Skip to main content

Advertisement

Log in

The Application of Single-Cell RNA Sequencing in Studies of Autoimmune Diseases: a Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Complex composition is one of the most important features of the immune system, involving many types of organs, tissues, cells, and molecules that perform immune functions. The normal function of each component of the immune system is the guarantee for maintaining the relatively stable immune function of the body. When the self-immune tolerance mechanism of the body is unregulated or destroyed, the immune system reacts to autoantigens, resulting in damage to self-tissues and organs or an immunopathological state with abnormal functions. Autoimmune diseases are diverse, and their pathogenesis is complicated. Various immune cells and their interactions play significant roles in the occurrence and development of diseases. The solution to heterogeneity of immune cells is the basic science and translational understanding of how genes and the environment interact to induce disease so that we can develop personalized medicine, a goal that has to this point eluded scientists. Single-cell RNA sequencing (scRNA-Seq) refers to a new technique allowing high-throughput sequencing analysis of the whole transcriptome to reveal the gene expression status of individual cells. It has emerged as an indispensable tool in the field of life science research, and can help identify the complex mechanism of cell heterogeneity, discover new cell subsets, and help uncover the molecular mechanisms of pathogenesis, the evolution of disorders, and drug resistance. This information can provide us with new strategies for diagnosis and prognostic evaluation, as well as monitoring treatment responses. In this review, we summarize the crucial experimental procedures used for single-cell RNA sequencing, and the current applications of this technique to study autoimmune diseases are described in detail. This technique will be widely used in more in-depth studies of autoimmune diseases and will contribute to the diagnosis and therapies of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Coskun AF, Eser U, Islam S (2016) Cellular identity at the single-cell level. Mol BioSyst 12(10):2965–2979

    CAS  PubMed  Google Scholar 

  2. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382

    CAS  PubMed  Google Scholar 

  3. Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, Linnarsson S (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2(3):666–673

    CAS  PubMed  Google Scholar 

  5. Ramskold D et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782

    PubMed  PubMed Central  Google Scholar 

  6. Pan X, Durrett RE, Zhu H, Tanaka Y, Li Y, Zi X, Marjani SL, Euskirchen G, Ma C, LaMotte RH, Park IH, Snyder MP, Mason CE, Weissman SM (2013) Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci U S A 110(2):594–599

    CAS  PubMed  Google Scholar 

  7. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181

    CAS  PubMed  Google Scholar 

  8. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343(6172):776–779

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan HC, Fu GK, Fodor SP (2015) Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347(6222):1258367

    PubMed  Google Scholar 

  10. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao J et al (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science (New York, N.Y.) 357(6352):661–667

    CAS  Google Scholar 

  13. Gierahn TM, Wadsworth MH II, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek AK (2017) Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14(4):395–398

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. 2018

  15. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan GC, Chen M, Guo G (2018) Mapping the mouse cell atlas by Microwell-Seq. Cell 172(5):1091–1107 e17

    CAS  PubMed  Google Scholar 

  16. Chen H, Ye F, Guo G (2019) Revolutionizing immunology with single-cell RNA sequencing. Cell Mol Immunol 16(3):242–249

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang XT, Li X, Qin PZ, Zhu Y, Xu SN, Chen JP (2018) Technical advances in single-cell RNA sequencing and applications in normal and malignant hematopoiesis. Front Oncol 8:582

    PubMed  PubMed Central  Google Scholar 

  18. Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J (2011) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9(1):72–74

    PubMed  Google Scholar 

  19. Islam S, Zeisel A, Joost S, la Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166

    Article  CAS  PubMed  Google Scholar 

  20. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155

    CAS  PubMed  Google Scholar 

  21. Morris J, Singh JM, Eberwine JH (2011) Transcriptome analysis of single cells. Journal of Visualized Experiments : JoVE 50

  22. Guo F, Li L, Li J, Wu X, Hu B, Zhu P, Wen L, Tang F (2017) Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27(8):967–988

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakamura N et al (2007) Laser capture microdissection for analysis of single cells. Methods in Molecular Medicine 132:11–18

