Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1(4667):1383–1392. https://doi.org/10.1136/bmj.1.4667.1383
CAS
Article
PubMed
PubMed Central
Google Scholar
Franceschi C, Valensin S, Fagnoni F, Barbi C, Bonafè M (1999) Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol 34(8):911–921. https://doi.org/10.1016/s0531-5565(99)00068-6
CAS
Article
PubMed
Google Scholar
Hitt R, Young-Xu Y, Silver M, Perls T (1999) Centenarians: the older you get, the healthier you have been. Lancet 354(9179):652. https://doi.org/10.1016/S0140-6736(99)01987-X
CAS
Article
PubMed
Google Scholar
Franceschi C, Monti D, Sansoni P, Cossarizza A (1995) The immunology of exceptional individuals: the lesson of centenarians. Immunol Today 16:12–16. https://doi.org/10.1016/0167-5699(95)80064-6
CAS
Article
PubMed
Google Scholar
Santos-Lozano A, Valenzuela PL, Llavero F, Lista S, Carrera-Bastos P, Hampel H, Pareja-Galeano H, Gálvez BG, López JA, Vázquez J, Emanuele E, Zugaza JL, Lucia A (2020) Successful aging: insights from proteome analyses of healthy centenarians. Aging (Albany NY) 12:3502–3515. https://doi.org/10.18632/aging.102826
CAS
Article
Google Scholar
Caruso C, Aiello A, Accardi G, Ciaglia E, Cattaneo M, Puca A (2019) Genetic signatures of centenarians: implications for achieving successful aging. Curr Pharm Des 25:4133–4138. https://doi.org/10.2174/1381612825666191112094544
CAS
Article
PubMed
Google Scholar
Johnson TE, Bruunsgaard H (1998) Implications of hormesis for biomedical aging research. Hum Exp Toxicol 17(5):263–265. https://doi.org/10.1177/096032719801700509
CAS
Article
PubMed
Google Scholar
Calabrese EJ, Baldwin LA (1999) The marginalization of hormesis. Toxicol Pathol 27(2):187–94. https://doi.org/10.1177/019262339902700206
Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne) 5:61. https://doi.org/10.3389/fmed.2018.00061
Article
Google Scholar
Giuliani C, Pirazzini C, Delledonne M, Xumerle L, Descombes P, Marquis J, Mengozzi G, Monti D, Bellizzi D, Passarino G, Luiselli D, Franceschi C, Garagnani P (2017) Centenarians as extreme phenotypes: an ecological perspective to get insight into the relationship between the genetics of longevity and age-associated diseases. Mech Ageing Dev 165(Pt B):195–201. https://doi.org/10.1016/j.mad.2017.02.007
Article
PubMed
Google Scholar
Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R (1993) Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol 23(9):2375–2378. https://doi.org/10.1002/eji.1830230950
CAS
Article
PubMed
Google Scholar
Baggio G, Donazzan S, Monti D, Mari D, Martini S, Gabelli C, Dalla Vestra M, Previato L, Guido M, Pigozzo S, Cortella I, Crepaldi G, Franceschi C (1998) Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB J 12(6):433–437. https://doi.org/10.1096/fasebj.12.6.433
CAS
Article
PubMed
Google Scholar
Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2(10):1549–1558. https://doi.org/10.1016/j.ebiom.2015.07.029
Article
PubMed
PubMed Central
Google Scholar
Franceschi C, Bonafè M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18(16):1717–1720. https://doi.org/10.1016/s0264-410x(99)00513-7
CAS
Article
PubMed
Google Scholar
Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafè M (2015) DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 6:35509–35521
Article
PubMed
PubMed Central
Google Scholar
Effros RB (2003) Replicative senescence: the final stage of memory T cell differentiation? Curr HIV Res 1:153–165
CAS
Article
PubMed
Google Scholar
Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2018) Senescence-associated secretory phenotypes reveal cell- nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868
Google Scholar
Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972
CAS
Article
PubMed
PubMed Central
Google Scholar
Birch J, Passos JF (2017) Targeting the SASP to combat ageing: mitochondria as possible intracellular allies? Bioessays 39(5)
Campisi J (2016) Cellular senescence and lung function during aging. Yin and Yang. Ann Am Thorac Soc 13(Supplement_5):S402