    CAS  PubMed  Google Scholar 

  24. Emmert-Buck MR et al (1996) Laser capture microdissection. Science (New York, N.Y.) 274(5289):5289

    Google Scholar 

  25. Chen J, Suo S, Tam PPL, Han JDJ, Peng G, Jing N (2017) Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc 12(3):566–580

    CAS  PubMed  Google Scholar 

  26. Maciorowski Z, Chattopadhyay PK, Jain P (2017) Basic multicolor flow cytometry. Curr Protoc Immunol 117:541–5438

    Google Scholar 

  27. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37(2):163–176

    CAS  PubMed  Google Scholar 

  28. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian D, Zabala M, Bueno J, Neff NF, Wang J, Shelton AA, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke MF, Quake SR (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, Quake SR (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11(1):41–46

    CAS  PubMed  Google Scholar 

  30. Joensson HN, Andersson Svahn H (2012) Droplet microfluidics--a tool for single-cell analysis. Angewandte Chemie (International ed. in English) 51(49):12176–12192

    CAS  Google Scholar 

  31. Valihrach L, Androvic P, Kubista M (2018) Platforms for single-cell collection and analysis. Int J Mol Sci 19(3):807

    PubMed Central  Google Scholar 

  32. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski L, Fowler B, Chen P, Ramalingam N, Sun G, Thu M, Norris M, Lebofsky R, Toppani D, Kemp DW II, Wong M, Clerkson B, Jones BN, Wu S, Knutsson L, Alvarado B, Wang J, Weaver LS, May AP, Jones RC, Unger MA, Kriegstein AR, West JAA (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32(10):1053–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, Chen H, Wang J, Tang H, Ge W, Zhou Y, Ye F, Jiang M, Wu J, Xiao Y, Jia X, Zhang T, Ma X, Zhang Q, Bai X, Lai S, Yu C, Zhu L, Lin R, Gao Y, Wang M, Wu Y, Zhang J, Zhan R, Zhu S, Hu H, Wang C, Chen M, Huang H, Liang T, Chen J, Wang W, Zhang D, Guo G (2020) Construction of a human cell landscape at single-cell level. Nature 581(7808):303–309

    CAS  PubMed  Google Scholar 

  35. Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH, Carbone L, Steemers FJ, Adey A (2017) Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods 14(3):302–308

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang F et al (2019) Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol 20(7):928–942

    PubMed  PubMed Central  Google Scholar 

  37. Mizoguchi F, Slowikowski K, Wei K, Marshall JL, Rao DA, Chang SK, Nguyen HN, Noss EH, Turner JD, Earp BE, Blazar PE, Wright J, Simmons BP, Donlin LT, Kalliolias GD, Goodman SM, Bykerk VP, Ivashkiv LB, Lederer JA, Hacohen N, Nigrovic PA, Filer A, Buckley CD, Raychaudhuri S, Brenner MB (2018) Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat Commun 9(1):789

    PubMed  PubMed Central  Google Scholar 

  38. Der E et al (2019) Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat Immunol 20(7):915–927

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Papalexi E, Satija R (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18(1):35–45

    CAS  PubMed  Google Scholar 

  40. Stephenson W, Donlin LT, Butler A, Rozo C, Bracken B, Rashidfarrokhi A, Goodman SM, Ivashkiv LB, Bykerk VP, Orange DE, Darnell RB, Swerdlow HP, Satija R (2018) Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat Commun 9(1):791

    PubMed  PubMed Central  Google Scholar 

  41. Lu DR, McDavid AN, Kongpachith S, Lingampalli N, Glanville J, Ju CH, Gottardo R, Robinson WH (2018) T cell-dependent affinity maturation and innate immune pathways differentially drive autoreactive B cell responses in rheumatoid arthritis. Arthritis Rheumatol 70(11):1732–1744

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuo D et al (2019) HBEGF(+) macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci Transl Med 11(491):eaau8587

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Croft AP, Campos J, Jansen K, Turner JD, Marshall J, Attar M, Savary L, Wehmeyer C, Naylor AJ, Kemble S, Begum J, Dürholz K, Perlman H, Barone F, McGettrick HM, Fearon DT, Wei K, Raychaudhuri S, Korsunsky I, Brenner MB, Coles M, Sansom SN, Filer A, Buckley CD (2019) Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570(7760):246–251