Yarbro JR, Emmons RS, Pence BD (2020) Macrophage immunometabolism and inflammaging: roles of mitochondrial dysfunction, cellular senescence, CD38, and NAD. Immunometabolism 2(3):e200026. https://doi.org/10.20900/immunometab20200026
Article
PubMed
PubMed Central
Google Scholar
Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6
CAS
Article
PubMed
Google Scholar
Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CT, Ng TP, Larbi A, Wong SC (2018) The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 9(3):266. https://doi.org/10.1038/s41419-018-0327-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Iske J, Seyda M, Heinbokel T, Maenosono R, Minami K, Nian Y, Quante M, Falk CS, Azuma H, Martin F, Passos JF, Niemann CU, Tchkonia T, Kirkland JL, Elkhal A, Tullius SG (2020) Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat Commun 11(1):4289. https://doi.org/10.1038/s41467-020-18039-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Olivieri F, Prattichizzo F, Grillari J, Balistreri CR (2018) Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm 17(2018):9076485. https://doi.org/10.1155/2018/9076485
Article
Google Scholar
Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102(4):977–988. https://doi.org/10.1189/jlb.3RI0716-335R
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW (2019) Dissecting aging and senescence-current concepts and open lessons. Cells 8(11):1446. https://doi.org/10.3390/cells8111446
CAS
Article
PubMed Central
Google Scholar
Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C (2020) Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol 42:589–605. https://doi.org/10.1007/s00281-020-00814-z
Article
PubMed
PubMed Central
Google Scholar
Peterson CT, Sharma V, Elmén L, Peterson SN (2015) Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol 179(3):363–377. https://doi.org/10.1111/cei.12474
CAS
Article
PubMed
PubMed Central
Google Scholar
Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(1):11–20
Article
PubMed
Google Scholar
Bosco N, Noti M (2021) The aging gut microbiome and its impact on host immunity. Genes Immun 19:1–15. https://doi.org/10.1038/s41435-021-00126-8
Article
Google Scholar
Ragonnaud E, Biragyn A (2021) Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18(1):2. https://doi.org/10.1186/s12979-020-00213-w
Article
PubMed
PubMed Central
Google Scholar
DeJong EN, Surette MG, Bowdish DME (2020) The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe 28(2):180–189. https://doi.org/10.1016/j.chom.2020.07.013
CAS
Article
PubMed
Google Scholar
Franceschi C, Ostan R, Santoro A (2018) Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr 21(38):329–356. https://doi.org/10.1146/annurev-nutr-082117-051637
CAS
Article
Google Scholar
Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26(11):1480–1485. https://doi.org/10.1016/j.cub.2016.04.016
CAS
Article
PubMed
Google Scholar
Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C (2018) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 75(1):129–148. https://doi.org/10.1007/s00018-017-2674-y
CAS
Article
PubMed
Google Scholar
Coman V, Vodnar DC (2020) Gut microbiota and old age: modulating factors and interventions for healthy longevity. Exp Gerontol 41:111095. https://doi.org/10.1016/j.exger.2020.111095
CAS
Article
Google Scholar
Bulut O, Kilic G, Domínguez-Andrés J, Netea MG (2020) Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 32(12):741–753. https://doi.org/10.1093/intimm/dxaa052
CAS
Article
PubMed
PubMed Central
Google Scholar
Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593:1566–1579. https://doi.org/10.1002/1873-3468.13498
CAS
Article
PubMed
Google Scholar
Omarjee L, Perrot F, Meilhac O, Mahe G, Bousquet G, Janin A (2020) Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging (Albany NY) 12:26263–26278. https://doi.org/10.18632/aging.202422
Article
Google Scholar