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cai S et al (2019) Similar transition processes in synovial fibroblasts from rheumatoid arthritis and osteoarthritis: a single-cell study. J Immunol Res 2019:4080735

    PubMed  PubMed Central  Google Scholar 

  45. Gawel DR, Serra-Musach J, Lilja S, Aagesen J, Arenas A, Asking B, Bengnér M, Björkander J, Biggs S, Ernerudh J, Hjortswang H, Karlsson JE, Köpsen M, Lee EJ, Lentini A, Li X, Magnusson M, Martínez-Enguita D, Matussek A, Nestor CE, Schäfer S, Seifert O, Sonmez C, Stjernman H, Tjärnberg A, Wu S, Åkesson K, Shalek AK, Stenmarker M, Zhang H, Gustafsson M, Benson M (2019) A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Med 11(1):47

    PubMed  PubMed Central  Google Scholar 

  46. Culemann S, Grüneboom A, Nicolás-Ávila JÁ, Weidner D, Lämmle KF, Rothe T, Quintana JA, Kirchner P, Krljanac B, Eberhardt M, Ferrazzi F, Kretzschmar E, Schicht M, Fischer K, Gelse K, Faas M, Pfeifle R, Ackermann JA, Pachowsky M, Renner N, Simon D, Haseloff RF, Ekici AB, Bäuerle T, Blasig IE, Vera J, Voehringer D, Kleyer A, Paulsen F, Schett G, Hidalgo A, Krönke G (2019) Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572(7771):670–675

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hasegawa T, Kikuta J, Sudo T, Matsuura Y, Matsui T, Simmons S, Ebina K, Hirao M, Okuzaki D, Yoshida Y, Hirao A, Kalinichenko VV, Yamaoka K, Takeuchi T, Ishii M (2019) Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol 20(12):1631–1643

    CAS  PubMed  Google Scholar 

  48. Wei K et al (2020) Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582(7811):259–264

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA, Gyllborg D, Munoz-Manchado AB, la Manno G, Lonnerberg P, Floriddia EM, Rezayee F, Ernfors P, Arenas E, Hjerling-Leffler J, Harkany T, Richardson WD, Linnarsson S, Castelo-Branco G (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352(6291):1326–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Falcao AM et al (2018) Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24(12):1837–1844

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko E, Ginhoux F, Chen J, Franklin RJM, Piao X, McCarroll SA, Stevens B (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50(1):253–271 e6

    CAS  PubMed  Google Scholar 

  52. Jordao MJC et al (2019) Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363(6425):eaat7554

    CAS  PubMed  Google Scholar 

  53. Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar, Scheiwe C, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grün D, Priller J, Stadelmann C, Prinz M (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566(7744):388–392

    CAS  PubMed  Google Scholar 

  54. Beltran E et al (2019) Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis. J Clin Invest 129(11):4758–4768

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schafflick D, Xu CA, Hartlehnert M, Cole M, Schulte-Mecklenbeck A, Lautwein T, Wolbert J, Heming M, Meuth SG, Kuhlmann T, Gross CC, Wiendl H, Yosef N, Meyer zu Horste G (2020) Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun 11(1):247

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wheeler MA, Clark IC, Tjon EC, Li Z, Zandee SEJ, Couturier CP, Watson BR, Scalisi G, Alkwai S, Rothhammer V, Rotem A, Heyman JA, Thaploo S, Sanmarco LM, Ragoussis J, Weitz DA, Petrecca K, Moffitt JR, Becher B, Antel JP, Prat A, Quintana FJ (2020) MAFG-driven astrocytes promote CNS inflammation. Nature 578(7796):593–599

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Marisca R, Hoche T, Agirre E, Hoodless LJ, Barkey W, Auer F, Castelo-Branco G, Czopka T (2020) Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat Neurosci 23(3):363–374

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Esaulova E et al (2020) Single-cell RNA-seq analysis of human CSF microglia and myeloid cells in neuroinflammation. Neurol Neuroimmunol Neuroinflamm 7(4)

  59. Ramesh A, Schubert RD, Greenfield AL, Dandekar R, Loudermilk R, Sabatino JJ Jr, Koelzer MT, Tran EB, Koshal K, Kim K, Pröbstel AK, Banerji D, University of California, San Francisco MS-EPIC Team, Guo CY, Green AJ, Bove RM, DeRisi JL, Gelfand JM, Cree BAC, Zamvil SS, Baranzini SE, Hauser SL, Wilson MR (2020) A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc Natl Acad Sci U S A 117(37):22932–22943

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Der E et al (2017) Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2(9):e93009

    PubMed Central  Google Scholar 

  61. Arazi A et al (2019) The immune cell landscape in kidneys of patients with lupus nephritis. Nat Immunol 20(7):902–914

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee PY et al (2019) High-dimensional analysis reveals a pathogenic role of inflammatory monocytes in experimental diffuse alveolar hemorrhage. JCI Insight 4(15):e129703

    PubMed Central  Google Scholar 

  63. Mistry P, Nakabo S, O’Neil L, Goel RR, Jiang K, Carmona-Rivera C, Gupta S, Chan DW, Carlucci PM, Wang X, Naz F, Manna Z, Dey A, Mehta NN, Hasni S, Dell’Orso S, Gutierrez-Cruz G, Sun HW, Kaplan MJ (2019) Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A 116(50):25222–25228

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Goel RR, Wang X, O’Neil LJ, Nakabo S, Hasneen K, Gupta S, Wigerblad G, Blanco LP, Kopp JB, Morasso MI, Kotenko SV, Yu ZX, Carmona-Rivera C, Kaplan MJ (2020) Interferon lambda promotes immune dysregulation and tissue inflammation in TLR7-induced lupus. Proc Natl Acad Sci U S A 117(10):5409–5419

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nehar-Belaid D, Hong S, Marches R, Chen G, Bolisetty M, Baisch J, Walters L, Punaro M, Rossi RJ, Chung CH, Huynh RP, Singh P, Flynn WF, Tabanor-Gayle JA, Kuchipudi N, Mejias A, Collet MA, Lucido AL, Palucka K, Robson P, Lakshminarayanan S, Ramilo O, Wright T, Pascual V, Banchereau JF (2020) Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat Immunol 21(9):1094–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cerosaletti K, Barahmand-pour-Whitman F, Yang J, DeBerg HA, Dufort MJ, Murray SA, Israelsson E, Speake C, Gersuk VH, Eddy JA, Reijonen H, Greenbaum CJ, Kwok WW, Wambre E, Prlic M, Gottardo R, Nepom GT, Linsley PS (2017) Single-cell RNA sequencing reveals expanded clones of islet antigen-reactive CD4(+) T cells in peripheral blood of subjects with type 1 diabetes. J Immunol 199(1):323–335

    CAS  PubMed  Google Scholar 

  67. Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK, Melton DA (2019) Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep 27(8):2281–2291 e5

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kallionpaa H et al (2019) Early detection of peripheral blood cell signature in children developing beta-cell autoimmunity at a young age. Diabetes 68(10):2024–2034

    CAS  PubMed  Google Scholar 

  69. Wang D, Wang J, Bai L, Pan H, Feng H, Clevers H, Zeng YA (2020) Long-term expansion of pancreatic islet organoids from resident Procr(+) progenitors. Cell 180(6):1198–1211 e19

    CAS  PubMed  Google Scholar 

  70. Zakharov PN et al (2020) Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J Exp Med 217(6):e20192362

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Firestein GS, McInnes IB (2017) Immunopathogenesis of rheumatoid arthritis. Immunity 46(2):183–196

    CAS  PubMed  PubMed Central  Google Scholar 

  72. (2018) Rheumatoid arthritis. Nat Rev Dis Primers 4:18002

  73. Smith MD (2011) The normal synovium. Open Rheumatol J 5:100–106

    PubMed  PubMed Central  Google Scholar 

  74. Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12(10):580–592

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388(10055):2023–2038

    CAS  PubMed  Google Scholar 

  76. Lefevre S, Meier FM, Neumann E, Muller-Ladner U (2015) Role of synovial fibroblasts in rheumatoid arthritis. Curr Pharm Des 21(2):130–141

    CAS  PubMed  Google Scholar 

  77. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T (2006) Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford) 45(6):669–675