Salvioli S, Capri M, Valensin S, Tieri P, Monti D, Ottaviani E, Franceschi C (2006) Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr Pharm Des 12(24):3161–3171. https://doi.org/10.2174/138161206777947470
CAS
Article
PubMed
Google Scholar
Picca A, Lezza AMS, Leeuwenburgh C, Pesce V, Calvani R, Landi F, Bernabei R, Marzetti E (2017) Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int J Mol Sci 18(5):933. https://doi.org/10.3390/ijms18050933
CAS
Article
PubMed Central
Google Scholar
Yang Q, Shu HB (2020) Deciphering the pathways to antiviral innate immunity and inflammation. Adv Immunol 145:1–36. https://doi.org/10.1016/bs.ai.2019.11.001
CAS
Article
PubMed
Google Scholar
Burtscher J, Burtscher M, Millet GP (2021) The central role of mitochondrial fitness on antiviral defenses: an advocacy for physical activity during the COVID-19 pandemic. Redox Biol 43:101976. https://doi.org/10.1016/j.redox.2021.101976
CAS
Article
PubMed
PubMed Central
Google Scholar
Conte M, Martucci M, Chiariello A, Franceschi C, Salvioli S (2020) Mitochondria, immunosenescence and inflammaging: a role for mitokines? Semin Immunopathol 42:607–617. https://doi.org/10.1007/s00281-020-00813-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, Ligotti ME, Zareian N, Accardi G (2019) Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol 10:2247. https://doi.org/10.3389/fimmu.2019.02247
CAS
Article
PubMed
PubMed Central
Google Scholar
Pereira B, Xu XN, Akbar AN (2020) Targeting inflammation and immunosenescence to improve vaccine responses in the elderly. Front Immunol 11:583019. https://doi.org/10.3389/fimmu.2020.583019
CAS
Article
PubMed
PubMed Central
Google Scholar
De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15(26):3003–3026. https://doi.org/10.2174/138161209789058110
Article
PubMed
Google Scholar
Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S (2018) Advances and challenges in geroscience research: an update. Physiol Int 105(4):298–308. https://doi.org/10.1556/2060.105.2018.4.32
CAS
Article
PubMed
Google Scholar
Sierra F, Kohanski R (2017) Geroscience and the trans-NIH Geroscience Interest Group. GSIG Geroscience 39(1):1–5. https://doi.org/10.1007/s11357-016-9954-6
Article
PubMed
Google Scholar
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M (2021) The role of T cells in age-related diseases. Nat Rev Immunol. https://doi.org/10.1038/s41577-021-00557-4
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586. eCollection 2018. https://doi.org/10.3389/fimmu.2018.00586
Gritsenko A, Green JP, Brough D, Lopez-Castejon G (2020) Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 55:15–25. https://doi.org/10.1016/j.cytogfr.2020.08.003
CAS
Article
PubMed
PubMed Central
Google Scholar
De Winter G (2015) Aging as disease. Med Health Care Philos 18:237–243. https://doi.org/10.1007/s11019-014-9600-y
Article
PubMed
Google Scholar
Janac S, Clarke B, Gems D (2017) Aging: natural or disease? A view from medical textbooks. In: Vaiserman AM (ed) Anti-aging drugs: from basic research to clinical practice. Royal Society of Chemistry, Cambridge (UK), p 2017
Google Scholar
Fulop T, Larbi A, Khalil A, Cohen AA, Witkowski JM (2019) Are we ill because we age? Front Physiol 18(10):1508. https://doi.org/10.3389/fphys.2019.01508
Article
Google Scholar
Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 10(8):1960. https://doi.org/10.3389/fimmu.2017.01960
CAS
Article
Google Scholar
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nature Med 26:450–452
CAS
Article
PubMed
Google Scholar
Perrotta F, Corbi G, Mazzeo G, Boccia M, Aronne L, D’Agnano V, Komici K, Mazzarella G, Parrella R, Bianco A (2020) COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res 32(8):1599–1608. https://doi.org/10.1007/s40520-020-01631-y
Article
PubMed
PubMed Central
Google Scholar
Kadambari S, Klenerman P, Pollard AJ (2020) Why the elderly appear to be more severely affected by COVID-19: the potential role of immunosenescence and CMV. Rev Med Virol 30:e2144. https://doi.org/10.1002/rmv.2144