    CAS  Google Scholar 

  78. Frank-Bertoncelj M, Gay S (2017) Rheumatoid arthritis: TAK-ing the road to suppress inflammation in synovial fibroblasts. Nat Rev Rheumatol 13(3):133–134

    CAS  PubMed  Google Scholar 

  79. Onuora S (2020) Synovial fibroblast expansion in RA is driven by notch signalling. Nat Rev Rheumatol 16(7):349

    PubMed  Google Scholar 

  80. Udalova IA, Mantovani A, Feldmann M (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12(8):472–485

    CAS  PubMed  Google Scholar 

  81. Wu H, Deng Y, Feng Y, Long D, Ma K, Wang X, Zhao M, Lu L, Lu Q (2018) Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 15(7):676–684

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Donlin LT et al (2018) Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Res Ther 20(1):139

    PubMed  PubMed Central  Google Scholar 

  83. Fonseka CY et al (2018) Mixed-effects association of single cells identifies an expanded effector CD4(+) T cell subset in rheumatoid arthritis. Sci Transl Med 10(463):eaaq0305

    PubMed  PubMed Central  Google Scholar 

  84. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, Hughes G (2016) Systemic lupus erythematosus. Nat Rev Dis Primers 2:16039

    PubMed  Google Scholar 

  85. Vanarsa K, Soomro S, Zhang T, Strachan B, Pedroza C, Nidhi M, Cicalese P, Gidley C, Dasari S, Mohan S, Thai N, Truong VTT, Jordan N, Saxena R, Putterman C, Petri M, Mohan C (2020) Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann Rheum Dis 79(10):1349–1361

    CAS  PubMed  Google Scholar 

  86. Zhang T, Li H, Vanarsa K, Gidley G, Mok CC, Petri M, Saxena R, Mohan C (2020) Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular crescents and intrarenal M2 macrophages. Front Immunol 11:671

    PubMed  PubMed Central  Google Scholar 

  87. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, Wan E, Wong S, Byrnes L, Lanata CM, Gate RE, Mostafavi S, Marson A, Zaitlen N, Criswell LA, Ye CJ (2018) Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol 36(1):89–94

    CAS  PubMed  Google Scholar 

  88. Dura B et al (2019) scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3' mRNA profiling. Nucleic Acids Res 47(3):e16

    PubMed  Google Scholar 

  89. Carmona-Rivera C, Kaplan MJ (2013) Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin Immunopathol 35(4):455–463

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rahman S, Sagar D, Hanna RN, Lightfoot YL, Mistry P, Smith CK, Manna Z, Hasni S, Siegel RM, Sanjuan MA, Kolbeck R, Kaplan MJ, Casey KA (2019) Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann Rheum Dis 78(7):957–966

    CAS  PubMed  Google Scholar 

  91. Tay SH, Celhar T, Fairhurst AM (2020) Low-density neutrophils in systemic lupus erythematosus. Arthritis Rheum 29:1334

    Google Scholar 

  92. Martinez-Martinez MU, Oostdam DAH, Abud-Mendoza C (2017) Diffuse alveolar hemorrhage in autoimmune diseases. Curr Rheumatol Rep 19(5):27

    PubMed  Google Scholar 

  93. Martinez-Martinez MU, Abud-Mendoza C (2014) Diffuse alveolar hemorrhage in patients with systemic lupus erythematosus. Clinical manifestations, treatment, and prognosis. Reumatol Clin 10(4):248–253

    PubMed  Google Scholar 

  94. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA (2018) Multiple sclerosis. Nat Rev Dis Primers 4(1):43

    PubMed  Google Scholar 

  95. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, Vistnes S, Stockley JH, Young A, Steindel M, Tung B, Goyal N, Bhaduri A, Mayer S, Engler JB, Bayraktar OA, Franklin RJM, Haeussler M, Reynolds R, Schafer DP, Friese MA, Shiow LR, Kriegstein AR, Rowitch DH (2019) Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573(7772):75–82

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S, Agirre E, Samudyata, Floriddia EM, Vanichkina DP, ffrench-Constant C, Williams A, Guerreiro-Cacais AO, Castelo-Branco G (2018) Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24(12):1837–1844

    PubMed  PubMed Central  Google Scholar 

  97. Hammond TR et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50(1):253

    CAS  PubMed  Google Scholar 

  98. Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242

    CAS  PubMed  Google Scholar 

  99. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3:17016

    PubMed  Google Scholar 

  100. Pagliuca FW, Millman JR, Gürtler M, Segel M, van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic β cells in vitro. Cell 159(2):428–439

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JHR, Harb G, Poh YC, Sintov E, Gürtler M, Pagliuca FW, Peterson QP, Melton DA (2019) Charting cellular identity during human in vitro β-cell differentiation. Nature 569(7756):368–373

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang D et al (2020) Long-term expansion of pancreatic islet organoids from resident Procr progenitors. Cell 180(6):1198

    CAS  PubMed  Google Scholar 

  103. Chakravarthy H, Gu X, Enge M, Dai X, Wang Y, Damond N, Downie C, Liu K, Wang J, Xing Y, Chera S, Thorel F, Quake S, Oberholzer J, MacDonald PE, Herrera PL, Kim SK (2017) Converting adult pancreatic islet alpha cells into beta cells by targeting both Dnmt1 and Arx. Cell Metab 25(3):622–634

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chambers DC, Carew AM, Lukowski SW, Powell JE (2019) Transcriptomics and single-cell RNA-sequencing. Respirology 24(1):29–36

    PubMed  Google Scholar 

  105. Baumer C et al (2018) Exploring DNA quality of single cells for genome analysis with simultaneous whole-genome amplification. Sci Rep 8(1):7476

    PubMed  PubMed Central  Google Scholar 

  106. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, Goolam M, Saurat N, Coupland P, Shirley LM, Smith M, van der Aa N, Banerjee R, Ellis PD, Quail MA, Swerdlow HP, Zernicka-Goetz M, Livesey FJ, Ponting CP, Voet T (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12(6):519–522

    CAS  PubMed  Google Scholar 

  107. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood SA, Ponting CP, Voet T, Kelsey G, Stegle O, Reik W (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229–232

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, Wu X, Wen L, Tang F, Huang Y, Peng J (2016) Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26(3):304–319

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Li L, Guo F, Gao Y, Ren Y, Yuan P, Yan L, Li R, Lian Y, Li J, Hu B, Gao J, Wen L, Tang F, Qiao J (2018) Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol 20(7):847–858

    CAS  PubMed  Google Scholar 

  110. Cusanovich DA et al (2015) Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science (New York, N.Y.) 348(6237):910–914

    CAS  Google Scholar 

  111. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott GP, Olsen BN, Mumbach MR, Pierce SE, Corces MR, Shah P, Bell JC, Jhutty D, Nemec CM, Wang J, Wang L, Yin Y, Giresi PG, Chang ALS, Zheng GXY, Greenleaf WJ, Chang HY (2019) Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol 37(8):925–936

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Granja JM, Klemm S, McGinnis LM, Kathiria AS, Mezger A, Corces MR, Parks B, Gars E, Liedtke M, Zheng GXY, Chang HY, Majeti R, Greenleaf WJ (2019) Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat Biotechnol 37(12):1458–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen S, Lake BB, Zhang K (2019) High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol 37(12):1452–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bian S et al (2018) Single-cell multiomics sequencing and analyses of human colorectal cancer. Science (New York, N.Y.) 362(6418):1060–1063

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Xing Wang, Meixi Liu, Zhenwei Tang, and Bowen Li for their guidance in revising the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81972943 and No. 81830097) and the Hunan Talent Young Investigator (No. 2019RS2012).

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Qianjin Lu, Haijing Wu; drafting of the manuscript: Mingming Zhao; revising of the manuscript: Qianjin Lu, Haijing Wu, Ming Zhao, Christopher Chang.

Corresponding authors

Correspondence to Haijing Wu or Qianjin Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Jiang, J., Zhao, M. et al. The Application of Single-Cell RNA Sequencing in Studies of Autoimmune Diseases: a Comprehensive Review. Clinic Rev Allerg Immunol 60, 68–86 (2021). https://doi.org/10.1007/s12016-020-08813-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08813-6

Keywords

Navigation