CAS
Article
PubMed
Google Scholar
Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV (2020) Remodeling of the immune response with aging: immunosenescence and its potential impact on COVID-19 immune response. Front Immunol 7(11):1748. https://doi.org/10.3389/fimmu.2020.01748
CAS
Article
Google Scholar
Pietrobon AJ, Teixeira FME, Sato MN (2020) Immunosenescence and inflammaging: risk factors of severe COVID-19 in older people. Front Immunol 27(11):579220. https://doi.org/10.3389/fimmu.2020.579220
CAS
Article
Google Scholar
Akbar AN, Gilroy DW (2020) Aging immunity may exacerbate COVID-19. Science 369(6501):256–257. https://doi.org/10.1126/science.abb0762
CAS
Article
PubMed
Google Scholar
Flaherty GT, Hession P, Liew CH, Lim BCW, Leong TK, Lim V, Sulaiman LH (2020) COVID-19 in adult patients with pre-existing chronic cardiac, respiratory and metabolic disease: a critical literature review with clinical recommendations. Trop Dis Travel Med Vaccines 28(6):16. https://doi.org/10.1186/s40794-020-00118-y
Article
Google Scholar
Arsun B, Shepherd HS, Claudio F, Luigi F (2020) A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun Ageing 17:23. eCollection 2020. https://doi.org/10.1186/s12979-020-00196-8
Ostan R, Monti D, Gueresi P, Bussolotto M, Franceschi C, Baggio G (2016) Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin Sci (Lond) 130(19):1711–1725. https://doi.org/10.1042/CS20160004
Article
Google Scholar
Monti D, Ostan R, Borelli V, Castellani G, Franceschi C (2017) Inflammaging and human longevity in the omics era. Mech Ageing Dev 165(Pt B):129–138. https://doi.org/10.1016/j.mad.2016.12.008
Article
PubMed
Google Scholar
Moderbacher CR, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J, Kato Y, Crotty EG, Kim C, Rawlings SA, Mateus J, Tse LPV, Frazier A, Baric R, Peters B, Greenbaum J, Saphire EO, Smith DM, Sette A, Crotty S (2020) Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183(4):996–1012.e19. Epub 2020 Sep 16. https://doi.org/10.1016/j.cell.2020.09.038
Zheng Y, Liu X, Le W, Xie L, Li H, Wen W, Wang S, Ma S, Huang Z, Ye J, Shi W, Ye Y, Liu Z, Song M, Zhang W, Han JJ, Belmonte JCI, Xiao C, Qu J, Wang H, Liu GH, Su W (2020) A human circulating immune cell landscape in aging and COVID-19. Protein Cell 11(10):740–770. https://doi.org/10.1007/s13238-020-00762-2
Duggal NA, Niemiro G, Harridge SDR, Simpson RJ, Lord JM (2019) Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 19:563–572. https://doi.org/10.1038/s41577-019-0177-9
CAS
Article
PubMed
Google Scholar
Weyh C, Krüger K, Strasser B (2020) Physical activity and diet shape the immune system during aging. Nutrients 12(3):622. https://doi.org/10.3390/nu12030622
CAS
Article
PubMed Central
Google Scholar
Fuellen G, Liesenfeld O, Kowald A, Barrantes I, Bastian M, Simm A, Jansen L, Tietz-Latza A, Quandt D, Franceschi C, Walter M (2020) The preventive strategy for pandemics in the elderly is to collect in advance samples & data to counteract chronic inflammation (inflammaging. Ageing Res Rev 62:101091. https://doi.org/10.1016/j.arr.2020.101091
CAS
Article
PubMed
PubMed Central
Google Scholar
Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, Wan W, Tai X (2016) An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res 2016:8426874. https://doi.org/10.1155/2016/8426874
CAS
Article
PubMed
PubMed Central
Google Scholar
Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F (2017) Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 40:95–119. https://doi.org/10.1016/j.arr.2017.09.001
CAS
Article
PubMed
Google Scholar
Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, Li T, Margolick JB, Pawelec G, Leng SX (2021) Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev 65:101205. https://doi.org/10.1016/j.arr.2020.101205
CAS
Article
PubMed
Google Scholar
Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19(6):371–384. https://doi.org/10.1038/s41576-018-0004-3
CAS
Article
PubMed
Google Scholar